Глаз оптический прибор реферат

Обновлено: 04.07.2024

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Содержание

Введение
1. Базовые оптические элементы
2. Световые фильтры
3. Виды фильтров
4. Оптическая система — микроскоп
5. Оптическая система телескоп
6. Разрешение телескопов
7. Искусственный глаз телескопа
Заключение
Список использованных источников

Введение

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение – светосила; способность различать соседние детали изображения – разрешающая сила; соотношение размеров предмета и его изображения – увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения – угол, под которым из центра прибора видны крайние точки предмета.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

1. Базовые оптические элементы

  1. Линзы.
  2. Призмы.
  3. Зеркала.
  4. Световые фильтры.

Теперь рассмотрим каждый оптический элемент или как их еще называют, оптические детали, подробней.

Линзы

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Собирающие:
1 — двояковыпуклая
2 — плоско-выпуклая
3 — вогнуто-выпуклая (положительный(выпуклый) мениск)
Рассеивающие:
4 — двояковогнутая
5 — плоско-вогнутая
6 — выпукло-вогнутая (отрицательный(вогнутый) мениск)

. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырёк воздуха в воде — двояковыпуклая рассеивающая линза. Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего — хроматической, обусловленной дисперсией света, — ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне. Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Призмы

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. На сегодняшний день известно большое количество различных призм.

  1. Дисперсионные призмы, как правило, имеют три равных угла по 60°, их используют в спектральных приборах для пространственного разделения излучений различных длин волн. Вот некоторые из них:
  • Простая трехгранная призма
  • Призма Броунинга-Рузерфорда
  • Дисперсионная призма Аббе
  • Призма Амичи (призма прямого зрения)
  • Призма Литтрова
  • Призма Корню
  • Призма Пеллин-Брока

2. Отражательные призмы используют для изменения хода лучей, изменения направления оптической оси, изменения направления линии визирования, для уменьшения габаритных размеров приборов. Классифицируются отражательные призмы по нескольким признакам:

Также, особую нишу среди отражательных призм занимают составные призмы, — состоящие из нескольких частей, разделённых воздушными промежутками. Некоторые широко распространённые призмы получили собственные имена.

3. Поляризационные призмы, с их помощью получают линейно поляризованноеоптическое излучение. Обычно состоят из 2 или более трёхгранных призм, по меньшей мере одна из которых вырезается из оптически анизотропного кристалла. Призма Глана-Тейлора — одна из наиболее часто используемых в настоящее время призм, предназначена для преобразования излучения с произвольной поляризацией в линейно поляризованное. Конструкция была предложена Аркардом и Тейлором в 1948 году. Основные из поляризационных призм:

  • Призма Аренса
  • Призма Волластона
  • Призма Глазебрука
  • Призма Глана-Тейлора
  • Призма Глана-Томпсона
  • Призма Глана-Фуко
  • Призма Николя
  • Призма Номарски
  • Призма Рошона
  • Призма Сенармонта

Зеркала

Зеркало — гладкая поверхность, предназначенная для отражения света (или другого излучения). Наиболее известный пример — плоское зеркало. Зеркала широко используются в оптических приборах — спектрофотометрах, спектрометрах в других оптических приборах. Различают несколько видов зеркал:

2. Световые фильтры

Светофильтр в оптике, технике — оптическое устройство, которое служит для подавления (выделения) части спектра электромагнитного излучения. В мире существует огромное количество всевозможных световых фильтров и каждый предназначен для своих целей, например: защитный фильтр, предназначен для предохранения передней поверхности объектива от механических воздействий. Часто в этой роли используется ультрафиолетовый фильтр.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3. Виды фильтров:

Нейтральный фильтр, служит для снижения эффективной светосилы объектива без изменения геометрической, а также для снижения эффективной светосилы объектива, не имеющего диафрагмы.

Солнечный фильтр — чрезвычайно плотный нейтральный фильтр, позволяющий без вреда для фотографа и фотоматериала снимать солнце, ядерный взрыв и другие явления, значительно превышающие по яркости обычные предметы.

Спектральные (цветные)

Светофильтры методов цветовоспроизведения

  • Аддитивные светофильтры — цветоделительные зональные светофильтры, выделяющие из исходного светового потока белого света трёх пространственно разделённых (с помощью других оптических элементов) потоков: синего, зелёного и красного.
  • Тепловой фильтр, теплофильтр — избирательно поглощает или отражает инфракрасное излучение и пропускает с малыми потерями диапазон видимого света. Применяются в осветительной аппаратуре, в проекторах для защиты плёнки, а также в микрофотографии для защиты биологических объектов от нагревания.
  • Абсорбционные, обладают спектральной избирательностью, обусловленной различным поглощением различных участков спектра электромагнитного излучения. Наиболее массовые фильтры. Производятся на основе окрашенных оптических стёкол или органических веществ (например, из желатины).
  • Интерференционный фильтр, отражает одну и пропускает другую часть спектра падающего излучения, благодаря явлению многолучевой интерференции в тонких диэлектрических плёнках. Также называется Дихроичный фильтр.
  • Отражательный фильтр. Действие отражательных фильтров основано на спектральной зависимости отражения непрозрачного материала. Преимуществом отражательного фильтра перед абсорбционными является единственность участвующей в оптической системе поверхности и отсутствии хроматических аберраций, вносимых преломляющими прозрачными средами.
  • Поляризационный фильтр. Простейший съёмочный поляризационный фильтр линейной поляризации, содержит один поляризатор, поворачивающийся в оправе. Его применение основывается на том, что часть света в окружающем нас мире поляризована. Частично поляризованы все лучи, неотвесно падающие отражённые от диэлектрических поверхностей. Частично поляризован свет, поступающий от неба. Поэтому, применяя поляризатор при съёмке, фотограф получает дополнительную возможность изменения яркости и контраста различных частей изображения. Например, результатом съёмки пейзажа в солнечный день с применением такого фильтра может получиться тёмное, густо-синее небо. При съёмке находящихся за стеклом объектов поляризатор позволяет избавиться от части отражений в стекле.
  • Дисперсные фильтры основаны на зависимости показателя преломления от длины волны. В сочетании с отражающими и/или интерференционными фильтрами, а также растром часто служат для создания расщепляющих оптических систем — дихроических призм. Находят применение в современных мультимедийных проекторах, где являются основным инструментом разделения светового потока мощной лампы накаливания на три спектральных диапазона. Применяются в качестве эффектных фильтров для получения радужных изображений.

4. Оптическая система — микроскоп

Изучение микроскопических объектов в медицине, биологии, химии, электронике нельзя представить без такого важного предмета, как микроскоп. Этот оптический прибор дает человеку возможность исследовать процессы и явления микромира. Современный лабораторный микроскоп – это высокотехнологичное, функциональное оборудование, предназначенное для комфортной ежедневной работы специалистов.

Микроскопы могут быть оптическими, электронными, цифровыми. В лабораториях находят широкое применение все модели. А какой именно прибор нужен в работе зависит от специфики исследований. Классическая модель – оптический микроскоп. Его конструкция состоит из окуляра и объектива, которые закреплены в подвижном тубусе. Под объективом размещается предметный столик для исследуемых образцов. Оптическая система с точным механизмом настройки и осветительный модуль позволяют получить четкое изображение высокого качества. Галогеновые, ксеноновые или светодиодные лампы дают бестеневое рабочее поле, не искажая цвета. В лабораторной работе широко распространены бинокулярные микроскопы. Они передают объемное увеличенное изображение. Стереомикроскопы применяются для препарирования микроскопических объектов. Благодаря тому, что изображение не инвертируется, можно легко манипулировать инструментами. Чтобы получить многократное увеличение применяется электронный микроскоп. Он дает изображение в тысячи раз крупнее, чем обычный оптический. Это возможно благодаря специальной технологии электростатических линз.

Для обработки данных на компьютере используется цифровой микроскоп. Оптическая система цифровых микроскопов совмещена с матрицей, трансформирующей световой поток в электрические сигналы. Это дает возможность передавать данные на компьютер для дальнейшей работы. Его конструкция позволяет присоединять камеру, изображение с которой можно анализировать на экране. Цифровой прибор обладает значительно расширенными возможностями по сравнению с другими моделями.

На сегодняшний день одним из самых мощных микроскопов является “Titan”. Созданный в рамках американско-европейского проекта TEAM , получил свои первые изображения с рекордным разрешением 0,04 нанометра. Это равно четверти поперечника атома углерода. Чтобы понять, какие новый инструмент открывает возможности по изучению материалов или биологических молекул, нужно добавить, что диаметр спирали ДНК составляет целых 2 нанометра. TEAM означает Transmission Electron Aberration-corrected Microscope, то есть трансмиссионный электронный микроскоп с коррекцией аберрации (аберрация — отклонение от нормы). Он появился в результате смешения двух технологий: электронного микроскопа сканирующего и трансмиссионного типов (так называемая технология S/TEM). Для повышения разрешения здесь был применён ряд новаций, в частности, сразу две оригинальные системы коррекции сферической аберрации. Конечно, по техническим характеристикам на сегодняшний день лучше этого микроскопа нет. Но один из американских физиков Дэрок Истэм, считает, что возможно достигнуть в 4 раза лучший результат — 0,01 нм. Планируемый электронный микроскоп настолько мал, что соответствует в размерах кончику пальца, и в четыре раза мощнее. В его проекте используется луч меньшей энергии, эмиттер электронов расположен всего в нескольких миллиметрах от изучаемого объекта. Вместо выделения электронов с вольфрамовой нити производится бомбардировка с одного атома крошечной золотой пирамиды высотой около 100 нм. Луч будет сосредоточен, поскольку он проходит через отверстие величиной 2 мкм, расположенное в кремниевом чипе, прежде чем достигнет цели. Луч электронов в новом микроскопе Истэма имеет длину всего 10 мкм. Длина в стандартном аппарате соответствует 600 мм. Луч, создаваемый прибором Истэма, имеет в 100 раз меньшую энергию, чем обычный сканирующий электронный микроскоп. Именно сокращение расхода энергии, по мнению Истэма, является главным направлением развития сканирующих электронных микроскопов. Меньшая мощность луча также позволяет изучать тонкие структуры, разрушаемые электронными микроскопами, например, необработанные белки и ДНК. Но многие эксперты консервативны в своих ожиданиях результатов работы нового микроскопа. Признавая верность сокращения длины луча, достижение разрешения в 0,01 нм расценивается как маловероятное. При этом существует эффект колебания энергии луча, что также ограничивает разрешающую способность, и, как ожидается, этот эффект имеет место и в разработке Истэма. При всей полезности сокращения энергопотребления, по мнению специалистов, этот микроскоп имеет недостаточную глубину проникновения для создания трехмерных изображений из-за конструкции отверстия.

Ко всему выше сказанному можно добавить только одно, что и по сей день основной задачей оптических приборов, используемых в лаборатории, является — оперативность в получении точных данных, необходимых для ежедневной работы. Микроскоп, помимо своего прямого назначения, должен отвечать таким требованиям, как надежность, функциональность и простота использования. Оснащение лабораторий качественными микроскопами обеспечивает эффективность ежедневного труда.

5. Оптическая система телескоп

Основное назначение телескопов — собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа — его объектива. Объективы бывают зеркальными и линзовыми.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями — аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с не идеальностью объектива. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. На сегодняшний день первенство среди линзовых телескопов держит телескоп, Йеркской обсерватории с объективом 102 см в диаметре.

Что касается зеркальных объективов, то у простых зеркальных телескопов, телескопов-рефлекторов, объектив — это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра — линзы, в фокусе которой строится изображение. Рефлекс – это отражение

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Ивасько Анастасии.

Руководитель: учитель биологии Карнаущенкова Людмила Ивановна.

Очень большое значение имеет для любого живого организма действие света. Попытки природы создать орган, специально реагирующий на световой раздражитель, на протяжении миллионов лет истории органической жизни на Земле, иногда ошибочные, иногда неудачные и более или менее совершенные, можно проследить на различных ступенях развития органических форм. Например, дождевой червь. Органом зрения у него служат отдельные светочувствительные клетки, разбросанные в наружных частях его кожи. Таким образом, он может различать только свет и тьму, но не имеет ни какого представления о форме светящегося тела.

Гораздо сложнее устроены глаза стрекозы. Он состоит из множества тонких трубочек – фасеток с расположенными в них светочувствительными клетками. Эти клетки соединены с окончанием зрительного нерва, идущего к головному мозгу. Глаз стрекозы может различать не только свет и тьму, но и откуда свет на него падает. Ещё более сложное строение имеет глаз человека. Современные исследования показывают, что 95 % младенцев рождаются с нормальным зрением и без дефектов глаз. Но, как видно из таблицы, очень малый процент их достигает пожилого возраста со зрением, которое можно считать нормальным.

Почему такое происходит? Мне стало очень интересно. Я решила узнать как можно больше о нашем зрении. Наши глаза постоянно перегружены. Человек пользуется глазами при условиях совершенно иных, чем те, при которых глаз первоначально развивался и для которых он приспосабливался. Первобытный человек пользовался своими глазами, чтобы смотреть в даль при ярком солнечном свете – для охоты, рыбной ловли и для сражений. Когда солнце заходило, обязанности глаза заканчивались. Современный человек может работать целый день с предметами, расположенными перед глазами, потом долго сидеть перед экраном телевизора, компьютером, долго читать книгу.

В своей исследовательской работе я решила познакомиться со многими функциями зрительного анализатора, именуемого зрением.

Глаз и фотокамера.

Рассмотрим основные части фотоаппарата. Это объектив, представляющий собой систему линз, светонепроницаемый корпус, видоискатель, диафрагма и затвор. В корпус помещена светочувствительная плёнка. Свет, проходя через объектив, преломляется, падает на фотоплёнку, в результате на ней образуется скрытое изображение. Но оно будет уменьшенным и обратным. Для получения чёткого изображения предмета, который располагается на разных расстояниях от фотоаппарата, объектив перемещают относительно фотоплёнки, результат наводки контролируется через видоискатель. Для чёткого изображения нужна определённая освещённость. Световой поток, падающий на плёнку, регулирует затвор и отверстие в диафрагме, диаметр которого можно изменять.

Какие органы зрительного анализатора выполняют функции, аналогичные функциям названных частей фотоаппарата? Это, конечно, глаз. Глаз – это самонастраивающийся прибор. Основные части глаза, которые обеспечивают преломление световых лучей – это роговица, хрусталик, стекловидное тело. Свет, попадающий в глаз, преломляется на его передней поверхности, в роговице, в водянистой влаге передней камеры глаза, хрусталике, водянистой среде задней камеры глаза и в стекловидном теле, благодаря чему на сетчатке образуется изображение. Наибольшее преломление происходит в хрусталике; он может изменять свою форму, кривизну поверхности, за что его часто называют живой линзой. Чёткость восприятия окружающего мира осуществляется рефлекторно, без участия сознания, путём изменения кривизны хрусталика. Наши глаза приспосабливаются к видению на различных расстояниях. Это называется аккомодацией. Существует предел аккомодации – 12 см, что соответствует максимальному сжатию хрусталика. В фотоаппарате регулирует поток света диафрагма, а в глазу – зрачок. Это отверстие в радужке. Ширину отверстия регулируют центры среднего мозга. Фотоплёнке соответствует сетчатка глаза. Она имеет сложное строение. Главную роль играют светочувствительные клетки – палочки и колбочки.

Выполнили:Манжиева Э.А.
Камышова Э.В.
18 м/с, 1 подгруппа.
Проверила: Кюльменова Н.В.

Введение

Зрительный анализатор человека, с каких бы позиций и с какими бы мерками мы не подходили к его оценке, представляется по истине уникальным творением природы. В первую очередь он может служить классическим примером целесообразности всех хитросплетений строения с диапазоном функциональных возможностей, по восприятию света, цвета, пространства, форменных элементов.

Зрение - это физиологический процесс восприятия величины, формы и цвета предметов, а также их взаимного расположения и расстояния между ними. Безусловно, при недостаточном или полностью отсутствующем зрении организм приспосабливается, частично компенсируя утерю с помощью других органов чувств: слуха, обоняния и осязания. Тем не менее, ни одно из них не способно восполнить тот пробел, который возникает при недостатке зрительного анализа. Увы, в настоящее время, по разным оценкам, от 30 до 90 % людей в той или иной степени страдают нарушениями зрения. Когда возникают проблемы с глазами? Чаще всего — еще в детстве.

Цель:

  • Расширить знания по темам: Оптической системой глаза. Дефекты глаза.
  • Выяснить причины возникновения некоторых дефектов зрения и нахождение путей их устранения.

Задачи:

  • расширить знания о строении глаза
  • рассмотреть дефекты зрения
  • составить рекомендации на основе полученных данных по сохранению зрения.

Актуальность:

С развитием инновационных технологий население страны пользуется благами цивилизации - телефонами, компьютерами, электронными книгами, телевизорами, игровыми приставками практически неограниченное время. При этом органы зрение получают огромную нагрузку. С каждым годом число людей молодого возраста, страдающих, потерей зрения увеличивается. Растёт и количество гаджетов и вместе с ним число людей, пользующихся ими. Прививая детям и взрослым культуру активного использования простых упражнений гимнастики для глаз ежедневно можно предупредить падения зрения.

Строение глаза

Прежде всего, глаз — это оптический прибор, который формирует изображение предметов внешнего мира на сетчатке глаза.

Глазное яблоко имеет почти сферическую форму диаметром около 2,5 см и окружено тремя оболочками. Наружная оболочка — склера имеет защитное значение и придает глазу форму. Затем склера переходит в сферическую чашечку — роговицу, через которую в глаз входят лучи света. По оптическим свойствам роговица— наиболее сильно преломляющая часть глаза. Изнутри к склере прилегает сосудистая оболочка, которая состоит из сети кровеносных сосудов, питающих глазное яблоко.

В передней части глаза сосудистая оболочка переходит в радужную, в центре которой имеется круглое отверстие — зрачок. Зрачок играет роль диафрагмы, он расширяется или суживается в зависимости от количества света, падающего на глаз. Непосредственно за зрачком располагается прозрачный хрусталик, имеющий форму двояковыпуклой линзы. Хрусталик эластичен, он может менять свою кривизну с помощью специальной мышцы, благодаря чему обеспечивается фокусировка глаза на предметы, удаленные от него на разные расстояния.

Между роговицей и хрусталиком расположена передняя камера глаза, заполненная водянистой влагой — жидкостью. Задняя камера заполненная прозрачной желеобразной массой — стекловидным телом. Самая внутренняя оболочка — сетчатка. Ее функция — преобразование светового импульса. Оптическая система глаза состоит из роговицы, хрусталика и стекловидного тела, но аккомодационная функция глаза зависит, главным образом, от роговицы и хрусталика

Основные функции глаза

Основные свойства зрения и глаза

Наши глаза обладают весьма интересными и жизненно важными свойствами:

  • Острота зрения - способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между чувствительными элементами сетчатки;
  • Световая чувствительность человеческого глаза - максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм. В этих условиях пороговая энергия света около 10 эрг/с, что эквивалентно нескольким квантам;
  • Бинокулярность- способность одновременно чётко видеть изображение предмета обоими глазами; в этом случае человек видит одно изображение предмета, на который смотрит;
  • Контрастная чувствительность - способность человека видеть объекты, слабо отличающиеся по яркости от фона;
  • Адаптация зрения – происходит к изменениям освещенности, цветовой характеристики освещения, т.е. способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света;

Дефекты глаз

Близорукость

Близорукость (миопия) — наиболее частые дефект зрения по статистике близорукостью страдает каждый третий человек на Земле. Эта патология рефракции глаза проявляется снижением остроты зрения вдаль. Прогрессирование миопии может привести к серьезным необратимым изменениям глаз и значительной потере зрения. Осложненная близорукость — один и главных причин инвалидности вследствие заболеваний глаз.

Степени близорукости:

  • слабая (до 3,0 D (диоптрий) включительно);
  • средняя (от 3,25 до 6,0 D);
  • высокая (более 6 D). Высокая миопия может достигать весьма значительных величин: 15, 20, 30 D.

Причины развития близорукости:

Внутриглазное давление.ВГД является важным показателем здоровья человека и обеспечивает нормальную форму глазному органу, питание и четкость зрения (нормой считается показатель от 9 до 25 мм рт. ст.). Отклонение значения в меньшую или большую сторону от нормы, может сигнализировать о наличии глазных патологий. По одной из гипотез, увеличение размеров глаза при миопии может быть связано с повышенным ВГД. Предполагается, что избыточная аккомодация или конвергенция также могут повышать ВГД, воздействие, которого на склеру приводит к удлинению переднезадней оси глаза.

Наследственность.По мнению специалистов, наследуется не плохое зрение, а физиологическая предрасположенность к нему. В группу риска, прежде всего, попадают те, у кого оба родителя страдают, этим заболеванием вероятность наследования миопии в данном случае составляет 50-92%.

Аккомодация.Офтальмологи считают, что ее снижение может способствовать большая задержка аккомодационного ответа. Она определяется при проведении скиаскопии. Задержка аккомодационного ответа — это разность в диоптриях между расстоянием от глаза до объекта и расстоянием, на котором нейтрализуется световой рефлекс (Приемлемой считается задержка аккомодационного ответа до 0,75 D).

Слишком сильное преломление световых лучей.В оптической системой глаза (хрусталик, роговица). При том, что размеры глаза соответствуют норме, но из-за сильного преломления оптическим аппаратом световые лучи сходятся в фокус перед сетчаткой, а не на ней.

Окружающая среда и неблагоприятные условия зрительной работы.Большинство учёных соглашается, что факторы окружающей среды способствуют развитию миопии. По данным исследований, у детей, проводивших больше времени на открытом воздухе, реже наблюдалась миопическая рефракция, а проживающие в городах были более подвержены риску развития близорукости. Так же на развитие миопии существенную роль может играть неблагоприятные условия зрительной работы:

  • чрезмерная нагрузка на глаза;
  • чтение в движущемся транспорте при плохом освещении;
  • неправильная посадка во время чтения, письма;
  • многочасовое сидение за компьютером, телевизором, телефоном.

Симптомы:

Продолжительное время миопия протекает без симптомов, обычно ее выявляют на медосмотрах. Но со временем, если миопия прогрессирует, то появляются следующие симптомы:

  • наблюдаются сильные головные боли;
  • постоянная усталость глаз, даже во время занятия спортом.

Лечение зрения

Все известные средства направлены лишь на замедление прогрессирования близорукости так, как ни одно из них не способно вернуть эмметропическую рефракцию глазу или хотя бы остановить прогрессирование. Так как близорукость формируется, как правило, в детском возрасте, самое пристальное внимание уделяется, прежде всего, ее профилактике и предупреждению прогрессирования у детей и подростков.

Для решения проблемы используются различные методы, которые можно разделить на следующие категории:

  • Использование лекарственных средств (воздействующие на аккомодацию и гипотензивные препараты);
  • Хирургическое вмешательство (склеропластика);
  • Оптическая коррекция (контактные линзы, очки);
  • Нетрадиционные методы (метод Бейтса).

Дальнозоркость

Дальнозоркость (гиперметропия) - один из видов клинической рефракции органа зрения, при котором световые лучи, попадающие в глаз, находящийся в состоянии покоя аккомодации, фокусируются за сетчаткой.

Степени дальнозоркости

  • слабую – до + 2,0 D;
  • среднюю – до + 5,0 D;
  • высокую – свыше + 5,0 D.

Причины

К основным причинам, вызывающих дальнозоркость относятся следующие факторы:

  • Уменьшение размера глазного яблока по продольной оси, то есть у дальнозоркого человека оно короче нормы;
  • Снижение оптической силы роговицы, которая недостаточно хорошо преломляет световые лучи, и они собираются не на глазном дне, а фокусируются на плоскости за ним;
  • Ослабление аккомодации глаза, вследствие возрастных изменений, связанных с потерей эластичности хрусталика.

Симптомы

  • Повышенная утомляемость глаз при чтении;
  • плохое зрение вблизи;
  • головные боли, жжение в глазах;
  • плохое зрение вблизи;

Лечение

  • Оптическая коррекция (контактные линзы, очки);
  • Медикаментозное лечение;
  • Нетрадиционные методы (метод Бейтса).
  • Оптическая коррекция (контактные линзы, очки);

Астигматизм

Астигматизм - это патология зрения, возникающая в результате нарушения строения хрусталика, деформация его формы, заключающаяся в расфокусировании оптических лучей, проходящих через среды глаза. В результате изображение не точно падает на сетчатку, и дает искажения. По заявлениям офтальмологов, астигматизм в той или иной степени обнаружен у 30 % населения планеты и относится к наиболее распространённым аномалиям глаз. Отхождение от нормы(норма 0,5 D) на 0,75 D считается патологией и подлежит врачебной коррекции.

Виды

  • Дальнозоркий астигматизм;
  • Близорукий астигматизм;
  • Смешанный астигматизм

Причины

Существует врожденный и приобретенный астигматизм

Врожденный. Наследственный фактор ученые считают ведущим. Форма роговицы наследуется от родителей, если сила сечения роговицы и сетчатки не совпадают вследствие неровности роговицы, неравномерного давления век, несогласованной работы глазных мышц, то возникает расфокусированное изображение.

Приобретенный. Формируется в результате нарушения целостности роговицы внешними воздействиями. К таким факторам относятся ожоги, ушибы, травмы и т.д.

Симптомы

Основные симптомы астигматизма:

Лечение

После определения разновидности и степени астигматизма, а так же природы его возникновения, приступают к подбору лечебных процедур. Лечение астигматизма глаз в не зависимости от способов заключается в нормализации фокуса сетчатки:

  • Оптическая коррекция (контактные линзы, очки);
  • Лазерная коррекция астигматизма

Практическая часть

Было проведено анкетирование среди молодежи

Анализируя анкеты можно сделать следующие выводы: Многие знают состояние своего зрения причины его ухудшения.

Среди основных причин ухудшения зрения названы:

  • Наследственность;
  • Телевизор;
  • Компьютер
  • Телефон;
  • Чтение в темноте.

Всем известны меры профилактики по сохранению зрения: гимнастика для глаз, употребление витамина А, лекарства. Также большинство применяют или стараются применять меры профилактики.

Рекомендации по сохранению зрения

  • Необходимо, чтобы рабочее место было хорошо освещено, но не слишком ярким светом, который должен падать слева. Источники искусственного света должны быть прикрыты абажурами.
  • При чтении, письме, работе с мелкими предметами расстояние от объектов до глаз должно составлять 30–35 см. Вредно читать лежа или в движущемся транспорте. Чтобы избежать инфекционных заболеваний глаз, нужно беречь их от пыли, от разных механических воздействий, не тереть руками, вытирать только чистым платком или полотенцем.
  • Правильное питание. Употребление витамин А.
  • Зрительная гимнастика.

Вывод: Хорошее зрение, отсутствие глазных заболеваний – это, прежде всего, вопрос профилактики и уровень гигиенической культуры человека. Необходимо прививать навыки профилактики в виде простых и доступных упражнений для глаз в первую очередь среди молодёжи и это уже будет залогом здорового образа жизни.

Упражнения, снимающие усталость глаз

Закатывание глаз. Смотрите прямо перед собой. Переведите взгляд направо, а затем направьте его к потолку. Медленно посмотрите налево и вниз. Повторите то же самое в противоположном направлении.

Ладошки. Закройте глаза, положите сверху ладони. Сидите в такой позиции около 30 секунд, вглядываясь в темноту (веки при этом не размыкать). Если вы видите цветные или белые разводы, то заметите, как они постепенно исчезнут.

Зуминг. Сядьте ровно, вытяните перед собой руку с поднятым большим пальцем и сфокусируйте взгляд на нем. Начните медленно сгибать руку в локте и приближать кисть к своему лицу, плавно увеличивая поле зрения.

Восьмерки. Сядьте ровно и прямо, положив руки на ноги. Вытяните правую руку перед собой, поднимите большой палец. Внимательно сфокусируйтесь на нем. Начните медленно рисовать пальцем в воздухе цифру 8, не меняя при этом положения самой руки. Взглядом следите за этим движением. Повторите его 5 раз по часовой стрелке и 5 – против. Поменяйте руку, повторите.

Медленное моргание. Смотрите на чистую стену, чтобы ни один предмет вас не отвлекал. Медленно закройте глаза. Спустя секунду так же плавно откройте их.

Нажмите, чтобы узнать подробности

Органы зрения являются одними из важнейших органов чувств человека и большинства животных. Органы зрения также называют зрительными анализаторами. Органы зрения — это не только глаза. Люди видят благодаря тому, что информация, полученная посредством глаза, передаётся в определённые области коры головного мозга, где и формируется та картина внешнего мира, которую мы видим.

УСТРОЙСТВА ГЛАЗА ЧЕЛОВЕКА

Глаз человека является сложным оптическим прибором, состоящим из двух линз с переменным фокусным расстоянием. Глаз, или глазное яблоко, имеет почти шарообразную форму. Снаружи глаз покрыт прочной белой оболочкой — склерой, которая защищает его от повреждений. Передняя часть склеры прозрачна для света и называется роговицей. За роговицей расположена прозрачная водянистая масса, а за ней — радужная оболочка. Она определяет цвет глаз. В радужной оболочке есть отверстие — зрачок. Диаметр зрачка может изменяться: увеличиваться в темноте и уменьшаться на свету. После зрачка свет проходит через хрусталик — прозрачное тело, напоминающее двояковыпуклую линзу. Хрусталик окружён мышцами, прикрепляющими его к склере. За хрусталиком расположено стекловидное тело, заполняющее всю остальную часть глаза. Таким образом хрусталик разделяет внутреннюю поверхность глаза на две камеры: переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом. Задняя стенка склеры — сетчатка — состоит из разветвлений волокон зрительного нерва, чувствительных к свету. Светочувствительные клетки (палочки и колбочки), содержащиеся в клетчатке, называются фоторецепторами.

КАК МЫ ВИДИМ РАЗЛИЧНЫЕ ПРЕДМЕТЫ?

Оптическая система глаза состоит из роговицы, передней камеры, заполненной водянистым веществом, хрусталика и стекловидного тела. Световые лучи, попадая в глаз, преломляются в оптической системе глаза, и на сетчатке глаза появляется изображение. Можно сказать, что сетчатка является шарообразным экраном, на который проецируется окружающий нас мир. Изображение предмета, возникающее на сетчатке глаза, является действительным, уменьшенным и перевёрнутым.

Почему же мы видим предметы такими, какие они есть на самом деле? Дело в том, что в сетчатке оптическая информация воспринимается светочувствительными нервными клетками и передаётся в мозг. Обрабатывая сигналы, мозг снова переворачивает изображение.

Если изображения двух точек будут попадать на одну фоторецепторную клетку (колбочку) глазного дна, мы будем воспринимать их как одну точку. Если расстояние между точками увеличится настолько, что их изображения попадут на две соседние рецепторные клетки, мы увидим линию, то есть будем воспринимать их слитно. Чтобы точки воспринимались раздельно, их изображения должны попадать на две рецепторные клетки, разделённые хотя бы ещё одной.

Остротой зрения называют способность различать границы и детали видимых объектов. Острота зрения определяется по минимальному угловому расстоянию между двумя точками, при котором они воспринимаются раздельно.

За норму, соответствующую остроте зрения 1.0, принимается такая различительная способность глаза, при которой две точки видны как раздельные, если угол между лучами, идущими от них в глаз, равен 1° (1 градус = 60 минут).

При такой остроте зрения величина изображения на сетчатке равна 0,004 мм, что соответствует диаметру колбочки. Чем меньше диаметр колбочки, тем больше разрешающая способность глаза.

Для того, чтобы проверить остроту зрения, можно воспользоваться звездой Сименса. Если чёткость зрения неидеальна, то, не доходя до центра, лучи расплываются и начинают перекрываться между собой.

На очень коротком участке они могут как бы слиться с фоном. Однако по мере дальнейшего продвижения к центру лучи вдруг снова оказываются чётко видны. При этом изображение превращается как бы в свой негатив. На месте чёрного луча оказывается белый фон, а на месте белого фона — чёрный луч.

Люди с хорошим зрением могут наблюдать этот эффект, если поднесут картинку очень близко к глазам. Однако на большом расстоянии от картинки лучи для них будут сливаться в сплошную серую массу.

Звезда Сименса даёт прекрасную возможность наблюдать, как острота зрения постоянно меняется, причём эти изменения отчасти подчиняются волевому контролю.

Известны опыты по изучению того, как изменится зрительное восприятие человека, если с помощью специальных очков перевернуть световые лучи ещё на пути к глазу так, чтобы изображение на сетчатке было не перевёрнутым, а прямым. В начале эксперимента испытуемые, надев такие очки, видели все предметы перевёрнутыми, что доставляло им массу неудобств. Но спустя некоторое время участники эксперимента вновь начинали правильно ориентироваться в окружающей обстановке. При этом они начинали вновь видеть предметы правильно, как если бы очки не искажали видимое ими окружение.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (или бинокулярным), то есть сформировать трёхмерное изображение. Проводящие пути зрительной системы устроены так, что в левое полушарие головного мозга попадает информация о том, что справа от нас, а в правое полушарие — о том, что слева от нас. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

У большинства животных глаза расположены по разные стороны головы, поэтому они видят каждым глазом свою картину. Видимые ими предметы не отличаются рельефностью, к которой мы привыкли, но поле зрения гораздо обширнее.

Способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза, называется аккомодацией (от лат. accomodatio — приспособление).

Когда человек смотрит на удалённые предметы, он не напрягает зрение, мышцы, удерживающие хрусталик, расслаблены, и изображение оказывается на сетчатке. Когда же человек переводит взгляд на близкие к нему предметы, изображение должно сместиться за сетчатку. Чтобы изображение не было размытым, глазные мышцы сжимают хрусталик, делая его более выпуклым. При этом его кривизна, а значит и оптическая сила увеличиваются, и изображение опять оказывается на сетчатке.

Рыбы, насекомые, рептилии, птицы, кролики и лошади проводят свою жизнь на открытых пространствах, где необходимо видение всего, что происходит вокруг — панорамное зрение. И именно этому способствует их боковое расположение глаз. Люди и крупные млекопитающие (приматы, тигры, медведи) подчас проживают в среде, перегруженной мелкими деталями и препятствиями. Их глаза устремились к передней части головы и стали смотреть вперёд прямо перед собой. И хотя они утратили возможность видеть то, что происходит у них за спиной, они получили способность смотреть, например, сквозь листву, что находится перед ними.

БЛИЗОРУКОСТЬ И ДАЛЬНОЗОРКОСТЬ

У человека с хорошим (нормальным) зрением глаз в ненапряжённом состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Наиболее распространены два недостатка зрения — близорукость и дальнозоркость.

Близорукость — это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Близорукие люди не могут чётко видеть удалённые предметы. Расстояние наилучшего зрения для близорукого глаза меньше 25 см.

Дальнозоркость — это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а за ней.

Дальнозорким людям трудно сфокусировать взгляд на близких предметах. Расстояние наилучшего зрения для дальнозоркого глаза больше 25 см.

Близорукость и дальнозоркость исправляют с помощью соответствующих линз. При близорукости для того, чтобы изображение отодвинулось от хрусталика и переместилось на сетчатку, следует уменьшить оптическую силу преломляющей системы глаза. Для этого применяют рассеивающие (вогнутые) линзы. При дальнозоркости изображение оказывается за сетчаткой. Оптическую силу системы дальнозоркого глаза надо увеличить. Для этого используют собирающие (выпуклые) линзы.

Аккомодация имеет предел. Если расположить предмет совсем близко, то мышцы не способны сжать хрусталик до получения на сетчатке чёткого изображения. Нормальный глаз может длительно без особого напряжения рассматривать предметы, расположенные от него не ближе 25 см. Это расстояние называют расстоянием наилучшего видения.

Зрение — очень сложный процесс. Это особенно ясно, когда сталкиваешься с неожиданными эффектами зрительного восприятия. Сегодня существует большое количество разнообразных изображений, которые принято называть зрительными иллюзиями или невозможными фигурами.

Читайте также: