Гормоны роста растений реферат

Обновлено: 02.07.2024

Гормоны растений, или фитогормоны (греч. hormon — побуждающий, вызывающий), — низкомолекулярные органические соединения, которые участвуют во взаимодействии клеток, тканей и органов. Необходимы в небольших количествах для инициирования и регуляции физиологических и морфологических процессов онтогенеза растений.

Гормоны растений

Гормоны являются посредниками в физиологических процессах, преобразуют специфические сигналы окружающей среды в биохимическую информацию. Гормоны, образующиеся в растениях, называют эндогенными, применяемые человеком для обработки растений — экзогенными.

Потребность растения в гормонах составляет 10-13⋅10 -5 моль/л, в большинстве случаев синтезируются в достаточных количествах самим растением. Синтезируются в отдельных частях растения, но распространяются по всему организму. Под их действием происходит регулирование обмена веществ. Гормоны проявляют физиологическое действие на:

  1. ферменты и ферментные системы;
  2. обмен белков, липидов, нуклеиновых кислот;
  3. информационные и транспортные рибонуклеиновые кислоты;
  4. дезоксирибонуклеиновую кислоту.

Эффект действия гормонов в одних случаях сводится к временному изменению интенсивности биохимических реакций, в других — проявляется в устойчивом отклонении процессов, в-третьих — в морфологических изменениях, затрагивающих соматическую сферу организма, в-четвёртых — в наследственных морфологических изменениях.

К числу наиболее активным и изученным соединениям гормонального действия растительного происхождения относятся ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен.

В отличие от животных в растениях отсутствуют железы, секретирующие гормоны.

Действие гормонов на обмен веществ растительного организма специфично: гиббереллины участвуют в транскрипции, то есть переносе информации о нуклеотидной последователь­ности ДНК на информационную РНК при синтеза белков, цитокинины — в трансляции, то есть процессе перевода последовательности нуклеотидов ин­формационной РНК в последовательность аминокислот синтезируемого полипептида, ауксины — в изменении проницаемости мембран, абсцизины ингибируют ионный транспорт и связанные с ним процессы роста клеток, этилен выступает в качестве “разрешающего” фактора роста, контролирует баланс в системе стимуляторы-ингибиторы.

Ауксины

Ауксины, или соединения индолилуксусной кислоты (ИУК), образуются в зонах с высокой меристематической активностью: в апексах стеблей, в формирующихся семенах, откуда они перемещаются в базипетальном направлении, попадая в боковые побеги и листья.

Ауксины инициируют деление клеток и влияют на скорость их растяжения, регулируют формирование проводящих пучков, обусловливают явления фото- и геотропизма растений, связанные с несимметричностью их распределения. Активация растяжения клеток происходит при стимулировании ауксином секреции протонов в клеточную стенку. Возникающая при этом повышенная концентрация ионов водорода приводит к более активному ферментативному расщеплению поперечных связей, соединяющих между собой целлюлозные микрофибриллы.

Другими свойствами ауксинов являются способность вызывать партенокарпию, задерживать опадание листьев и завязей, активировать корнеобразование у черенков. Ткани, обогащенные ауксином, обладают аттрагирующим действием, то есть способны притягивать питательные вещества. Ауксин обеспечивает корреляционное взаимодействие между органами растущего растения.

Гиббереллины

Гиббереллины — фитогормоны, производные флуоренового ряда. Стимулируют деление и растяжение клеток апикальных и интеркалярных меристем. Под действием гиббереллинов удлиняются листья, цветки и соцветия. Гиббереллины усиливают рост стеблей сильнее, чем ауксины. В то же время гиббереллины практически не влияют на рост корней. Участвуют в процессах прорастания семян и перехода длиннодневных растений к цветению. Способствуют образованию партенокарпических плодов.

Гиббереллины способны смещать пол растений в мужскую сторону. Влияние на метаболизм растения связано с их участием в нуклеиновом обмене: под их действием индуцируется синтез матричных РНК, которые кодируют образование гидролитических ферментов, прежде всего амилаз.

Гиббереллины синтезируются в основном в листьях и оттуда перемещаются вверх и вниз по стеблю.

Цитокинины

Цитокинины — фитогормоны, производные пуринов, стимулируют цитогенез, прорастание семян, способствуют дифференциации почек. Обладают способностью задерживать процессы старения растительных организмов и поддерживать нормальный обмен веществ у пожелтевших листьев, вызывать их вторичное позеленение.

Цитокинины участвуют в мобилизации-притягивании питательных веществ к местам локализации: плодам, семенам, клубням. Освобождают боковые почки от апикального доминирования, вызываемого ауксином, стимулируют их рост. На молекулярном уровне цитокинины в комплексе со специфическим белковым рецептором увеличивают активность РНК-полимеразы и матричную активность хроматина, при этом повышается количество полирибосом и синтез белков. Цитокинины участвуют в синтезе фермента нитратредуктазы и транспорте ионов Н + , K + , Са 2+ .

Образуются в корнях, откуда передвигаются вверх по стеблю в акропетальном направлении.

Абсцизины

Абсцизины — естественные ингибиторы терпеноидной природы. Задерживают рост в фазе деления и растяжения клеток, не проявляют токсического действия даже в высоких концентрациях. Индуцируют наступление состояния покоя у растений, ускоряют опадание листьев и плодов (абсцизия), тормозят рост колеоптилей, задерживают прорастание семян.

Сдерживая избыточный рост стебля, абсцизины направляют метаболиты на формирование фотосинтетического аппарата, то есть координируют ростовой процесс. Участвуют в механизмах стресса, регулируя устьичные движения.

Абсцизовая кислота быстро накапливается в тканях при действии на растения неблагоприятных факторов внешней среды, прежде всего при водном дефиците, вызывая закрытие устьиц, снижая транспирацию и сокращая энергетические затраты. На молекулярном уровне абсцизины ингибируют синтез ДНК, РНК и белков. Могут снижать функциональную активность Н + -помпы.

Абсцизовая кислота синтезируются в листьях, транспортируются вверх и вниз по стеблю. Кроме того, образуется в корневом чехлике.

Этилен

Этилен — специфический гормон, синтезируется во всех органах растения из метионина. Вносит вклад в регуляцию роста и развития растений. Участвует в поддержании апикального изгиба у выращенных в темноте проростков, вызывает эпинастию, то есть быстрый рост верхней стороны органа, в результате которого лист или лепесток изгибается книзу. По этой причине его используют для ускорения раскрывания цветков. Опускание листьев под действием этилена сокращает транспирацию.

Этилен отвечает за контролируемое ауксином подавление роста латеральных почек, обнаруживающих апикальное доминирование. Тормозит деление клеток и удлинение проростков, изменяет направление роста клеток с продольного на поперечное, уменьшая длину и утолщая стебель. Способствуя старению тканей, этилен ускоряет опадание листьев, увядание цветков и ускоряет созревание плодов.

В большинстве случаев увеличивает период покоя семян и клубней, способствует смещению пола растений в женскую сторону, играет роль медиатора гормонального комплекса в процессах корреляционных взаимодействий в растении. Тормозит полярный транспорт ауксина и способствует образованию его конъюгатов. Этилен регулирует реакцию стресса в растениях. На молекулярном уровне повышает проницаемость клеточных мембран и скорость синтеза белка.

Брассиностероиды

Брассиностероиды — гормоны, поддерживающие работу иммунной системы растения, прежде всего в стрессовых ситуациях. Стероиды, также как гиббереллины и абсцизовая кислота, входят в класс терпеноидов.

Брассиностероиды содержатся в каждой растительной клетке, однако их естественный уровень в изменившейся экологической ситуации оказывается недостаточным для поддержания иммунитета и нормального развития в течение всей вегетации.

Препараты - стимуляторы роста растений

Гумат натрия

Кампозан М

Кампозан М применяется для предотвращения полегания льна-долгунца, озимой ржи, ячменя озимого.

Розалин

Розалин используют на хлопчатнике для предотвращения опадения коробочек и повышения урожая хлопка-сырца.

Фоспинол

Фоспинол увеличивает урожай картофеля на 15-20%, уменьшает поражаемость грибными и вирусными болезнями, улучшает лежкоспособность клубней.

Тур, или хлормекват хлорид, и хлорхолинхлорид применяют в посевах зерновых культур, прежде всего озимых. Препятствует полеганию высокоурожайных хлебов за счет утолщения соломины, упрочения механических тканей и уменьшения длины стебля.

Иммуноцитофит

Иммуноцитофит — смесь полиненасыщенных жирных кислот с высоким содержанием архидоновой кислоты. Применяется на зерновых, зернобобовых, корне- и клубнеплодных, овощных, технических и плодовых культурах в качестве многоцелевого стимулятора защитных реакций, роста и развития растений.

Стимулирует естественный иммунитет к болезням, таким как фитофтороз, различные виды парши, черная ножка, мучнистая роса, гнили, бактериозы. Ускоряет прорастание семян, созревание плодов, образование пробкового слоя на клубнях и корнеплодах; увеличивает размеры цветков, зеленую массу и кустистость; обеспечивает повышение урожая на 20-30%, снижает потери урожая при хранении.

Применение регуляторов роста растений

Для эффективного применения регуляторов роста растений необходимо соблюдать условия:

  1. положительный эффект может достигаться только в случае, если в растении или в отдельных органах не хватает эндогенных фитогормонов;
  2. клетки, ткани и органы должны быть восприимчивы к фитогормонам;
  3. действие всех регуляторов роста зависит от концентрации, передозировка приводит к ингибирующему эффекту;
  4. оптимальное обеспечение растений водой и питательными веществами.

Регуляторы роста не заменяют питание растений. По мнению М.Х. Чайлахана (1976), они повышают “аппетит” и поэтому стимулируют ростовые процессы.

Регуляторы роста растений используют для:

  • стимулирования укоренения черенков;
  • получения партенокарпических (бессемянных) плодов;
  • повышения производства бессемянных сортов винограда;
  • прореживания цветков и завязей плодовых культур;
  • уничтожения сорной растительности;
  • торможения удлинения стебля;
  • регуляции покоя;
  • ускорения созревания плодов.

Из регуляторов роста ауксиновой природы получили применение в сельском хозяйстве 1-нафтилуксусная кислота (1-НУК), индометил-3-масляная кислота (ИМК), 2,4-дихлорфеноксиуксусная кислота (2,4-Д), 2,4,5-трихлорфеноксиуксусная кислота (2,4,5-Т), 2-нафтоксиуксусная кислота (2-НОУК), 4-хлорфеноксиуксусная кислота (4Х), гидразид малеиновая кислота (ГМК), 2-метил-4-хлорфеноуксусная кислота (2М 4Х) и 2,4-дихлорфеноксимасляная кислота (2,4-ДМ). 1-НУК и ИМК успешно применяются в садоводстве для укоренения черенков, повышения приживаемости саженцев и восстановления корневой системы у пересаженных кустарников и деревьев.

Практическое применение имеют гиббереллины. Опрыскивание виноградных растений во время цветения водным раствором, содержащим 30-35 г/га гибберелловой кислоты, повышает урожайность бессемянных (кишмишных) сортов на 10-15%. Применяется также при выращивании цитрусовых.

Цитокинины нашли применение в культуре ткани. Они являются фактором, необходимым для получения культуры дедифференцированной каллусной ткани, а также для индукции затем органогенеза и соматического эмбриогенеза. Цитокинин необходим также для поддержания функциональной активности изолированных тканей и органов.

Этилен используется в качестве стимулятора созревания плодов и овощей.

Ретарданты

Ретарданты — синтетические вещества, тормозящие синтез гиббереллинов, подавляющие рост стебля и вегетативных побегов, придающие растению устойчивость к полеганию.

Ретарданты избирательно тормозят рост стебля, не оказывают при этом отрицательного действия на физиолого-биохимические процессы. Действие основано на торможении деления клеток срединной и подверхушечной зон меристемы конуса нарастания, образующих стебель. На верхушечную зону меристемы, из которой развиваются листья и генеративные органы, ретарданты не оказывают влияния. Эти регуляторы тормозят рост клеток стебля в длину и усиливают их деление в поперечном направлении, за счет чего стебель становится более коротким и толстым. Одновременно усиливается развитие механических тканей: утолщаются клеточные стенки, увеличивается число сосудистоволокнистых пучков. Одновременно ретарданты способствуют росту корней, увеличивают площадь ассимиляционной поверхности листьев и содержания пластидных пигментов, повышают устойчивость растений к неблагоприятным факторам внешней среды.

В настоящее время изучено более тысячи химических соединений с ретардантными свойствами. Большинство относятся к четырем группам веществ:

  1. четвертичным ониевые соединения;
  2. производным гидразина;
  3. производные триазола;
  4. этиленпродуцирующие.

Среди ретардантов на основе четвертичных ониевых солей распространены хлорхолинхлорид (ССС), морфол и пике. Характерный ретардантный эффект этих препаратов обусловлен их способностью прерывать биосинтез гиббереллинов. Их введение блокирует образование геранилгеранилпирофосфата и последующую его циклизацию в энткаурен, который является промежуточным звеном в синтезе гиббереллинов.

Производные триазола блокируют биосинтез гиббереллинов, препятствуя окислению энткаурена в кауреновую кислоту.

Этиленпродуцирующие препараты не прерывают биосинтез гиббереллина, их действие связано с антигиббереллиновым эффектом, который проявляется при образовании гормон-рецепторного комплекса или на последующих этапах реализации гормональной активности гиббереллинов.

Механизм действия производных гидразина также не связан с ингибированием синтеза гиббереллинов, а обусловлен подавлением их гормональной активности.

Из всех известных ретардантов наибольшее практическое значение имеет хлорхолинхлорид (ССС), более известный под названием Тур. Этот ретардант дает хорошие результаты в посевах зерновых культур. Для повышения устойчивости к полеганию хлорхолинхлорид вносят в период кущения — начала трубкования в расчете 3-12 кг/га. Не снижает качество зерна, увеличивает урожай, уменьшает экономические затраты на уборку.

Дальнейшее изучение фитогормонов привело к открытию ряда соединений: ауксинов, цитокининов, гиббереллинов, этилена, абсцизовой кислоты, брассиностероидов, жасминовой и салициловой кислот и других соединений. Рис. 1. Основные места образования фитогормонов и направления их транспорта в вегетирующем растении (Полевой, 1989). Примечание: ИУК-индолилуксусная кислота, ЦК-цитокинины, ГА-гиббереллины… Читать ещё >

  • синтетические регуляторы роста и развития растений в биотехнологии и растениеводстве

Фитогормоны. Синтетические регуляторы роста и развития растений в биотехнологии и растениеводстве ( реферат , курсовая , диплом , контрольная )

Дальнейшее изучение фитогормонов привело к открытию ряда соединений: ауксинов, цитокининов, гиббереллинов, этилена, абсцизовой кислоты, брассиностероидов, жасминовой и салициловой кислот и других соединений.

Главными особенностями фитогормонов являются следующие.

  • 1. Гормоны образуются в растениях эндогенно. По современным представлениям, гормоны растений, как и животных, подразделяются на две группы: производные мевалоната (гиббереллины, абсцизовая кислота, брассины, цитокинины) и производные аминокислот: ауксины (из триптофана) и этилен (из метионина, в — аланина и др.).
  • 2. Удаленность места синтеза гормонов от места их функционирования. К примеру, ауксины образуются в апикальных меристемах, а проявляют свое действие в зоне корней. Однако это не означает, что гормоны не проявляют активности в местах синтеза. К примеру, апикальное доминирование под действием ауксинов проявляется именно в точке роста побега.
  • 3. Способность фитогормонов к перемещению. Фитогормоны способны к транспорту по проводящей системе растений, а также по межклеточному пространству.
  • 4. Фитогормоны проявляют физиологическую активность при очень низких концентрациях (10 -13 — 10 — 5 моль/л).
  • 5. В действиях фитогормонов проявляется специфичность, то есть определенный фитогормон действует на специфический процесс (этилен вызывает созревание плодов, гибберелловая кислота способствует удлинению стебля и т. д. ).
  • 6. Фитогормонам характерен общий характер проявления: регуляция гормоном определенного процесса у разных видов растений. Последнее свидетельствует о том, что фитогормоны являются продуктами длительной эволюции и возникли как химические вещества, обеспечивающие организму адаптивное преимущество, способность адекватно реагировать на изменения окружающей среды. Ряд фитогормонов синтезируется не только растениями, но и микроорганизмами (индолилуксусная кислота, гиббереллины, цитокинины), что свидетельствует о возникновении гормональной системы регуляции на ранних ступенях развития организмов.

У растений, в отличие от животных, нет специализированных органов, ответственных за образование гормонов, однако существует определенная приуроченность к органам растения. В апикальной меристеме стебля присутствуют в высокой концентрации ауксины, в корнях — цитокинины, в листьях — гиббереллины. (Рис 1).

места образования фитогормонов и направления их транспорта в вегетирующем растении (Полевой, 1989). Примечание.

Рис. 1.Основные места образования фитогормонов и направления их транспорта в вегетирующем растении (Полевой, 1989). Примечание: ИУК-индолилуксусная кислота, ЦК-цитокинины, ГА-гиббереллины, АБКабсцизовая кислота

Фитогормоны по характеру действуя на те или иные процессы подразделяются на стимуляторы и ингибиторы. Стимуляторы ускоряют процесс, ингибиторы его задерживают. Деление это условно, поскольку проявление действия одного и того же гормона в растении зависит от его концентрации, взаимодействия с другими гормонами, фазы онтогенеза. Гормоны могут выступать как стимуляторы одних процессов в растении и ингибировать другие. К примеру, этилен ускоряет созревание плодов и задерживает ростовые процессы. К стимуляторам относятся ауксины, цитокинины, гиббереллины, брассиностероиды; к ингибиторам — абсцизовая кислота, этилен.

Читайте также: