Генетика и общество реферат

Обновлено: 05.07.2024

В своем реферате я рассмотрю такие вопросы, как законы наследования, генную инженерию и биотехнологии.

Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здесь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.

1. ГЕНЕТИКА ПОЛА

Пол — совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

1.1. Генетические механизмы формирования пола

Начало изучению генотипического определения пола было положено открытием американскими цитологами у насекомых различия в форме, а иногда и в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и классическими опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а в седьмой паре одна хромосома такая же, как соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая — Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи женского пола — ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек, птиц, ZZ-ZO — ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки — это диплоидные особи, а самцы (трутни) — гаплоидные. Самки развиваются из оплодотворенных яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина — одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина — Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) — одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A — бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон, воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины — только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов.

1.2. Наследование признаков, сцепленных с полом

Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красно­глазые самцы и самки. При скрещива­нии этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х — хромосоме, а Y — хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой сам­кой из F1. В потомстве были по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х — хромосома несет ген окраски глаз. В Y — хромосоме соответствующего локуса вообще нет. Это явле­ние известно под названием наследования, сцеплен­ного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери — признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой) .

В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Х а Х а ) с мужчиной дальтоником (Х а y) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе — гемофилию. Это заболевание появляется почти исключительно только у мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:


Генетика в медицине.

Медицинская генетика - важный раздел современной генетики, изучающий роль наследственных факторов в возникновении патологических симптомов и признаков в организме человека. Уже установлено более 1000 наследственных заболеваний человека такие как Болезнь Марфана, Боковой амиотрофический склероз, Болезнь Вильсона - Коновалова, Болезнь Дауна, Болезнь кленового сиропа .Разработаны методы предупреждения некоторых из них. Различают первичную профилактику наследственной патологии и вторичную профилактику наследственной патологии .

Под первичной профилактикой понимают такие меры, которые должны предупредить зачатие или рождение больного ребенка.

Профилактика вновь возникающих мутаций должна сводиться к уменьшению темпа мутационного процесса . Последний же протекает интенсивно.

Современной основой профилактики наследственной патологии являются теоретические разработки в области генетики человека и медицины, которые позволили понять:

1) молекулярную природу наследственных болезней, механизмы и процессы их развития в пре и постнатальном периоде;

2) закономерности сохранения мутаций (а иногда и распространения) в семьях и популяции;

3) процессы возникновения и становления мутаций в зародышевых и соматических клетках.

Генетики всего мира разрабатывают генетические методы борьбы с раком. Так же генетика применяется в производстве антибиотиков.

В ближайшем будущем мы сможем не только предупреждать появление генетических заболеваний, но и лечить каждую из них. Безусловно болезни развеваются прогрессируют эволюционируют, но и генетика не стоит на месте каждый день совершается небольшой шаг небольшое открытие в этой области , что в итоге приведет нас к грандиозным открытиям и мы сможем творить чудеса.

Генетика в сельском хозяйстве.

Людей на нашей планете все больше и больше, а земель пригодных для возделывания сельскохозяйственных культур все меньше, поэтому главная задача, стоящая перед человечеством это увеличение сельскохозяйственной продукции, качественно и количественно. Имеется много факторов мешающие осуществлению данной задачи, такие как заболевания растений и животных, вредители сельскохозяйственных культур, климатические и погодные условия и многое другое.

Генетика способствует решение данных проблем. Она служит теоретической основой селекции сельскохозяйственных растений и животных. Ведь если генетик изучает наследственность и изменчивость организмов, то задача селекционера — изменить наследственные свойства растений и животных, создать сорта и породы, отвечающие запросам сельскохозяйственного производства. Секционеры выводят новые сорта и гибриды растений, которые устойчивы к болезням, вредителям, погодным и климатическим условиям.

Большой вклад в развитие селекции внес Николай Иванович Вавилов.

Закон гомологичных рядов наследственной изменчивости. Этот закон дает возможность прогнозировать существование или экспериментального получения форм с определенными важными для селекции признаками.

Генетика одна из важнейших наук современности, она откроем нам дальние горизонты невидимые ранее некому. В будущем появятся новые направления ее изучения. Люди смогут делать то о чем многие из нас даже и не мечтали, возможно, мы сможем менять цвет наших глаз или даже цвет кожи, не будет заболеваний и патологий. Мы шагнем на новую ступень эволюции, где принимать решение будем мы сами. Конечно, сейчас это все звучит как научная фантастика, но кто знает, что ждет нас впереди.

1.Айала Ф., Кайгер Дж. Современная генетика: В 3 т. М.: Мир, 1987—1988. Т. 1. 295 с. Т. 2 368 с. Т. 3. 335 с.

2.Дубинин Н. П. Генетика. — Кишинёв: Штииница, 1985. — 533 с.

3. Регель Р. Э. Селекция с научной точки зрения // Тр. Бюро по прикл. ботанике. 1912. T. 5. № 11. C. 425—623.

В своем реферате я рассмотрю такие вопросы, как законы наследования, генную инженерию и биотехнологии.

Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здесь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.

1. ГЕНЕТИКА ПОЛА

Пол — совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

1.1. Генетические механизмы формирования пола

Начало изучению генотипического определения пола было положено открытием американскими цитологами у насекомых различия в форме, а иногда и в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и классическими опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а в седьмой паре одна хромосома такая же, как соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая — Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи женского пола — ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек, птиц, ZZ-ZO — ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки — это диплоидные особи, а самцы (трутни) — гаплоидные. Самки развиваются из оплодотворенных яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина — одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина — Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) — одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A — бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон, воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины — только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов.

1.2. Наследование признаков, сцепленных с полом

Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красно­глазые самцы и самки. При скрещива­нии этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х — хромосоме, а Y — хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой сам­кой из F1. В потомстве были по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х — хромосома несет ген окраски глаз. В Y — хромосоме соответствующего локуса вообще нет. Это явле­ние известно под названием наследования, сцеплен­ного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери — признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой) .

В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Х а Х а ) с мужчиной дальтоником (Х а y) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе — гемофилию. Это заболевание появляется почти исключительно только у мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Происхождение генетики

Законы генетики

Законы генетики, открытые Менделем, Морганом и многими их последователями, описывают передачу признаков от родителей детям. Они утверждают, что все унаследованные черты определяются генами. Каждый ген может быть представлен в одной или нескольких формах, называемых аллелями. Все клетки в организме, за исключением половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если две аллели идентичны, тело называется гомозиготным по этому гену. Если аллели отличаются, тело называется гетерозиготным. Клетки (гаметы), вовлеченные в половое размножение, содержат только одну аллель каждого гена, т.е. они являются гаплоидами. Половина гейметов, произведенных человеком, несут одну аллель, а половина — другую. Объединение двух гаплоидных гамет во время оплодотворения приводит к появлению диплоидной зиготы, которая развивается во взрослый организм.

Гены являются специфическими фрагментами ДНК, они организованы в хромосомах ядра клетки. Каждый вид растений или животных имеет определенное количество хромосом. В диплоидных организмах количество хромосом пары; две хромосомы каждой пары называются гомологичными. Предположим, что у человека 23 пары хромосом, по одной хромосоме от матери, а по другой — от отца. Существуют также дополнительные ядерные гены (в митохондриях и в растениях — также в хлоропластиках).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митоз и мейоз. Митоз — процесс распределения хромосом по дочерним клеткам при делении клетки. В результате митоза каждая хромосома материнской клетки дублируется и идентичные копии делятся на дочерние клетки; в этом случае генетическая информация полностью передается из одной клетки в две дочерние клетки. Таким образом, клетки делятся в онтогенезе, т.е. в процессе индивидуального развития. Мейоз — это специфическая форма деления клеток, которая возникает только при образовании гамет, гамет (сперматозоидов и яйцеклеток). В отличие от митоза, при мейозе количество хромосом уменьшается вдвое; только одна из двух гомологичных хромосом каждой пары достигает каждой дочерней клетки, так что половина дочерних клеток имеет гомологизм, другая половина — гомологизм, и хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении). При слиянии двух зародышевых гаплоидных клеток (оплодотворение) восстанавливается количество хромосом — образуется диплоидная зигота, которая получила от каждого родителя по одному набору хромосом.

Методологические подходы

Каковы особенности методологического подхода Менделя, который позволил ему сделать свои открытия? Для экспериментов по скрещиванию он выбрал линии гороха, отличающиеся одной из альтернативных характеристик (семена гладкие или морщинистые, семена желтые или зеленые, форма фасоли выпуклая или с стеблями и т.д.). Он количественно проанализировал потомство каждого скрещивания, т.е. подсчитал количество растений с этими характеристиками, чего до этого никто не делал. Благодаря такому подходу (выбор качественно различных признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что черты родителей не смешиваются в потомстве, а передаются неизменными из поколения в поколение.

Заслуга Менделя заключается еще и в том, что он предоставил генетикам мощный метод изучения наследственных признаков — гибридологический анализ, т.е. метод изучения генов путем анализа характеристик потомков определенных скрещиваний. Законы мендельского и гибридного анализа основаны на событиях, происходящих в мейозе: альтернативные аллели расположены в гомологичных хромосомах гибридов и поэтому одинаково различаются. Именно гибридный анализ определяет требования к объектам общего генетического исследования: Это должны быть легко культивируемые организмы, которые производят большое количество потомства и имеют короткий репродуктивный период. Дрозофила меланогастер, фруктовая муха Дрозофилы, отвечает таким требованиям в высших организмах. На протяжении многих лет он стал излюбленным объектом генетических исследований. Благодаря усилиям генетиков из разных стран на ней были открыты фундаментальные генетические феномены. Установлено, что гены в хромосомах расположены линейно и их распределение в потомстве зависит от мейозных процессов; что гены, расположенные в одной хромосоме, наследуются вместе (генная кладка) и подлежат рекомбинации (кроссовер). Выявлены гены, локализованные в половых хромосомах, определена природа их наследования и генетическая основа определения пола. Также было обнаружено, что гены не являются неизменными, а подвержены мутациям; что ген имеет сложную структуру и что существует множество форм (аллелей) одного и того же гена.

Затем были проведены более тщательные генетические исследования микроорганизмов с целью изучения молекулярных механизмов наследования. Например, на кишечной палочке Escherichia coli был обнаружен феномен бактериальной трансформации — включение в клетку-реципиент ДНК, принадлежащей донорской клетке, — и впервые было доказано, что ДНК является генным носителем. Обнаружена структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перегруппировок, изучена регуляция генной активности, феномен смещения геномных элементов и др. В дополнение к упомянутым выше модельным организмам были проведены генетические исследования многих других видов, и была продемонстрирована универсальность основных генетических механизмов и методов их изучения для всех организмов, от вирусов до человека.

4. достижения и проблемы современной генетики

На основе генетических исследований возникли новые области знаний (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (например, генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие извлекать и синтезировать нуклеотидные последовательности, встроенные в геном для получения гибридной ДНК со свойствами, не встречающимися в природе. Было закуплено много лекарств, без которых лекарства уже немыслимы. Разработаны принципы разведения трансгенных растений и животных с признаками различных видов. Стало возможным охарактеризовать индивидов по многим полиморфным ДНК-маркерам: микроспутники, нуклеотидные последовательности и т.д. Большинство молекулярно-биологических методов не требуют гибридного анализа. Однако этот классический метод генетики по-прежнему необходим для изучения признаков, анализа маркеров и генного картирования.

Выводы

Современная генетика открыла новые возможности для изучения активности организмов: с помощью индуцированных мутаций можно выключать и включать практически все физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенном этапе. Теперь мы можем более детально изучить демографические и эволюционные процессы и исследовать наследственные заболевания, проблему рака и многое другое. В последние годы стремительное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и построить живые существа с заданными характеристиками. Таким образом, генетика открывает путь к моделированию биологических процессов и способствует вступлению биологии в эпоху унификации и синтеза знаний после длительного периода фрагментации на отдельные дисциплины.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: