Глинокислотная обработка скважин реферат

Обновлено: 02.07.2024

Глинокислотная обработка , как отмечалось, производится в терригенных коллекторах с низким содержанием карбонатных пород. Глинокислотные растворы могут быть использованы для проведения кислотных ванн, простых, массированных и направленных обработок пласта. Состав раствора выбирается после лабораторных опытов с образцами пород месторождения, на котором целесообразно проводить глинокислотную обработку. При этом исследуется и возможность двухрастворной - солянокислотной и глинокислотной обработки пласта. [2]

Глинокислотная обработка производится в терригенных коллекторах с низким содержанием карбонатных пород. Глинокислотные растворы могут быть использованы для проведения кислотных ванн, простых, массированных и направленных обработок пласта. Состав раствора выбирается после лабораторных опытов с образцами пород данного месторождения. При этом исследуется и возможность двухрастворной - солянокислотной и глинокислотной - обработки пласта. [3]

Глинокислотная обработка ( ГКО) наиболее эффективна в коллекторах, состоящих из песчаника с глинистым цементом, и представляет собой смесь плавиковой и соляной кислот. [4]

Глинокислотная обработка производится в терригенных ( песчано-глинистых) коллекторах с низким содержанием карбонатных пород. [5]

Глинокислотные обработки пласта производят по различным технологическим схемам ( ванны: простые, массированные и направленные) после предварительных исследований с целью определения возможности использования глинокислоты или отдельно соляной и плавиковой кислот. После этого разрабатывают технологию обработки пласта глинокислотой. [6]

Солянокислотные и глинокислотные обработки необходимо проводить с предварительной установкой солянокислотных ванн и последующей промывкой зумпфа. [7]

Глинокислотную обработку , т.е. обработку смесью соляной и фтористой кислот, применяют в породах с полимикто-вым цементом для воздействия на его глинистые фракции. [9]

После глинокислотной обработки образование глинистых пробок в скважине прекратилось, освоение ее прошло без осложнений в течение 1 5 ч методом продувки. [10]

Эффективность глинокислотных обработок на различных видах скважин неодинакова. [11]

Эффективность глинокислотных обработок в терригенных коллекторах зависит от вещественного состава песчаников и особенно от полимиктового цемента, что доказывается исследованиями на кернах с различным содержанием фракции цемента. [13]

Эффективность глинокислотных обработок зависит не только от фракционного состава полимиктового цемента, но и от его вида. Установлено, что с увеличением как абсолютного содержания в породе пленочного цемента, так и его относительного растворения в кислотном растворе проницаемость песчаника повышается. Причем при растворении гидрослюдистого пленочного цемента эффективность обработок кернов становится на 30 % выше, чем при растворении хлоритового. [15]

Если испытания показывают, что скважина экономически выгодна для добычи, но по какой - либо причине скорость тока неудовлетворительна, то можно провести воздействие на пласт для повышения ее производительности. Самый старый способ воздействия – нитроглицериновое торпедирование. Нитроглицерин опускали в скважину, и взрыв создавал трещины и щели в пласте. При этом добыча, в общем, улучшалась, но ствол скважины разрушался.

Содержание работы

Введение
Предварительное испытание
Оборудование для кислотной обработки
Технология проведения кислотной обработки
Добавки при кислотной обработки
Список использованной литературы

Содержимое работы - 1 файл

реферат КО.docx

Федеральное государственное образовательное учреждение

высшего профессионального образования

По предмету: ТиТ добычи и подготовки нефти и газа

На тему: Кислотная обработка

Студента Vкурса СФУ

факультет ИНГ 07 - 01

  1. Введение
  2. Предварительное испытание
  3. Оборудование для кислотной обработки
  4. Технология проведения кислотной обработки
  5. Добавки при кислотной обработки
  6. Список использованной литературы

Если испытания показывают, что скважина экономически выгодна для добычи, но по какой - либо причине скорость тока неудовлетворительна, то можно провести воздействие на пласт для повышения ее производительности. Самый старый способ воздействия – нитроглицериновое торпедирование. Нитроглицерин опускали в скважину, и взрыв создавал трещины и щели в пласте. При этом добыча, в общем, улучшалась, но ствол скважины разрушался.

Кислотная обработка скважин - химический способ интенсификации производительности водозаборных, дренажных и нефтяных скважин за счёт растворения пород вокруг скважины кислотами. Кислотная обработка скважин заключается в заливке или закачке в скважину и продавливании в приствольную зону водоносного или нефтеносного пласта жидкостью или воздухом под давлением (допускаемым прочностью обсадной колонны скважины) ингибированных кислотосодержащих растворов на основе соляной, фтористоводородной, уксусной и сульфаминовой кислот или их смесей.

Впервые кислоту использовали для воздействия на пласт в 1895г. Кислота, закачиваемая в микроскопические протоки пласта горной породы, растворяет ее и таким образом увеличивает проходы. Это улучшает приток коллекторных жидкостей к скважине. Хотя при этом удавалось добиться значительного увеличения объемов добычи, но оказалось, что кислотные растворы вызывают чрезвычайно сильную коррозию скважинного оборудования и этот метод был забыт.

Разработка в 1932 г. Химических ингибиторов, позволяющих растворам кислот избирательно вступать в реакцию с породой, не поражая скважинного оборудования, возродила интерес к кислотной обработке скважин. Благодаря отличным результатам, полученным с помощью улучшенной кислотной методики воздействия, применение этой технологии расширились, и в настоящее время она является одной из стандартных методик закачивания и восстановления скважин.

На протяжении последнего десятилетия происходит непрерывное ухудшение качества запасов сырьевой базы страны. Это объясняется в первую очередь стремлением многих нефтедобывающих компаний вести первоочередную выработку наиболее продуктивных объектов и сокращением объемов геологоразведочных работ. Дальнейший прирост извлекаемых запасов может происходить только за счет увеличения нефтеотдачи пластов. Чаще всего кислотные обработки проводят с использованием соляной (НС1) и фтористоводородной (НР) кислоты.

При кислотной обработке следует оценить несколько характеристик, поэтому испытания так важны. Керны или обломки выбуренной породы дают сведения о пористости, проницаемости и насыщенности пласта водой и нефтью. Образец сырой нефти из пласта можно также проверить на склонность к эмульгированию. Если сырая нефть образует эмульсии либо со свежей, либо с отработанной кислотой, следует добавлять соответствующие деэмульсаторы.

Другой важный фактор — выяснение способности к набуханию силикатных компонентов пород пласта. В некоторых случаях частицы глин и бентонитов могут увеличиваться в размерах в несколько раз под действием кислотных растворов. Эти увеличившиеся частицы способны заблокировать микроскопические протоки в коллекторе или, что еще хуже, уменьшить размер протоков по сравнению с начальным. Таким образом, если проверка показывает, что образец породы имеет склонность к набуханию, необходимы дополнительные средства контроля силикатов для предохранения от набухания и вызываемого им повреждения.

Оборудование, применяемое при проведении кислотной обработки

Для кислотной обработки нефтяных и газовых скважин разработано специальное транспортное и насосное оборудование. Растворы кислоты перевозят на промысел в автоцистернах емкостью от 500 до 3500 гал. (2—13м 3 ). Химические добавки замешиваются в кислоту во время заправки цистерны.

Насосы, установленные на грузовых автомобилях, используются для подачи кислоты через скважину в продуктивный пласт. Бензиновые или дизельные моторы насосов могут развивать гидравлическую мощность до 1000 л.с. Эти большие мощности необходимы, для того чтобы заставить кислоту проникать в поры породы против естественного давления в пласте.

Насосный агрегат для кислотных обработок Азинмаш - 30А.

1 - кабина машиниста (пульт управления); 2 - коробка отбора мощности; 3 - емкость для реагента; 4 - насос 4НК-500; 5 - выкидной трубопровод; 6 - редуктор; 7 - шланг для забора раствора кислоты из цистерны; 8 - цистерна для раствора кислоты; 9 - комплект присоединительных шлангов; 10 - ящик для инструментов; 11 - горловина цистерны.

На промыслах иногда применяют цементировочные агрегаты ЦА-320 и 2АН-500. Цементировочный агрегат ЦА-320 (УНБ-125х32, АНЦ-320) предназначен для нагнетания рабочих жидкостей при цементировании и кислотной обработки скважин в процессе бурения и капитального ремонта, при проведении других промывочно - продавочных работ на нефтяных и газовых скважинах. Если поршневая система этих агрегатов выполнена не в кислотоупорном исполнении, то после окончания работ всю систему промывают чистой пресной водой.

Агрегат кислотной обработки скважин СИН-32 на шасси Урал предназначена для транспортирования и нагнетания ингибированных растворов соляной кислоты с концентрацией до 35%, глинокислот (содержание HF до 5%, HCL до 24%), КСПО-2, растворов щелочей и солевых растворов.

Агрегат СИН-32 имеет оптимальное расположение органов управления, сниженный вес элементов манифольда, что облегчает работу обслуживающего персонала и повышает эксплуатационные качества установки. Управление и контроль работы установки осуществляется из кабины водителя. Емкость установки имеет внутреннее химостойкое покрытие, что обеспечивает долговременную защиту от воздействия кислот, а также позволяет проводить промывку горячей водой или паром.

Используемый насос высокого давления СИН-32 имеет небольшие габаритные размеры и массу, облегченное обслуживание и ремонт за счет соединения гидроблока шпильками с корпусом. Насос может работать с различными жидкостями за счет применения плунжеров с химически и эрозионно- стойкими покрытиями и уплотнений, стойких к агрессивным средам.

Агрегат СИН-32 выпускается на шасси Урал-4320 с емкостью объемом 7 000 л (СИН-32.02), и на шасси Урал-55571 с емкостью объемом 5 000 л (СИН-32-03). Возможна установка трехсекционной емкости, позволяющей работать одновременно с тремя различными агрессивными жидкостями.

Приготовление и перевозку кислотных растворов осуществляют в автоцистернах 4ЦР вместимостью 9 м3 или ЦР-20 вместимостью 17,0 м ив мерниках, гуммированных или покрытых специальными лаками или эмалями. В промысловых условиях в карбонатных коллекторах применяют несколько видов обработок: кислотные ванны, простые кислотные обработки, термокислотные обработки, поинтервальные кислотные обработки, кислотные обработки в динамическом режиме и так далее.

Технология проведения кислотной обработки

Два основных типа кислотной обработки — неконтролируемый, или неизбирательный, метод и контролируемый, или избирательный, метод.

При неконтролируемой обработке вниз по обсадной колонне сначала закачивается раствор кислоты, затем достаточное количество жидкости, чтобы вытеснить кислоту в пласт. Этот метод может осуществляться с насосно-компрессорной колонной или без нее и наиболее применим в скважинах с одной продуктивной зоной, в нагнетательных скважинах или скважинах для утилизации рассола, в газовых скважинах низкого давления или низкопродуктивных скважинах. Его достоинства — экономия времени и средств, а также легкое удаление продуктов реакции из продуктивного пласта. Недостатком метода является отсутствие контроля над тем, куда направится кислота. Жидкость для воздействия на пласт может быть потеряна на непродуктивной зоне.

  • удалить жидкость из скважины свабированием (порщневанием) или тартанием (откачиванием);
  • закачать кислоту в скважину; если жидкость не была удалена, ее следует нагнетать в пласт перед кислотой; вслед за кислотой подать достаточное количество вытесняющей жидкости, чтобы заставить всю кислоту проникнуть в пласт; давление, создаваемое для нагнетания кислоты в пласт, определяется мощностью и производительностью наземных насосов;
  • по истечении времени, достаточного для окончания реакции, удалить отработанную кислоту, содержащую продукты реакции, свабированием, тартанием, откачиванием насосом или, если забойное давление достаточно велико, фонтанированием из скважины.

В случае водонагнетательных скважин часто достаточно просто возобновить нагнетание, чтобы заставить отработанную кислоту перейти из призабойной зоны в пласт. Это не помешает дальнейшей эксплуатации.

При обычной контролируемой кислотной обработке насосно-компрессорная колонна должна оставаться в скважине и должна существовать возможность заполнения скважины жидкостью. Насосно-компрессорная колонна устанавливается ниже продуктивной зоны. Сначала скважина заполняется нефтью, затем поступает кислота в количестве, достаточном для вытеснения нефти из насосно-компрессорной колонны, включая кольцевой объем над продуктивной толщей. Как только кислота оказывается на уровне продуктивного пласта, выход обсадной колонны перекрывается. Кислота закачивается по насосно-компрессорной колонне и продавливается в пласт. За ней следует достаточное количество вытесняющей жидкости для очистки насосно-компрессорной колонны и ствола скважины.

Другой вид контролируемой обработки — покерный метод. В этом случае в насосно-компрессорную колонну непосредственно над зоной, подлежащей кислотной обработке, вводится пакер (расширяющаяся пробка). Скважина заполняется нефтью, после чего кислота закачивается по насосно-компрессорной колонне и локализуется на уровне продуктивной зоны. Затем пакер устанавливается, не позволяя кислоте перемещаться вверх по кольцевому зазору.

Иногда сначала устанавливается пакер, а нефть удаляется из насосно-компрессорной колонны свабированием, после этого кислота прокачивается вниз. В некоторых случаях кислота прокачивается в насосно-компрессорную колонну, вытесняя перед собой нефть в пласт.

Преимущество пакерного метода заключается а том, что кислота запирается в участке пласта ниже пакера. Это предотвращает ее попадание в непродуктивные зоны выше по стволу скважины. При необходимости в кольцевой зазор может подаваться нефть для снижения перепада давлений на разных сторонах пакера и предотвращения его срыва.

Другие распространенные виды контролируемой обработки: метод селективных электродов, методика радиоактивных меток, комбинированные методы, а также применение щаровых уплотнителей и временных пластозакупоривающих материалов. Все эти методы имеют свои достоинства и недостатки и подлежат тщательному анализу перед применением.

В целом достоинство селективной кислотной обработки состоит в том, что максимальное положительное действие кислоты достигается посредством ее попадания только в заданный участок. Помимо того что кислота не поступает в непродуктивные зоны, она может направляться на менее проницаемые участки, в которые в ином случае не попадет. Кроме того, кислота может быть отведена от любых известных обводненных зон, на которые обработка не сможет повлиять благотворно.

Недостатки селективной кислотной обработки заключаются в ее более высокой стоимости, сложности проведенияи (в некоторых случаях) увеличении времени, необходимого для прочистки скважины после обработки.

Ступенчатая кислотная обработка

Ступенчатую кислотную обработку используют для плотных известняков. Скважину обрабатывают в две или несколько раздельных стадий, а не в одну общую. Это позволяет выполнить работу при более низких давлениях, чем при одной большой обработке. Обычно кислоты свабируют из скважины в промежутке между стадиями для предотвращения продавливания отработанной кислоты в глубину пласта.

Иногда ступенчатая обработка применяется в известняковых пластах, где существует вероятность прорыва в обводненную зону. Это позволяет прекратить обработку при первых признаках воды. Отработанная кислота проверяется на наличие воды после каждой стадии.

Сущность глинокислотной обработки терригенных коллекторов и

состоит в учете особенностей их строения. При контакте глиняной кислоты с терригенными породами небольшое количество карбонатного материала, реагируя с солянокислотной частью раствора, растворяется, а фтористо-водородная кислота, медленно реагирующая с кварцем и алюмосиликатами, достаточно глубоко проникает в ПЗС, повышая эффективность обработки.

Смесь соляной и фтористой кислот применяется также для удаления глинистой корки со стенок скважины, для очистки перфорационных отверстий и фильтра от остатков глинистого раствора. При этом обычно закачиваются малые объемы кислоты (от 0.9 до 4.0 м 3 ). Причем желательно, чтобы некоторое время кислота оставалась на забое и, таким образом, впитывалась в породу. Если не соблюдать этого условия, то большая часть нагнетаемой в пласт кислоты по образующимся трещинам может уйти в пласт и не очистит перфорационных отверстий. Плавиковую кислоту (HF) нецелесообразно применять для обработки песчаников при высоких темпах нагнетания, поскольку, скорость реакции с кварцем и силикатами очень низка и при этих условиях не будет происходить разъедания трещин, а кислота отфильтруется в пласт.

В известняках или известковистых песчаниках применять эту кислоту с целью очистки забоя; как правило, противопоказано. Большие затраты на нее при обработке известняков не оправдываются.

Фтористая кислота при взаимодействии с породой немедленно вступает в реакцию с карбонатами кальция. В результате реакции образуется фторид кальция, а содержание HF в смеси кислот очень быстро убывает и через сравнительно короткое время частицы глины или остатки глинистого

раствора перестают растворяться. При использовании плавиковой кислоты для обработок пластов, сложенных доломитами, имеется опасность резкого снижения проницаемости. Если пластовая вода (или фильтрат бурового раствора) содержит менее 0.1 % растворенного кальция, нагнетание солянофтористой кислоты не вызывает значительного снижения проницаемости. Если же содержание кальция в пластовой воде достигает 0.1 % и более, проницаемость пласта резко снижается. Так как практически все доломиты имеют пластовую воду, содержащую по крайней мере 0.1 % кальция, то применять кислоты с добавкой HF в этих породах не рекомендуется. Солянофтористую кислоту желательно применять для обработки пластов, проницаемость которых уменьшалась за счет разбухания глин в результате контактирования последней с пресной водой (фильтратом) промывочной жидкости или с вторгшейся в пласт пресной или слабоминерализованной водой. Если разбухшая глина, содержащаяся в пласте, хорошо контактирует с кислотой, то загрязнение может быть полностью ликвидировано за счет растворяющего действия глинокислоты.

Другие кислоты, применяемые в промышленности для этой цели, значительно менее эффективны, чем глинокислота. На практике применяется глинокислота различных концентраций в зависимости от химико-минералогического состава обрабатываемых пород и их коллекторских свойств. Рекомендуются следующие удельные объемы расхода кислотных растворов на 1м мощности пласта в зависимости от проницаемости обрабатываемых пород. Технология проведения глинокислотных обработок такая же, как и соляно-кислотных обработок и включает три основных элемента: подготовку скважины под обработку, закачку кислоты в скважину с продавкой ее в пласт, удаление продуктов реакции из пласта.

Подготовка скважины к обработке заключается, главным образом, в очистке забоя от грязи и песчаной пробки, а также поверхности ствола скважины – от глинистой корки и т.д. Для очистки поверхности ствола

скважины от глинистой корки устанавливают на забое кислотную ванну. При высоком содержании карбонатных веществ в глинистой корке для производства кислотной ванны применяют соляную кислоту 10-15%-ной концентрации. Если есть основания предполагать, что на стенках скважины сохранились остатки цемента, в соляную кислоту целесообразно добавлять 1-1,5%-ную HF для ускорения растворения цемента и предупреждения

образования геля кремниевой кислоты. Добавки 1,5-3,0% HF к общему объему кислотной смеси полезны также для более интенсивного растворения глинистой корки с незначительным содержанием карбонатов (менее 2-3%). При содержании карбонатных веществ в обрабатываемой породе (более 3-4%) глинокислотной обработке должен предшествовать этап обработки соляной кислотой с целью предварительной расчистки поровых каналов пласта за счет растворения карбонатного цемента, а также для предупреждения выпадения трудно растворимых фтористых соединений кальция и магния при последующей обработке скважины глинокислотой. Целесообразно производить двухступенчатую обработку карбонатных песчаников путем закачки сначала соляной кислоты, а вслед за ней глинокислоты. Обработка глинокислотой требует интенсивного удаления с забоя и призабойной зоны продуктов химической реакции, без чего этот способ может даже ухудшить проницаемость нефтяных и газовых пластов.

Область применения. Глинокислотная обработка производится в терригенных (песчано-глинистых) коллекторах с низким содержанием карбонатных пород. Состав кислоты. Глинокислота представляет собой смесь соляной и фтористоводородной (плавиковой) кислот. Химическая сущность метода. Плавиковая кислота разрушает силикатные породообразующие минералы: алюмосиликаты глинистого раствора (каолин), проникшие в пласт при бурении, и кварцевый минерал (кварц). Плавиковая кислота хранится в сосудах из свинца, воска, парафина, эбонита и др., т.к. стекло и керамика разлагаются этой кислотой. Второй компонент глинокислоты- соляная кислота - существенно влияет на эффективность обработки. Выделяющийся, при глинокислотной обработке, газообразный SiF образует с водой кремневую кислоту. В нейтральной среде кремниевая кислота выпадает в виде студнеобразного геля и может закупорить пласт. Наличие соляной кислоты предотвращает выпадение геля, т.к. в кислой среде кремниевая кислота находится в растворенном виде. Кроме того, соляная кислота переводит менее растворимую соль AlF3 в хорошо растворимую соль AlCl3 . Если пласт представлен не только глинизированными песчаниками, а содержит и карбонаты, то при взаимодействии карбонатов с плавиковой кислотой образуется нерастворимая соль CaF2 , выпадающая в осадок.При глинокислотной обработке следует избегать длительного контакта кислоты с металлом труб.

Двухрастворная обработка. Если песчаники сцементированы карбонатами, то вначале надо провести солянокислотную обработку, а затем – глинокислотную. Закачка щелочи: Назначение метода: увеличение нефтеотдачи за счет гидрофилизации породы. Область применения: проницаемость более 0,1мкм2, содержание глины до 5-10%, текущая обводненность продукции менее 60%. Ограничения применения метода: гидрофобные пласты, нефть обладает малым индексом кислотности.

31. Механические методы интенсификации притока (ГРП, ГПСП)….

где h - толщина пласта, wв, wг - ширина горизонтальной и вертикальной трещины, Rг - радиус горизонтальной трещины. Давление ГРП: Рс=q+sр, где Рс- забойное давление разрыва пласта, q - горное давление, sр - прочность породы обрабатываемого пласта на разрыв в условиях всестороннего сжатия. Давление нагнетания на устье:

Pуст=q+sр+Pтрпл, Pуст - устьевое давление разрыва, Pтр=lv 2 H/(2gd) - потери давления на трение, где l - коэффициент местных сопротивлений, (l=0,016-0,02); H - глубина залегания обрабатываемого интервала, v - скорость движения в НКТ; d - диаметр НКТ.

Требования к расклинивающему материалу: 1) прочность расклинивающего материала должна быть достаточна, чтобы не быть раздавленной массой ГП, не должны вклиниваться в поверхность трещин, 2) по форме - сфера, 3) малый разброс по фракционному составу. Используется кварцевый песок (0,5–0,8 мм). Потребное число насосных агрегатов: n=Pу×Qж/(РаQaKT)+1, где n - число насосных агрегатов, шт, Pу - устьевое давление разрыва, МПа, Qж - темп закачки жидкости разрыва, л/с, Ра - рабочее давление агрегатов, МПа, Qa - производительность агрегата при рабочем давлении, л/с, KT - коэффициент технического состояния. Используют агрегаты 4АН-700.

Гидропескоструйная перфорация.Для создания канала зоны перфорации используется энергия песчано-жидкостной струи, вытекающей с большой скоростью через специальные насадки перфоратора. В результате чего песок проедает стенки колонны, пробивает цементное кольцо и проникает в пласт на глубину. Эффективность ГПП определяется энергией струи, которая характеризуется DР в насадках, гидравлической характеристикой формируемой насадкой струи и содержанием абразива в ней. Последовательность работ: 1) спуск перфоратора на НКТ, 2) привязка места установки, 3) обвязка наземного оборудования, 4) опрессовка системы монифольда и труб на Р=1,5×Pраб, 5) вымыв опрессовочного клапана и оценка потерь на трение путем промывки скважины при режиме перфорации, 6) спуск клапана-перфоратора и выход на рабочий гидравлический режим обработки пласта без подачи в поток абразива, 7) гидропескоструйное воздействие, 8) переход на вышележащий интервал обработки. Применяется для: 1) создания щели перед ГРП для обеспечения снижения Р разрыва и образования трещин в заданно направлении, 2) срезание обсадных, бурильных колонн и НКТ, 3) когда прочие методы перфорации не эффективны. Требования ГПП – отсутствие поглощения жидкости в скважине. ГПП не рекомендуют применять к интервалам соляно-кислотных обработок и сильнообводненных пластах. Допустимое Руст: Рд.уст=(Рстр-H×qТ)/(k×FT), Рд.уст - допустимое устьевое давление, МПа, Рстр - страгивающая нагрузка резьбового сопротивления, H - глубина подвески, qT - вес 1 погонного метра труб, FT - площадь поперечного сечения трубы, к – коэффициент безопасности. Определяют DР в насадке, оценивают потери Р в системе. Глубина воздействия в обсаженных трубой скважине зависит от образуемой в трубе площади прорези и длительности воздействия. Средняя продолжительность 2-3 минуты на каждый сантиметр длины щели в случае щелевого вскрытия пласта. Требования к жидкости, песку как при ГРП. Объем рабочей жидкости определяется в соответствии с технологией: а) 1,3 – 1,5 объема при работе по закольцованной схеме, б) при работе со сбросом жидкости

SV=10 -3 ×qн×n×t×N, где SV - потребное количество рабочей жидкости, м 3 , qн - расход жидкости на одну насадку, л/с, n - количество насадок, t – время вскрытия 1-ого интервала, N – число интервалов. Абразивом для ГПП служит кварцевый песок (0,2–2 мм). Потребное число песка по 1-й схеме: G=10 - 3×V×К=10 -6 ×qн×n×t×N, G - потребное кол-во песка, т, V - объем жидкости, м 3 , К - концентрация песка, г/л; по 2-й схеме: G=10 -3 ×Vскв+10 -6 ×q×n[T-Vскв/(10 -3 ×q×n)]×k1, Vскв – объем скважины, м 3 , k1 – концентрация песка, г/л, Т - суммарное время вскрытия. Осуществляется с помощью гидроперфоратора, позволяющего направлять песчано-жидкостные смеси через преграду и насадки. Типы насадок: 3; 4,5; 6 мм. Используют перфораторы типа АП–6М100, 6 – размер насадки, мм, 100 – диаметр скважины. При вскрытии пластов значительной толщины и АВПД используют блок гидропескоструйных перфораторов типа ПЗК-1. Позволяет перфорировать снизу вверх один или несколько пластов независимо от расстояния между ними без подъема труб и при прекращении подъема. Врезку обсадных колонн, установку водоизоляционных экранов, инициирование горизонтальных трещин ГРП проводят с помощью глубинных вращателей ВГ-1 или посредством вращения колонны труб. Используются оборудования и техника: 1) насосная установка 2) пескосмесительный агрегат, 3) шламоуловитель, 4) цементировочный агрегат, 5) резервуар со смесью, 6) автоцистерна, 7) амбар. Средняя концентрация песка составляет 200 г/л.

Читайте также: