Гидравлический привод клапанов реферат

Обновлено: 04.07.2024

Гидравлический привод (объемный гидропривод) это совокупность объемных гидромашин, гидроаппаратуры и других устройств, предназначенная для передачи механической энергии и преобразования движения посредством жидкости. (Т.М Башта Гидравлика, гидромашины и гидроприводы).

В гидропривод входят один или несколько гидродвигателей, источники энергии жидкости, аппаратура управления соединительные линии. Работа гидравлического привода основана на принципе гидравлического рычага.

В данной системе усилие создаваемое на поршне 2 можно определить по зависимости:

Получается, что усилие зависит от отношения площадей, чем больше будет площадь второго поршня, и чем меньше площадь первого, тем значительнее будет разница между силами F1 и F2. Благодаря принципу гидравлического рычага можно получить большое усилие, приложив малое.

Выигрывая в усилии на гидравлическом рычаге, придется пожертвовать перемещением, переместив малый поршень на величину l1, получим перемещение поршня 2 на величину l2:

Учитывая, что площадь поршня S2 больше площади S1, получим что перемещение l2 меньше чем l1.

Гидравлический привод не был бы так полезен, если бы потерю в перемещении не удалось скомпенсировать, а сделать это удалось благодаря особым гидравлическим устройствам - обратным клапанам.

Обратный клапан - это устройство для запирания потока движущегося в одном направлении, и свободного пропускания обратного потока.

Если в рассмотренном примере, на выход камеры с поршнем 1 установить обратный клапан, так чтобы жидкость могла выйти из камеры, а обратно перетечь не могла. Второй клапан нужно установить на между камерой с поршнем 1 и дополнительным баком с жидкостью, таким образом чтобы, жидкость могла попасть в камеру с поршнем, а из этой камеры обратно в бак перетечь не могла.

Новая система будет выглядеть следующим образом.

Приложив к поршню усилие F1 и переместив его на расстояние l1, получим перемещение поршня с усилием F2 на расстояние l2. Затем отведем поршень 1 в начальное расстояния, из камеры с поршнем 2 жидкость перетечь обратно не сможет - не позволит обратный клапан - поршень 2 останется на месте. В камеру с поршнем один поступит жидкость из бака. Затем, нужно вновь приложить усилие F1 к поршню 1 и переместить его на расстояние l1, в результате поршень 2 вновь переместится на расстояние l2 с усилием F2. А по отношению к начальному положению, за два цикла поршень 2 переместится на расстояние 2*l2. Увеличивая число циклов, можно получить большую величину перемещения поршня 2.

Именно возможность увеличивать перемещение наращивая число циклов, позволила гидравлическому рычагу опередить механический с точки зрения возможного развиваемого усилия.

Приводы, где требуется развивать огромные усилия, как правило, гидравлические.

Узел с камерой и поршнем 1, а также с обратными клапанами в гидравлике называют насосом. Поршень 2 с камерой - гидравлическим двигателем, в данном случае - гидроцилиндром.

Распределитель в гидроприводе

Но в гидравлике есть специальное устройство для направления потоков - распределитель, позволяющий направлять потоки жидкости по нужной схеме.

Полученную систему можно считать простейшим гидравлическим приводом.

Устройства в гидравлических приводах

Современные гидроприводы представляют собой сложные системы, состоящие из множества элементов. Конструкция которых не отличается простотой. В представленном примере такие устройства отсутствуют, т.к. они предназначены, как правило, для достижения нужных характеристик привода.

Наиболее распространенные гидравлические аппараты

  • Предохранительные клапаны
  • Редукционные клапаны
  • Регуляторы расхода
  • Дроссели

Устройство и принцип работы гидропривода

Структурно гидропривод состоит из насоса (-ов), контрольно-регулирующей и распределительной аппаратуры, гидродвигателя (-лей), рабочей жидкости, емкости (бака) для ее содержания и средств (фильтров и охладителей), сохраняющих ее качества, а также соединительной и герметизирующей арматуры.

На рис. 2.1. изображена схема изучаемого объемного гидропривода состоящего из насоса 1, предохранительного клапана 2, распределителей 3 и 4, гидравлических двигателей – гидромотора 5 и гидроцилиндра 6, замедлительного устройства 7 опускания груза 8, бака и установленного в сливную гидролинию фильтра 9 сблокированного клапаном 10.

Рис. 2.1 Схема изучаемого гидропривода.

где – величины давлений необходимых для преодоления потоком рабочей жидкости сопротивлений, соответственно, участков гиролиний, распределителей и фильтра.

где – потери давления на преодоление сопротивления распределителя 3, 4

– потери давления на привод гидромотора 5, зависящие от преодолеваемой нагрузки на его валу.

В том случае, когда в работу одновременно включены гидромотор 5 и гидроцилиндр 6, то их совместная работа возможна только при одинаковых потребных давлениях. Если у одного из них потребное давление ниже, чем у другого, то их совместная работа невозможна, так как поток жидкости в основном будет уходить в сторону меньшего сопротивления и нарушать нормальную работу гидропривода в целом.

Если в гидроприводе потребное давление превышает допустимое, срабатывает предохранительный клапан 2 и отводит через себя поток рабочей жидкости от насоса 1 в бак (режим перегрузки), обеспечивающий этим ограничение давления в гидроприводе и защиту его элементов от разрушения.

Для обеспечения плавности опускаемых грузов (рабочих органов) в гидроприводах используются замедлительные устройства (см. рис. 2.1, поз 7), обычно состоящие из обратного клапана и дросселя. При подъеме груза (рабочего органа) рабочая жидкость в цилиндр поступает через обратный клапан и дроссель. При опускании груза жидкость из полости цилиндра уходит в бак только через дроссель, который оказывает ей сопротивление, величина которого зависит от величины ее потока и этим обеспечивает плавность его опускания. При этом противоположная полость гидроцилиндра заполняется жидкостью подаваемой насосом. В случае избыточного количества подаваемой насосом жидкости ее часть будет отводиться на слив через предохранительный клапан 2.

Для визуального контроля давления в гидроприводе предназначен манометр 12. Для обеспечения очистки рабочей жидкости от твердых загрязнителей (абразивов, продуктов изнашивания), в гидроприводах используют различного конструктивного исполнения фильтры.

Что такое гидравлический насос, какие бывают типы и принцип работы

Инструменты и технические аппараты, работа которых связана с использованием энергии жидкостей, называют гидравлическими механизмами. В машиностроении их популярность основана на возможности передавать с потоком, через гибкие шланги и тонкие трубопроводы, огромные объемы энергии.

Что это, назначение и принцип работы устройства

Один из классов машин – гидравлический насос – является оборудованием по преобразованию механической энергии (вращения и крутящего момента приводного электрического двигателя; перемещения поршня при нажиме и поднятия рычага в ручной конструкции) в гидравлическую энергию жидкости (образование давления; подача или ход рабочего органа, например, штока гидроцилиндра).

Классификация и деление насосов на виды не влияет на общий принцип действия механизмов – вытеснение рабочей среды.

Работающий аппарат перемещает жидкость из полости всасывания (входной) в полость нагнетания (выходную) через изолированные камеры.

Выходящая из корпуса механизма жидкость имеет повышенное давление, обусловливающее ее перемещение по трубопроводу. Так как полости не соединены напрямую, устройства имеют идеальную адаптацию для работы в системах гидравлики с высоким давлением. Жидкость на выходе передает энергию поршню, перемещая его, или циркулирует в замкнутом контуре.

Гидравлические насосы высокого давления – обязательные элементы гидравлического привода, поэтому востребованы повсеместно. Основные области применения:

  • Машиностроение, нефтепереработка, транспорт, сельское хозяйство, другие производственные и перерабатывающие отрасли.
  • Оснащение мобильных моек, мастерских, предприятий коммунального хозяйства, строительных площадок.
  • Системы чистки автомобилей, пожаротушения, подавления пыли, очистки труб, мытья улиц.
  • Помпа – инженерная, погружная.

Технические характеристики и параметры выбора

Основными техническими характеристиками гидронасоса являются:

  1. Частота вращения, об/мин.
  2. Рабочий объем, вытесняемый за оборот вала, см3/об.
  3. Рабочее давление.

Выбор насоса для конкретной гидросистемы производится с учетом следующих критериев:

  • Вид элемента, вытесняющего жидкость – поршень, шестерня, пластина.
  • Требуется ручной или гидронасос с электроприводом.
  • Пределы рабочего давления.
  • Со средой какой вязкости сможет работать механизм.
  • Рабочий объем.
  • Частотный интервал работы.
  • Легкость обслуживания.
  • Габариты.
  • Цена.

Ручные

Конструкция ручных стандартных помп представляет цилиндрическую полость с поршнем, который жестко соединен со штоком. Шток, в свою очередь, через шарнир соединяется с приводным рычагом. В поршне находится промежуточный клапан, он связывает полости – поршневую и штоковую. Поршневую полость от резервуара с маслом отделяет впускной клапан, перед которым стоит фильтр. Штоковая полость отделена от выходного порта изделия выпускным клапаном.

Рычаг ручного (мускульного) аппарата высокого давления легко перемещается рукой или ногой (через педаль с возвращающей пружиной). При подъеме рычага поршень штоком поднимается, открывается впускной клапан и поршневая полость заполняется жидкостью. В это время закрытый промежуточный затвор не допускает ее переток из штоковой полости в поршневую. Во время движения рычага вниз давление жидкости закрывает впускной и поднимает промежуточный клапан. Жидкость попадает в штоковую полость, открывает выпускной затвор и вливается в гидросистему. С каждым циклом подъема-опускания рычага насос вытесняет в систему порцию воды или масла. Таков принцип работы механизма одностороннего действия.

В ручных механизмах двустороннего действия к верху и низу цилиндрической полости подведены параллельные линии всасывания жидкости из бака и ее нагнетания в трубопровод. При любом ходе поршня – вверх или вниз – один из пары впускных и выпускных клапанов открывается. В результате обеспечивается более производительная работа насоса с непрерывной и равномерной подачей рабочей жидкости.

Простое устройство гидроаппарата, требующего приложения мускульной силы, объясняет его широкое применение в производстве, индивидуальном хозяйстве, автосервисе, строительстве. Модели данного типа становятся составной частью различных механизмов:

  • испытательных стендов;
  • лабораторного оборудования;
  • грузоподъемных кранов и платформ;
  • статических гидроинструментов;
  • водяных бытовых опрыскивателей;
  • домкратов;
  • прессового оборудования.

Главный минус – низкая производительность. К достоинствам можно отнести: надежность; простоту конструкции; низкую стоимость; работу без электропривода, следовательно, независимость от наличия источников электропитания; автономность; малый размер и вес; возможность быстро выполнить необходимый ремонт своими руками.

Радиально-поршневые

Основное применение устройств данного типа – подъемное и прессовое оборудование, протяжные станки.

Типы поршневых гидравлических насосов с радиальным расположением цилиндров:

  • Конструкции с ротором, смещенным относительно оси статора. Радиальные цилиндрические расточки ротора являются цилиндрами. В них располагаются поршни, при вращении ротора прижимаемые к стенкам обоймы неподвижного корпуса. Поршни вращающегося ротора приходят в возвратно-поступательное движение с ходом, равным удвоенному смещению (эксцентриситету). Внутри расположена неподвижная распределительная ось, выполняющая роль золотника. Проточки оси соединены с входной и напорной линией привода. Поворот ротора на 180° приводит поршень в поступательное движение к максимально выдвинутому положению. В это время камера цилиндра увеличивает объем и всасывает масло через проточку распределительной оси. Совершая следующие пол-оборота, поршень возвращается в тело ротора и вытесняет масло уже в напорную полость распределителя. Изменяя величину эксцентриситета, регулируют производительность механизма. Меняя эксцентриситет по знаку, то есть, перемещая ротор к противоположной стенке корпуса, добиваются изменения потока жидкости – реверса.
  • С соосным расположением статора и ротора. Но группа поршней уже имеет радиальное расположение в статоре, а на роторе присутствует эксцентричный кулачок. В каждом поршне конструктивно заложены два клапана – всасывания и нагнетания. Вращение эксцентричного кулачка приводит к последовательной работе клапанов, обеспечивая переток рабочей жидкости. Конструкции этого типа чаще применяются в гидромоторах.
  1. Надежность.
  2. В регулируемых вариантах конструкции легко настроить нужную производительность.
  3. Показаны к применению в реверсивных системах с изменяемым направлением потока жидкости.
  4. Пониженная шумность работы.
  5. Небольшой осевой габарит.
  6. Простота механизма.
  1. Низкочастотность (до 2000 об/мин.) вращения ротора.
  2. Инерционность вращающегося ротора.
  3. Присутствие пульсации. Эффект значительно сглаживается при нечетном количестве поршней.
  4. Большой вес.

Аксиально-поршневые

Самые распространенные механизмы гидроприводов. Вытеснителем жидкости из цилиндра выступает плунжер или поршень. Все цилиндры находятся в едином блоке и они параллельны с осями блока. Возвратно-поступательный ход поршней обеспечивается наклоном блока цилиндров к диску ведущего вала или конструктивным наклонным исполнением самого диска. Работа группы цилиндров сходна с радиально-поршневым устройством.

Запомните! Утечки цилиндров отводятся по дренажному сливу. Если его заглушить, можно спровоцировать повышение внутреннего давления с последующим повреждением корпуса и разгерметизацией гидронасоса.

• Большая мощность и скорость вращения при компактности и небольшом весе агрегатов.

• Вариативность конструктивных исполнений.

• Небольшие рабочие органы имеют малый инерционный момент.

• Цена механизмов высокая.

• Подача и расход жидкости сопровождаются существенной пульсацией.

• Конструктивная сложность. Следовательно, чувствительность к неправильной эксплуатации, продолжительный ремонт.

Шестеренные

Роторные гидромашины этого вида нашли применение в системах смазки, дорожной и сельскохозяйственной спецтехнике, мобильных гидравлических конструкциях. К их плюсам относят:

  • простоту конструктивного исполнения;
  • работу на частотах до 5000 об/мин.;
  • небольшой вес;
  • компактность.
  • рабочее давление до 20 МПа;
  • низкий КПД;
  • небольшой ресурс;
  • проблемы пульсации.

Рабочими вытесняющими элементами конструкции являются две шестерни. Они различаются по виду зацепления:

  • Внешнее. Со стороны входа шестерни вращаются в разные стороны, захватывают жидкость впадинами зубьев и перемещают ее вдоль стенок корпуса к выходу из насоса. Когда зубья входят в зацепление, рабочая жидкость выталкивается из впадин к выходу из корпуса.
  • Внутреннее. Принцип работы не меняется. Жидкость переносится в область нагнетания во впадинах между зубьями шестерни вдоль поверхности вспомогательного серпообразного разделителя. Пульсация давления и уровень шума в таких агрегатах снижаются.

Разновидностью рассматриваемой системы зацепления являются героторные (без разделителя, шестерни постоянно контактируют благодаря особому профилю зубьев) и винтовые конструкции.

Пластинчатые

В этих гидромашинах пластины, размещенные на роторе, выполняют основную работу. Специальные пружины усиливают их прижим к неподвижному корпусу. Соседние элементы становятся ограничителями объемной камеры, в ней рабочая среда при вращении ротора попадает из полости подачи к полости нагнетания. Присутствие двух и более областей всасывания и стольких же зон входа в систему свойственно конструкциям двукратного или многократного действия.

Применение электромагнитного привода клапанов требует больших затрат электроэнергии на их открытие, поэтому немецкие производители двигателей предлагают открывать клапана с помощью гидравлики, а управлять гидравликой с помощью электроэнергии. В отличие от других типов открытия клапанов применение электрогидравлического привода клапанов позволяет отказаться не только от распределительного вала и дроссельной заслонки, но и от клапанных пружин. При применение этого типа клапанов, наряду с простым открытием-закрытием клапанов и ходом клапана можно изменять фазы газораспределения и их работу независимо для каждого цилиндра, снижая тем самым расход топлива и выброс токсичных веществ в отработавших газах и повысить мощность двигателя.

Общая схема электрогидравлического привода клапанов показана на рисунке:

Схема электрогидравлического привода клапанов

Рис. Схема электрогидравлического привода клапанов:
1 – насос высокого давления; 2 – линия высокого давления (50…200 кгс/см2); 3 – клапан регулировки высокого давления; 4 – линия управляющего давления (5…20 кгс/см2 ); 5 – блок электрогидравлического подъема клапана; 6 – регулятор подъема клапана; 7 – электромагнитный клапан на линии низкого давления; 8 – линия низкого давления ( менее 5 кгс/см2 ); 9 – клапан механизма газораспределения; 10 – электромагнитный клапан на линии высокого давления; 11 – цилиндр; 12 – поршень

Каждый блок электрогидравлического подъема клапана содержит на каждый клапан механизма газораспределения:

  • электромагнитный клапан 10 на линии высокого давления обесточенный в закрытом положении
  • электромагнитный клапан 7 на линии низкого давления обесточенный в открытом положении регулятор подъема клапана 6
  • двухступенчатый регулируемый привод поршня 12 для открытия клапана
  • гидравлический компенсатор линейного расширения

Принцип действия системы заключается в следующем. Насос высокого давления создает давление масла в системе до 200 кгс/см2. Электромагнитный редукционный клапан 3 регулирует давление в линии высокого давления в пределах 50…200 кгс/см2 по сигналу блока управления, в зависимости от частоты вращения коленчатого вала, нагрузки, температуры и т. д. Этот клапан регулирует переменный ход высоты подъема клапана одновременно для всех клапанов сразу. Если на электромагнитный клапан 10 подается напряжение, он открывается и масло из линии высокого давления поступает в цилиндр сверху поршня. Электромагнитный клапан на линии низкого давления 7 в это время закрыт, так как на него не подается напряжение. Поршень, воздействуя на клапан механизма газораспределения перемещает его вниз, таким образом клапан открывается. В зависимости от режима работы двигателя срабатывает регулятор подъема клапана 6, изменяя скорость посадки всех клапанов одновременно. Изменение фаз газораспределения клапанов происходит при изменении времени подачи напряжения на электромагнитный клапан на линии высокого давления 10.

При обесточивании электромагнитного клапана 10 и масло из линии высокого давления поступает в цилиндр снизу поршня. Поршень, воздействуя на клапан механизма газораспределения перемещает его вверх, таким образом клапан закрывается. Масло из пространства над поршнем подается в линию низкого давления и затем снова подается к насосу.

Для того чтобы увеличить силу открытия клапана и одновременно снизить потребление энергии при большом ходе открытия клапана, применяются поршни, состоящие из двух частей. При среднем давлении около 100 кгс/см2 и относительно малом времени срабатывания полный ход клапана составляет 1 мм, а скорость посадки колеблется от 0.05 до 0,5 м/с.

Электрогидравлический привод клапанов связан с системой циркуляции масла двигателя. Общими с системой смазки двигателя являются поддон картера двигателя, масляный насос для подачи масла в систему смазки двигателя и к насосу высокого давления привода клапанов, фильтр очистки масла и магистраль слива масла из головки блока. К используемому маслу, единому для общей системы смазки и привода клапанов предъявляются высокие требования по качеству при длительной эксплуатации и вязкостным характеристикам. Поэтому в систему смазки должно заливаться масло типа 0W40. Для отслеживания вязкости при эксплуатации двигателя предусмотрен специальный датчик, посылающий сигнал о потере вязкости.

Блоки электрогидравлического подъема клапана могут устанавливаться и монтироваться независимо друг от друга. Выполненная с большой точностью плоская поверхность блока позволяет обеспечивать необходимую гидравлическую плотность соединения блока с корпусом двигателя.

Более простое решение гидравлического привода клапанов предлагает фирма Фиат. Впускной клапан здесь открывается с помощью распределительного вала и гидравлического передающего механизма.

При вращении распределительного вала 3, кулачок набегает на плунжерный толкатель 4, создавая давление масла в цилиндре толкателя, которое затем передается на поршень 2, воздействующий на впускной клапан. Давление в цилиндре толкателя может меняться в зависимости от степени открытия электромагнитного клапана 6, управляющего золотником. Этим регулируется ход клапана и изменение режима работы двигателя может осуществляться без дроссельной заслонки.

Электрогидравлический привод впускных клапанов фирмы Фиат

Рис. Электрогидравлический привод впускных клапанов фирмы Фиат:
1 – впускной клапан; 2 – поршень; 3 – распределительный вал; 4 – плунжерный толкатель; 5 – масляная камера цилиндра плунжерного толкателя; 6 – электромагнитный клапан; 7 – масляный резервуар

Масло через сообщающийся канал может передаваться в небольшой масляный резервуар 7. Электромагнитный клапан 6 рассчитан на экстремально быстрое включение.

Гидравлический привод (гидропривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии. Обязательными элементами гидропривода являются насос и гидродвигатель.

Основное назначение гидропривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

В общих чертах, передача энергии в гидроприводе происходит следующим образом:

Приводной двигатель передаёт вращающий момент на вал насоса, который сообщает энергию рабочей жидкости.

Рабочая жидкость по гидролиниям через регулирующую аппаратуру поступает в гидродвигатель, где гидравлическая энергия преобразуется в механическую.

После этого рабочая жидкость по гидролиниям возвращается либо в бак, либо непосредственно к насосу.

Гидроприводы могут быть двух типов: гидродинамические и объёмные:

В гидродинамических приводах используется в основном кинетическая энергия потока жидкости.

В объёмных гидроприводах используется потенциальная энергия давления рабочей жидкости.

Объёмной называется гидромашина, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. К объёмным машинам относят, например, поршневые насосы, аксиально-поршневые, радиально-поршневые, шестерённые гидромашины и др.

Одна из особенностей, отличающая объёмный гидропривод от гидродинамического, — большие давления в гидросистемах. Так, номинальные давления в гидросистемах экскаваторов могут достигать 32 МПа, а в некоторых случаях рабочее давление может быть более 300 МПа.

Объёмный гидропривод применяется в горных и строительно-дорожных машинах, в станкостроении и др.

В зависимости от конструкции и типа входящих в состав гидропередачи элементов объёмные гидроприводы можно классифицировать по нескольким признакам.

По характеру движения выходного звена гидродвигателя

Гидропривод вращательного движения

когда в качестве гидродвигателя применяется гидромотор, у которого ведомое звено (вал или корпус) совершает неограниченное вращательное движение;

Гидропривод поступательного движения

у которого в качестве гидродвигателя применяется гидроцилиндр — двигатель с возвратно-поступательным движением ведомого звена (штока поршня, плунжера или корпуса);

Гидропривод поворотного движения

когда в качестве гидродвигателя применён поворотный гидродвигатель, у которого ведомое звено (вал или корпус) совершает возвратно-поворотное движение на угол, меньший 360°.

По возможности регулирования

Если скорость выходного звена (гидроцилиндра, гидромотора) регулируется изменением частоты вращения двигателя, приводящего в работу насос, то гидропривод считается нерегулируемым.

в котором в процессе его эксплуатации скорость выходного звена гидродвигателя можно изменять по требуемому закону. В свою очередь регулирование может быть: *дроссельным, объёмным, объёмно-дроссельным.

Регулирование может быть: ручным или автоматическим.

В зависимости от задач регулирования гидропривод может быть:

автоматически изменяет подачу жидкости по фактической потребности гидросистемы в режиме реального времени (без фазового сдвига).

По схеме циркуляции рабочей жидкости

Гидропривод с замкнутой схемой циркуляции

в котором рабочая жидкость от гидродвигателя возвращается во всасывающую гидролинию насоса.

Гидропривод с замкнутой циркуляцией рабочей жидкости компактен, имеет небольшую массу и допускает большую частоту вращения ротора насоса без опасности возникновения кавитации, поскольку в такой системе во всасывающей линии давление всегда превышает атмосферное. К недостаткам следует отнести плохие условия для охлаждения рабочей жидкости, а также необходимость спускать из гидросистемы рабочую жидкость при замене или ремонте гидроаппаратуры;


Гидросистемы с замкнутой схемой циркуляции ррабочей жидкости (справа) и с разомкнутой схемой (слева). На схеме слева всасывающая и сливная гидролинии сообщаются с баком (разомкнутая схема); на схеме справа бак используется только для вспомогательной гидросистемы (системы подпитки). Н и Н1 — насосы; М — гидромотор; Р — гидрораспределитель; Б — гидробак; Н1 — насос системы подпитки; КП1, КП2, — Предохранительные клапана; КО1 и КО2 — обратные клапана. Предохранительные клапана КП (на схеме слева), КП1 и КП2 (на схеме справа) срабатывают в тот момент, когда нагрузка на валу гидромотора слишком велика, и давление в гидросистеме превышает допустимую величину. Обратные клапана КО1 и КО2 срабатывают тогда, когда давление слишком мало, и возникает опасность кавитации

Гидропривод с разомкнутой системой циркуляции

в котором рабочая жидкость постоянно сообщается с гидробаком или атмосферой.

Достоинства такой схемы — хорошие условия для охлаждения и очистки рабочей жидкости. Однако такие гидроприводы громоздки и имеют большую массу, а частота вращения ротора насоса ограничивается допускаемыми (из условий бескавитационной работы насоса) скоростями движения рабочей жидкости во всасывающем трубопроводе.

По источнику подачи рабочей жидкости

В насосном гидроприводе, получившем наибольшее распространение в технике, механическая энергия преобразуется насосом в гидравлическую, носитель энергии — рабочая жидкость, нагнетается через напорную магистраль к гидродвигателю, где энергия потока жидкости преобразуется в механическую. Рабочая жидкость, отдав свою энергию гидродвигателю, возвращается либо обратно к насосу (замкнутая схема гидропривода), либо в бак (разомкнутая или открытая схема гидропривода). В общем случае в состав насосного гидропривода входят гидропередача, гидроаппараты, кондиционеры рабочей жидкости, гидроёмкости и гидролинии.

В магистральном гидроприводе рабочая жидкость нагнетается насосными станциями в напорную магистраль, к которой подключаются потребители гидравлической энергии. В отличие от насосного гидропривода, в котором, как правило, имеется один (реже 2-3) генератора гидравлической энергии (насоса), в магистральном гидроприводе таких генераторов может быть большое количество, и потребителей гидравлической энергии также может быть достаточно много.

В аккумуляторном гидроприводе жидкость подаётся в гидролинию от заранее заряженного гидроаккумулятора. Этот тип гидропривода используется в основном в машинах и механизмах с кратковременными режимами работы.

По типу приводящего двигателя гидроприводы

К основным преимуществам гидропривода относятся:

возможность универсального преобразования механической характеристики приводного двигателя в соответствии с требованиями нагрузки, простота управления и автоматизации;

простота предохранения приводного двигателя и исполнительных органов машин от перегрузок;

широкий диапазон бесступенчатого регулирования скорости выходного звена;

большая передаваемая мощность на единицу массы привода;

надёжная смазка трущихся поверхностей при применении минеральных масел в качестве рабочих жидкостей;

получение больших сил и мощностей при малых размерах и весе передаточного механизма;

возможность осуществления различных видов движения;

возможность частых и быстрых переключений при возвратно-поступательных и вращательных прямых и реверсивных движениях;

возможность равномерного распределения усилий при одновременной передаче на несколько приводов;

упрощённость компоновки основных узлов гидропривода внутри машин и агрегатов, в сравнении с другими видами приводов.

К недостаткам гидропривода относятся:

утечки рабочей жидкости через уплотнения и зазоры, особенно при высоких значениях давления;

нагрев рабочей жидкости, что в ряде случаев требует применения специальных охладительных устройств и средств тепловой защиты;

более низкий КПД (по приведённым выше причинам), чем у сопоставимых механических передач;

необходимость обеспечения в процессе эксплуатации чистоты рабочей жидкости и защиты от проникновения в неё воздуха;

пожароопасность в случае применения горючей рабочей жидкости;

зависимость вязкости рабочей жидкости, а значит и рабочих параметров гидропривода, от температуры окружающей среды;

в сравнении с пневмоприводом — невозможность эффективной передачи гидравлической энергии на большие расстояния вследствие больших потерь напора в гидролиниях на единицу длины.

1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.

2. Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.

3. Юфин А. П. Гидравлика, гидравлические машины и гидропривод. — М.: Высшая школа, 1965.

6. Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 с.

Гидравлический привод клапанов

Применение электромагнитного привода клапанов требует больших затрат электроэнергии на их открытие, поэтому немецкие производители двигателей предлагают открывать клапана с помощью гидравлики, а управлять гидравликой с помощью электроэнергии. В отличие от других типов открытия клапанов применение электрогидравлического привода клапанов позволяет отказаться не только от распределительного вала и дроссельной заслонки, но и от клапанных пружин. При применение этого типа клапанов, наряду с простым открытием-закрытием клапанов и ходом клапана можно изменять фазы газораспределения и их работу независимо для каждого цилиндра, снижая тем самым расход топлива и выброс токсичных веществ в отработавших газах и повысить мощность двигателя.

Общая схема электрогидравлического привода клапанов показана на рисунке:


Рис. Схема электрогидравлического привода клапанов:
1 – насос высокого давления; 2 – линия высокого давления (50…200 кгс/см2); 3 – клапан регулировки высокого давления; 4 – линия управляющего давления (5…20 кгс/см2 ); 5 – блок электрогидравлического подъема клапана; 6 – регулятор подъема клапана; 7 – электромагнитный клапан на линии низкого давления; 8 – линия низкого давления ( менее 5 кгс/см2 ); 9 – клапан механизма газораспределения; 10 – электромагнитный клапан на линии высокого давления; 11 – цилиндр; 12 – поршень

Каждый блок электрогидравлического подъема клапана содержит на каждый клапан механизма газораспределения:

  • электромагнитный клапан 10 на линии высокого давления обесточенный в закрытом положении
  • электромагнитный клапан 7 на линии низкого давления обесточенный в открытом положении регулятор подъема клапана 6
  • двухступенчатый регулируемый привод поршня 12 для открытия клапана
  • гидравлический компенсатор линейного расширения

Принцип действия системы заключается в следующем. Насос высокого давления создает давление масла в системе до 200 кгс/см2. Электромагнитный редукционный клапан 3 регулирует давление в линии высокого давления в пределах 50…200 кгс/см2 по сигналу блока управления, в зависимости от частоты вращения коленчатого вала, нагрузки, температуры и т. д. Этот клапан регулирует переменный ход высоты подъема клапана одновременно для всех клапанов сразу. Если на электромагнитный клапан 10 подается напряжение, он открывается и масло из линии высокого давления поступает в цилиндр сверху поршня. Электромагнитный клапан на линии низкого давления 7 в это время закрыт, так как на него не подается напряжение. Поршень, воздействуя на клапан механизма газораспределения перемещает его вниз, таким образом клапан открывается. В зависимости от режима работы двигателя срабатывает регулятор подъема клапана 6, изменяя скорость посадки всех клапанов одновременно. Изменение фаз газораспределения клапанов происходит при изменении времени подачи напряжения на электромагнитный клапан на линии высокого давления 10.

При обесточивании электромагнитного клапана 10 и масло из линии высокого давления поступает в цилиндр снизу поршня. Поршень, воздействуя на клапан механизма газораспределения перемещает его вверх, таким образом клапан закрывается. Масло из пространства над поршнем подается в линию низкого давления и затем снова подается к насосу.

Для того чтобы увеличить силу открытия клапана и одновременно снизить потребление энергии при большом ходе открытия клапана, применяются поршни, состоящие из двух частей. При среднем давлении около 100 кгс/см2 и относительно малом времени срабатывания полный ход клапана составляет 1 мм, а скорость посадки колеблется от 0.05 до 0,5 м/с.

Электрогидравлический привод клапанов связан с системой циркуляции масла двигателя. Общими с системой смазки двигателя являются поддон картера двигателя, масляный насос для подачи масла в систему смазки двигателя и к насосу высокого давления привода клапанов, фильтр очистки масла и магистраль слива масла из головки блока. К используемому маслу, единому для общей системы смазки и привода клапанов предъявляются высокие требования по качеству при длительной эксплуатации и вязкостным характеристикам. Поэтому в систему смазки должно заливаться масло типа 0W40. Для отслеживания вязкости при эксплуатации двигателя предусмотрен специальный датчик, посылающий сигнал о потере вязкости.

Блоки электрогидравлического подъема клапана могут устанавливаться и монтироваться независимо друг от друга. Выполненная с большой точностью плоская поверхность блока позволяет обеспечивать необходимую гидравлическую плотность соединения блока с корпусом двигателя.

Более простое решение гидравлического привода клапанов предлагает фирма Фиат. Впускной клапан здесь открывается с помощью распределительного вала и гидравлического передающего механизма.

При вращении распределительного вала 3, кулачок набегает на плунжерный толкатель 4, создавая давление масла в цилиндре толкателя, которое затем передается на поршень 2, воздействующий на впускной клапан. Давление в цилиндре толкателя может меняться в зависимости от степени открытия электромагнитного клапана 6, управляющего золотником. Этим регулируется ход клапана и изменение режима работы двигателя может осуществляться без дроссельной заслонки.


Рис. Электрогидравлический привод впускных клапанов фирмы Фиат:
1 – впускной клапан; 2 – поршень; 3 – распределительный вал; 4 – плунжерный толкатель; 5 – масляная камера цилиндра плунжерного толкателя; 6 – электромагнитный клапан; 7 – масляный резервуар

Масло через сообщающийся канал может передаваться в небольшой масляный резервуар 7. Электромагнитный клапан 6 рассчитан на экстремально быстрое включение.

Гидроклапан – это гидроаппарат, в котором проходное сечение (положение запорно-регулирующего элемента) изменяется под воздействием потока рабочей жидкости.

По характеру воздействия потока рабочей жидкости на запорно-регулирующий элемент клапана различают гидроклапаны давления прямого и непрямого действия.

В гидроклапане давления прямого действия проходное сечение изменяется в результате непосредственного воздействия контролируемого потока рабочей жидкости на запорно-регулирующий элемент клапана.

Гидроклапаны давления непрямого действия представляют собой совокупность, как правило, двух клапанов: основного и вспомогательного, причем величина открытия рабочего проходного сечения основного клапана изменяется в результате воздействия потока рабочей жидкости на запорно-регулирующий элемент вспомогательного клапана.

Гидроклапаны могут быть направляющими и регулирующими.

Из всего многообразия направляющих гидроклапанов наибольшее распространение получили обратные гидроклапаны и гидрозамки.

Обратнымназывается направляющий гидроклапан, предназначенный для пропускания жидкости только в одном направлении. Они широко используются в системах подпитки, а также в гидролиниях, где требуется однонаправленное движение потока. Обратные клапаны могут изготавливаться как в отдельном исполнении, так и встроенными в узлы и агрегаты.

Обратный клапан должен обеспечивать минимальное сопротивление движению жидкости в разрешенном направлении и герметичность в обратном направлении.


Рисунок 91 – Направляющие гидроклапаны: 1, 2 –гидролинии подвода и отвода жидкости; 3 –гидролиния управления; а –обратный шариковый; б –обратный конусный; в –условное обозначение обратного клапана; г –односторонний гидрозамок; д — его условное обозначение

На рисунке 91 а, б показаны обратные клапаны с разными запорно-регулирующими элементами: соответственно шариковым и конусным. При движении жидкости в направлении, указанном стрелками, запорно-регулирующий элемент отжимается от седла и поток с минимальными потерями проходит через клапан. При обратном направлении движения жидкости запорно-регулирующий элемент клапана прижимается жидкостью к седлу и движение жидкости в этом направлении прекращается.

Пружина, прижимающая клапан к седлу, является вспомогательным элементом и служит лишь для удержания запорно-регулирующего элемента вблизи седла для надежного перекрытия потока при изменении его направления. Для уменьшения потерь давления на клапане предварительное поджатие и жесткость пружины выбирают минимальными.

При повышенных требованиях к герметичности клапанов их запорно-регулирующие элементы или седла снабжаются эластичными уплотнениями. Условное обозначение обратного клапана приведено на рисунке 91 в.

Разновидностью обратного клапана является управляемый обратный клапан, или гидрозамок, – направляющий гидроклапан, предназначенный для пропускания потока жидкости в одном направлении при отсутствии управляющего воздействия и в обоих направлениях при его наличии.

Схема одностороннего гидрозамка приведена на рисунке 91 г. Он содержит элементы обратного клапана (седло и запорно-регулирующий элемент с пружиной), а также поршень с толкателем. Если давление в гидролинии 3 отсутствует, то при движении жидкости из гидролинии 2 в гидролинию 1 запорно-регулирующий элемент отжимается от седла, а поршень с толкателем перемещаются вправо. Если направление потока изменяется, то клапан закрывается, и движение жидкости прекращается. Если в гидролинию 3 подать давление управления, то поршень толкателем отожмет запорно-регулирующий элемент клапана от седла, и жидкость будет проходить через клапан в обоих направлениях. Условное обозначение такого гидрозамка приведено на рисунке 91 д.

Гидрозамки могут быть односторонними и двусторонними. В последних жидкость пропускается в каком-либо направлении только при наличии управляющего сигнала.

К регулирующим гидроклапанам, применяемым в гидроприводе, относятся предохранительные и редукционные. Кроме того, в системах гидроавтоматики применяются регулирующие гидроклапаны специального назначения, такие как гидроклапаны выдержки времени, делители потока, гидроклапаны разности давлений и т.п.

Для ограничения и поддержки давления в гидролиниях путем непрерывного или эпизодического слива рабочей жидкости служат предохранительные клапаны.

Предохранительными клапанаминазываются гидроклапаны, предназначенные для предохранения объемного гидропривода от давления, превышающего установленное, путем слива жидкости в моменты увеличения этого давления.

Схема простейшего предохранительного клапана прямого действия приведена на рисунке 92 а. В корпусе 2 имеются два отверстия: сквозное – для подсоединения клапана к гидролинии, в которой требуется обеспечить ограничение давления, и отверстие для подсоединения к сливной гидролинии. В корпусе размещены запорно-регулирующий элемент 1, пружина 4, опора 5 и регулировочный винт 3.


Рисунок 92 – Предохраниетльные гидроклапаны прямого (а, б, в) и непрямого (г) действия и их условные обозначения (д, е)

В качестве запорно-регулирующего элемента 1 служит шарик, который под действием усилия пружины 4 садится в гнездо и закрывает рабочее окно клапана. При повышении давления в защищаемой клапаном гидролинии на шарик будет действовать усилие, развиваемое пружиной, шарик отойдет от седла и пропустит часть жидкости на слив, ограничивая подводимое давление. С увеличением расхода через клапан на слив Qсл будет увеличиваться отжим шарика и, следовательно, сжатие пружины. Поэтому с увеличением расхода Qсл будет увеличиваться и давление в защищаемой гидролинии.

Несмотря на простоту такие предохранительные клапаны имеют ряд недостатков. Один из них – неустойчивая работа клапана при малых расходах на слив. В этом случае шарик, не имеющий специальных направляющих, совершает колебания в направлении, перпендикулярном к оси гнезда, и разбивает гнездо. Поэтому такие напорные клапаны применяются в качестве предохранительных в системах низкого давления, когда клапан работает эпизодически.

В качестве переливных клапанов по этой причине применяются, как правило, клапаны с золотниковым распределителем или так называемые плунжерные клапаны, схема одного из которых приведена на рисунке 92 б.

В обоих случаях давление в напорной гидролинии устанавливается с помощью регулировочных винтов, обеспечивающих требуемый натяг пружин.

Недостаточный контакт запорно-регулирующего элемента с седлом при давлениях, близких к давлению настройки клапана, схема которого приведена на рисунке 92 а, отсутствует в напорных клапанах с индикаторным стержнем.

На рисунке 92 в приведена одна из возможных схем напорного клапана с индикаторным стержнем, на основе которой разрабатываются клапаны на давления до 50 МПа. Он состоит из запорно-регулирующего элемента (шарика) 1, поджимающей его пружины 6, поршня 5 с центральным отверстием, силовой пружины 3 и индикаторного стержня 4, закрепленного в корпусе 2.

При повышении давления в напорной гидролинии шарик 1 вместе с поршнем 5 начнет опускаться, преодолевая усилие пружины 3. При этом контакт шарика и седла будет увеличиваться. Отрыв шарика от седла произойдет тогда, когда шарик, опускаясь, сядет на торец индикаторного стержня и четко откроет проходное рабочее окно клапана.

Условное изображение предохранительного клапана прямого действия показано на рисунке 92 г.

Редукционными клапанами называются гидроклапаны, предназначенные для уменьшения давления в гидролинии, отводимой от основной линии, и поддержания этого давления или перепада давлений на постоянном уровне.

Редукционные гидроклапаны используются в случаях, когда к гидролинии, давление в которой выше, чем нужно потребителю, подключается один или несколько потребителей, рассчитанных на разное давление питания. Редукционные клапаны применяются также для уменьшения и стабилизации давления питания в предварительных каскадах усиления гидравлических усилителей, а также для обеспечения постоянного перепада давления на регулируемых дросселях регуляторов потока.

Схема редукционного клапана прямого действия приведена на рисунке 93 а. Его запорно-регулирующим элементом служит однощелевой золотник 1. В корпусе 2 клапана расположены также пружина 3 с опорами и регулировочный винт 4, обеспечивающий необходимую степень сжатия пружины 3. Давление напора рн, подводимое к рабочей полости золотника 1, не оказывает на него силового воздействия в осевом направлении, так как эффективные площади буртов золотника равны. Основными осевыми силами, действующими на золотник клапана, являются: сила пружины; сила, обусловленная давлением на выходе клапана, и сила, обусловленная давлением в сливной гидролинии.



Рисунок 93 – Схема редукционного клапана (а), условное обозначение (б)

Очевидно, что положение золотника 1, благодаря пружине 3, будет определяться величиной разности редуцируемого давления рред и давления слива рсл. С увеличением этой разности золотник будет прикрывать рабочее окно клапана, уменьшая подачу жидкости на выходе клапана, что приведет к уменьшению разности перепада давления на клапане до величины, на которую настроен редукционный клапан. Если же вследствие увеличения расхода на выходе редукционного клапана давление рред, уменьшится, то под действием усилия пружины 3 золотник 1 приоткроет рабочее окно клапана, и редуцируемое давление восстановится.

Делители потока предназначены для разделения одного потока жидкости на два или более потоков и поддержания расходов в разделенных потоках в определенном соотношении.

На рисунке 94 а и б приведены две схемы делителей потоков, которые отличаются числом дросселирующих элементов, участвующих в разделении и поддержании требуемого соотношения разделенных потоков.

На рисунке 94 а приведена схема делителя потоков с клапанными запорно-регулирующими элементами. Он состоит из блока подвижных сопл 2, способного перемещаться в осевом направлении относительно корпуса 3, и двух упоров-заслонок 1 и 4. Положение блока сопл 2 определяется перепадом давления на его торцах. В случае увеличения давления на одном из торцов блока сопл, что соответствует уменьшению расхода, проходящего через сопло, принадлежащее этому торцу, блок сопл сместится в сторону и уменьшит противоположный зазор между соплом и заслонкой, что приведет к уменьшению расхода в другой гидролинии.


Рисунок 94 – Схемы делителей потоков

Из-за квадратичной зависимости между расходами и перепадами давления в зазорах регулируемых дросселей, а также нелинейной зависимости коэффициентов расхода в этих дросселях точность деления потока в таком делителе невысокая. Поэтому область его применения распространяется на случаи, когда к точности соотношения разделяемых потоков не предъявляются высокие требования.

Для разделения потоков на два неравных потока необходимо диаметры соответствующих сопл выполнить в отношении, которое требуется от соотношения разделяемых потоков.

В тех случаях, когда к разделяемым потокам предъявляются высокие требования по точности соотношения, применяют делители потока, схема одного из которых приведена на рисунке 94 б. Он состоит из двухщелевого золотникового распределителя 3 и двух постоянных дросселей 1 и 2, которые монтируются обычно в корпусе 4. При изменении одного из разделяемых потоков в торцовой полости золотникового распределителя 3 изменяется и давление в этой полости. Золотник 3 при этом перемещается в сторону торца с меньшим давлением, выравнивая эти давления с высокой точностью, достигающей 2…3 %. Равенство расходов в разделяемых гидролиниях объясняется равенством перепадов давлений на постоянных дросселях 1 и 2. Ошибка в соотношении разделяемых потоков объясняется наличием контактного трения в золотнике 3 и отличием реальных характеристик постоянных дросселей.

Для получения постоянного соотношения двух неравных потоков необходимо установить постоянные дроссели с разным гидравлическим сопротивлением в отношении, равном требуемому соотношению разделяемых потоков.

Читайте также: