Функциональная схема компьютера реферат

Обновлено: 04.07.2024

Современные компьютеры массового применения – персональные компьютеры имеют достаточно сложную структуру, которая определяет взаимосвязь между аппаратными средствами в технической системе, называемой компьютером. В процессе эволюции аппаратных и программных средств изменялась и структура персонального компьютера, однако без изменений остались пока основные принципы его структурной организации, сформулированные выдающимся математиком, профессором Принстонского университета США Джоном фон Нейманом (1903–1957) и его коллегами в 1946 г.

Сущность этих принципов сводится к следующему:

• информация представляется (кодируется) и обрабатывается (выполняются вычислительные и логические операции) в двоичной системе счисления, информация разбивается на отдельные машинные слова, каждое из которых обрабатывается в компьютере как единое целое;

• машинные слова, представляющие данные (числа) и команды (определяют наименование задаваемых операций), различаются по способу использования, но не по способу кодирования;

• машинные слова размещаются и хранятся в ячейках памяти компьютера под своими номерами, называемыми адресами слов;

• последовательность команд (алгоритм) определяет наименование производимых операций и слова (операнды), над которыми производятся эти операции, при этом алгоритм, представленный в форме операторов машинных команд, называется программой;

• порядок выполнения команд однозначно задается программой.

1. Общая структура персонального компьютера

1.1. Основы архитектуры ЭВМ

Составные части, из которых состоит компьютер, называют модулями. Среди всех модулей выделяют основные модули, без которых работа компьютера невозможна, и остальные модули, которые используются для решения различных задач: ввода и вывода графической информации, подключения к компьютерной сети и т.д.

В основу построения большинства ЭВМ положены принципы, сформулированные в 1945 г. Джоном фон Нейманом:

1 . Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в заданной последовательности).

2 . Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными).

3 . Принцип адресности (основная память структурно состоит из пронумерованных ячеек).

ЭВМ, построенные на этих принципах, имеют классическую архитектуру (рис.1).


Рис. 1. Классическая структура компьютера

где, АЛУ (арифметико-логическое устройство) – выполняет арифметические и логические операции над информацией, представленной в двоичном коде, т. е. обеспечивает выполнение процедур по обработке данных;

УУ (устройство управления) – организует процесс выполнения программ;

ЗУ (запоминающее устройство) – предназначено для размещения и хранения последовательности команд (программ) и данных;

УВВ (устройства ввода-вывода) – обеспечивают ввод и вывод данных из компьютера для установления прямой и обратной связи между пользователем и компьютером;

С помощью какого-либо устройства ввода в ЗУ вводится программа. УУ считывает содержимое ячейки памяти ЗУ, где находится первая команда, и организует ее выполнение. Эта команда может задавать выполнение арифметических и логических операций над данными с помощью АЛУ, чтение из памяти данных для выполнения этих операций, вывод данных на устройство вывода и т. д. Затем выполняется вторая команда, третья и т. д. УУ выполняет инструкции программы автоматически.


1.2. Структура ПК

Рис. 2. Общая структура ПК

Персональные компьютеры обычно состоят из следующих основных модулей, представленных на рисунке 3.






Системный блок Монитор Клавиатура мышь
Рис. 3. Основные модули ПК

Рис. 4. Компьютер в компактном исполнении (notebook)
В системном блоке находятся все основные узлы компьютера:

электронные схемы (процессор, контроллеры устройств и т.д.);

2. Характеристики основных модулей ПК

2.1. Материнская плата

Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты (разъемы) для подключения других устройств.



Рис. 6. Материнская плата

Общая производительность материнской платы определяется не только тактовой частотой , но и количеством ( разрядностью ) данных , обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

По функциональному назначению шины делятся на:

По адресной шине происходит адресация ячеек памяти, в которые производится запись данных.

По шине управления или системной шине происходит передача управляющих сигналов между центральным процессором и периферией. На материнской плате системная шина заканчивается слотами для установки других устройств. Адресные шины и шины данных иногда занимают одни и те же физические проводники.

В настоящее время существует несколько стандартов шин: ISA (Industry Sland art Architecture), MCA (MicroChannel Architecture), EISA (Extended ISA), VESA (Video Electronics SlandarlAssollallon), PCI (Peripheral Component Interconnect), USB (Universal Serial BUS).

Архитектура материнских плат постоянно совершенствуется: увеличивается их функциональная насыщенность, повышается производительность. Стало стандартом наличие на материнской плате таких встроенных устройств, как двухканальный E-IDE-контроллер HDD (жёстких дисков), контроллер FDD (гибких (floppy) дисков), усовершенствованного параллельного (LPT) и последовательного (COM) портов, а также последовательного инфракрасного порта.

Порт – многоразрядный вход или выход в устройстве.

2.2. Процессор

В общем случае под процессором понимают устройство, производящее набор операций над данными, представленными в цифровой форме (двоичным кодом). Применительно к вычислительной технике под процессором понимают центральное процессорное устройство ( CPU ), обладающее способностью выбирать, декодировать и выполнять команды а также передавать и принимать информацию от других устройств. Проще говоря, процессор – это электронная схема, выполняющая обработку информации.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы.

Количество фирм, разрабатывающих и производящих процессоры для IBM-совместимых компьютеров, невелико. В настоящее время известны: Intel, Cyrix, AMD, NexGen, Texas Instrument.

Кроме процессоров, которые составляют основу IBM-совместимых персональных компьютеров, существует целый класс процессоров, составляющих параллельную платформу. Среди самых известных: персональные компьютеры американской фирмы Apple, для которых используются процессоры типа Power PC, имеющие принципиально другую архитектуру; ПК выпускаемые фирмой Motorola и др. Производительность персональных компьютеров на основе процессоров Power PC значительно выше, чем у IBM-совместимых, поэтому, несмотря на значительную разницу в цене, для серьезных профессиональных приложений им отдают предпочтение.

Производительность CPU характеризуется следующими основными параметрами:

внутренней и внешней разрядностью обрабатываемых данных;

памятью, к которой может адресоваться CPU.

С бурным развитием мультимедиа приложений перед разработчиками процессоров возникли проблемы увеличения скорости обработки огромных массивов данных, содержащих графическую, звуковую или видео информацию. В результате возникли дополнительно устанавливаемые специальные процессоры DSP.

2.3. Память

Центральный процессор имеет доступ к данным, находящимся в оперативной памяти (физическое устройство памяти называется ОЗУ- оперативное запоминающее устройство или RAM – Random Access Memory). Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ.

ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе.

По способу реализации оперативная память делится на динамическую и статическую.

Основными характеристиками ОЗУ являются: количество ячеек памяти (адреса) и время доступа к информации, определяемое интервалом времени, в течение которого информация записывается в память или считывается из нее.

Основой ОЗУ являются микросхемы памяти ( chips ), которые объединяются в блоки (банки) различной конфигурации. При комплектации банков различными микросхемами необходимо следить, чтобы время доступа у них не различалось больше, чем на 10 нс.

Для нормального функционирования системы большое значение имеет согласование быстродействия центрального процессора и ОЗУ.



Рис.7. Оперативная память

Кэш-память предназначена для согласования скорости работы сравнительно медленных устройств, таких, например как динамическая память с быстрым микропроцессором. Использование кэш-памяти позволяет избежать циклов ожидания в его работе, которые снижают производительность всей системы.

С помощью кэш-памяти обычно делается попытка согласовать также работу внешних устройств, например, различных накопителей, и микропроцессора. Соответствующий контролер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, именно к этому моменту оказывались в кэш-памяти.

2.4. Винчестер

Винчестеры или накопители на жестких дисках – это внешняя память большого объема, предназначенная для долговременного хранения информации, объединяющая в одном корпусе сам носитель информации и устройство записи/чтения. По сравнению с дисководами винчестеры обладают рядом очень ценных преимуществ: объем хранимых данных неизмеримо больше, время доступа у винчестера на порядок меньше. Единственный недостаток: они не предназначены для обмена информацией (это касается стационарных, т.е. встраиваемых в корпус компьютера винчестеров, в настоящее время существуют сменные винчестеры).

Физические размеры винчестеров стандартизированы параметром, который называют форм-фактором (form factor).

На рисунке 8 представлены различные жесткие диски:

Рис. 8. Винчестеры
2.5. Клавиатура



Рис. 9. Клавиатура

Она является основным устройством ввода информации в PC, несмотря на сильную конкуренцию со стороны мыши. Клавиатура преобразует механическое нажатие клавиши в так называемый скэн-код, который передается в контроллер клавиатуры на материнской плате.

Контроллер в свою очередь инициализирует аппаратное прерывание, которое обслуживается специальной программой, входящей в состав ROM-BIOS. При поступлении скэн-кода от клавиш сдвига ( / ) или переключателя (, ) изменение статуса клавиатуры записывается в ОЗУ. Во всех остальных случаях скэн-код трансформируется в ASCII-коды или расширенные коды, которые уже обрабатываются прикладной программой.

По конструктивному исполнению различают следующие виды клавиатуры: клавиатуры с пластмассовыми штырями, клавиатуры со щелчком, клавиатуры на микропереключателях или герконах, сенсорные клавиатуры. Клавиатуры различаются также количеством и расположением клавиш. Различают клавиатуры типа СГ, AT, MFII.

В настоящее время существуют некоторые другие виды клавиатур: эргономические клавиатуры, промышленные, со считывающим устройством штрихового кода, для слепых, инфракрасные (беспроводные) и т.п.

2.6. Монитор

Мониторы являются важнейшими устройствами отображения информации. В настоящее время существует большое разнообразие типов мониторов: Цифровые мониторы (TTL), Аналоговые мониторы, Жидкокристаллические дисплеи (LCD) (рис. 10).




Рис. 10. Мониторы

2.7. Манипуляторы

К данным устройствам можно отнести мышь, джойстик, трекбол. Данные устройства управляют курсором и представлены на рисунке 11.

Рис. 11. Устройства управления курсором

Заключение

Таким образом, в системном блоке стационарного персонального компьютера размещаются основные компоненты, обеспечивающие выполнение компьютерных программ на аппаратном уровне.

Внешние устройства (по отношению к системному блоку) по функциональному назначению можно представить в виде нескольких групп: устройства ввода и вывода информации, устройства, выполняющие одновременно функции ввода и вывода информации, внешние запоминающие устройства.

К устройствам ввода информации относятся клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (видеокамеры и фотоаппараты), микрофон.

К устройствам вывода информации относятся монитор, печатающие устройства (ПУ, принтер и графопостроитель), звуковые колонки и наушники.

К устройствам, выполняющим функции ввода и вывода информации относятся сетевой адаптер, модем (модулятор – демодулятор), звуковая плата.

К внешним запоминающим устройствам относятся: внешние накопители на гибких и жестких магнитных дисках, внешние накопители на оптических и магнитооптических дисках, накопители на основе флэш-памяти и т. д.

Список использованной литературы

1. Губарев В.Г. Программное обеспечение и операционные системы ПК. М.: Феникс, 2012. 382 с.

2. Фигурнов В. Э. IBM PC для пользователя, 6-е издание, переработанное и дополненное. M.: Инфра-М, 2006. 432с.

3. Уинн Л. Рош. Библия по модернизации персонального компьютера. М.: Тивали-Стиль, 2005. 378 с.

4. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. М.: ОЛМА-ПРЕСС, 2009. 957 с.

5. Ибрагим К.Ф. Устройство и настройка ПК: Перевод с английского. М.: Бином, 2010. 368 с.

6. Столлингс У. Структурная организация и архитектура компьютерных систем. М.: Вильямс, 2012. 896 с.

7. Леонтьев Б.К. Upgrade: Пособие по модернизации компонентов персонального компьютера. М.: Майор, 2013. 624 с.

8. Шумилин В.К. Пособие по безопасной работе на персональных компьютерах. М.: НЦ ЭНАС, 2011. 28 с.

9. Еремин Е.А. Популярные лекции об устройстве компьютера. БХВ-Петербург, 2013. 272 с.

Похожие документы:

Программа основного общего образования по информатике (7 9 класс)

. стандарта основного общего образования (ФГОС . персональный компьютер § 8. Основные характеристики персонального компьютера 8 класс Глава 2, §7 ЦОР № 6. Структура персонального компьютера ЦОР № 5. Основные устройства персонального компьютера .

Данное учебное пособие содержит в себе весь курс информатики, необходимой для подготовки специалистов в системе высшего образования. Тематическая структура пос

. . 2.4. Архитектура компьютера с общей и локальной шиной Хотя архитектура компьютера осталась прежней, структура современного персонального компьютера имеет вид .

. для подготовки к экзамену Опишите общую структуру персонального компьютера. Структура процессора Pentium 4. Назначение и структура чипсета. Назначение и организация .

Основная образовательная программа основного общего образования оглавление

. хозяйства России. Отраслевая структура, функциональная и территориальная структуры хозяйства страны, . персональными компьютерами, и проекторами. Для директора и заместителей директора приобретены ноутбуки. Общая численность персональных компьютеров, .

Основная образовательная программа среднего (полного) общего образования оглавление

. хозяйства России. Отраслевая структура, функциональная и территориальная структуры хозяйства страны, . персональными компьютерами, и проекторами. Для директора и заместителей директора приобретены ноутбуки. Общая численность персональных компьютеров, .

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Функциональная схема компьютера. Основные устройства компьютера и их функции.

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих устройств: процессор, память (внутренняя и внешняя) и устройства ввода и вывода информации. Рассмотрим более подробно назначение каждого из них.

Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство АЛУ и устройство управления УУ.

Хотя внутри процессора всегда имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации, в нем сознательно не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство - память. Мы рассмотрим лишь наиболее важные виды компьютерной памяти, поскольку ее ассортимент непрерывно расширяется все новыми и новыми типами.

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю. Исторически это действительно было связано с размещением внутри или вне процессорного шкафа. Однако с уменьшением размеров машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее, терминология сохранилась.

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. Сейчас такая память изготавливается на базе самых современных полупроводниковых технологий (раньше использовались магнитные устройства на основе ферритовых сердечников - лишнее свидетельство тому, что конкретные физические принципы значения не имеют). Наиболее существенная часть внутренней памяти называется ОЗУ - оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Наверно, каждому пользователю известно, что при выключении питания содержимое ОЗУ полностью теряется. В состав внутренней памяти современного компьютера помимо ОЗУ также входят и некоторые другие разновидности памяти, которые при первом знакомстве можно пропустить. Здесь упомянем только о постоянном запоминающем устройстве (ПЗУ), в котором в частности хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера (для лучшего понимания можно указать на некоторую аналогию между информацией в ПЗУ и "врожденными" безусловными рефлексами живых существ). Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости обновлять его, даже не извлекая из компьютерной платы.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние несколько жаргонно пользователи часто именуют винчестерами), а также оптические дисководы (устройства для работы с CD ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее, внешняя память позволяет сохранить огромные объемы информации с целью последующего использования. Подчеркнем, что информация во внешней памяти, прежде всего, предназначена для самого компьютера и поэтому хранится в удобной для него форме; человек без использования машины не в состоянии, например, даже отдаленно представить содержимое немаркированной дискеты или диска CD ROM.

Современные программные системы способны объединить внутреннюю и внешнюю память в единое целое, причем так, чтобы наиболее редко используемая информация попадала в более медленно работающую внешнюю память. Такой метод дает возможность очень существенно расширить объем обрабатываемой с помощью компьютера информации.

Если процессор дополнить памятью, то такая система уже может быть работоспособной. Ее существенным недостатком является невозможность узнать что-либо о происходящем внутри такой системы. Для получения информации о результатах, необходимо дополнить компьютер устройствами вывода, которые позволяют представить их в доступной человеческому восприятию форме. Наиболее распространенным устройством вывода является дисплей, способный быстро и оперативно отображать на своем экране как текстовую, так и графическую информацию. Для того чтобы получить копию результатов на бумаге, используют печатающее устройство, или принтер.

Наконец, поскольку пользователю часто требуется вводить в компьютерную систему новую информацию, необходимы еще и устройства ввода. Простейшим устройством ввода является клавиатура. Широкое распространение программ с графическим интерфейсом способствовало популярности другого устройство ввода - манипулятора мышь. Наконец, очень эффективным современным устройством для автоматического ввода информации в компьютер является сканер, позволяющий не просто преобразовать картинку с листа бумаги в графический компьютерный файл, но и с помощью специального программного обеспечения распознать в прочитанном изображении текст и сохранить его в виде, пригодном для редактирования в обычном текстовом редакторе.

1. История создания компьютера
2. Основные компоненты современного ПК, их виды и характеристики
2.1 Монитор
2.2 Системный блок
2.3 Микропроцессор
2.4 Материнская плата
2.5 Оперативная память
2.6 Жесткий диск и оптический привод
2.7 Видеокарта
2.8 Блок питания
2.9 Клавиатура
2.10 Мышь
Список литературы

Вложенные файлы: 1 файл

реферат информатика.doc

ГБОУ СПО Калужский педагогический колледж

Домашняя контрольная работа

Тема: Функциональная схема компьютера (основные устройства их функции и взаимосвязь). Характеристики современного персонального компьютера.

Студентки 1-го курса

1. История создания компьютера

2. Основные компоненты современного ПК, их виды и характеристики

2.2 Системный блок

2.4 Материнская плата

2.5 Оперативная память

2.6 Жесткий диск и оптический привод

2.8 Блок питания

Схема персонального компьютера:
1. Монитор
2. Материнская плата
3. Процессор
4. Порт ATA
5. Оперативная память
6. Карты расширений
7. Компьютерный блок питания
8. Дисковод
9. Жёсткий диск
10. Клавиатура
11. Компьютерная мышь

Персональные компьютеры (ПК) все прочнее входят в нашу жизнь и занимают в ней далеко не последнее место. Если каких-то 15 лет назад их можно было увидеть только в солидных организациях, то сегодня ПК стоит в каждом магазине, офисе, кафе, библиотеке или квартире.

На сегодняшний день компьютеры в человеческой деятельности используются во многих сферах – для ведения бухгалтерского учета и создания сложных научных моделей, разработки дизайна и создания музыки, хранения и поиска информации в базах данных, обучения, игр и прослушивания музыки. Нужно знать компьютер, уметь им пользоваться. Не каждый человек, который работает на компьютере, представляет себе полностью точный состав ПК.

Профессионалы, работающие вне компьютерной сферы, считают непременной составляющей своей компетентности знание аппаратной части персонального компьютера, хотя бы его основных технических характеристик. Особенно велик интерес к компьютерам среди молодежи, широко использующей их для своих целей.

Актуальность выбранной темы связана с тем, что современный рынок компьютерной техники столь разнообразен, что довольно не просто определить конфигурацию ПК с требуемыми характеристиками. Без специальных знаний здесь практически не обойтись.

В этой связи целью курсовой работы является изучение основных устройств современного ПК. В соответствии с целью были поставлены следующие задачи:

– ознакомиться с историей создания компьютеров

– изучить основные компоненты ПК

– освоить их основные свойства и характеристики


1. История создания компьютера

Некоторое количество таких машин действительно было им изготовлено и продано. В дальнейшем было предложено множество различных конструкци й механических счетных машин, однако широкое применение они получили только спустя 200 лет, в XIX веке, когда стало возможным их промышленное производство. Такие машины стали называть арифмометрами – они механизировали все четыре действия арифметики: сложение, вычитание, умножение и деление. Арифмометры и их развитие – электромеханические клавишные счетные машины применялись вплоть до 60-х годов прошлого столетия, когда им на смену пришли электронные микрокалькуляторы.

Механические вычислительные машины, о которых шла речь выше, были ручными, то есть требовали участия оператора в процессе вычислений. Для каждой операции нужно было ввести в машину исходные данные и привести в движение счетные элементы машины для выполнения операции. Время от времени нужно было считывать и записывать полученные результаты и контролировать правильность хода вычислений.

Нельзя ли создать автоматическую вычислительную машину, которая осуществляла бы требуемые вычисления без участия человека? Первым поставил такой вопрос и сделал серьезные шаги в обосновании положительного ответа на него замечательный английский ученый, инженер и изобретатель Чарльз Беббидж, который попытался построить автоматическое вычислительное устройство (он назвал его аналитической машиной), работающее без участия человека – под управлением перфокарт.

Аналитическая машина не была построена, но Беббидж сделал более 200 чертежей ее различных узлов, около 30 вариантов общей компоновки машины и изготовил за свой счет некоторые устройства.

В конце XIX и начале XX века получили распространение так называемые счетно-аналитические машины, построенные на развитии идей Паскаля и Беббиджа. Для чтения перфокарт в них стали применять электроконтактные устройства, для привода вращения счетных колес применялся электродвигатель. В дальнейшем были сконструированы машины, в которых хранение чисел осуществлялась в двоичном виде при помощи групп электрореле. Айкен в США, Цузе в Германии и другие конструировали так называемые релейные машины, которые применялись вплоть до начала 60-х годов, конкурируя с уже появившимися тогда электронными вычислительными машинами.

Первая настоящая электронная универсальная вычислительная машина была построена в конце 1945 года; машина получила название ЭНИАК (ENIAC – Electronic Numerical Integrator and Computer, электронный цифровой интегратор и вычислитель). Это сооружение содержало свыше 18 тысяч электронных ламп и потребляло мощность около 150 кВт.

Компьютеры 40 и 50 годов были очень большими устройствами и были очень дороги. Однако в борьбе за покупателей фирмы, производившие компьютеры стремились сделать свою продукцию компактнее и дешевле. В 1965 году фирма Digital Equipment выпустила первый мини-компьютер PDP-8 размером с холодильник и стоимостью в 20 тыс. долларов. В дальнейшем с изобретением интегральных схем – чипов – появилась возможность еще более уменьшить размеры и удешевить компьютеры. В 1975 году был выпущен первый, коммерчески распространяемый компьютер Альтаир-8800, построенный на основе микропроцессора Intel-8080. Он стоил 500 долларов. Начался рост производства персональных компьютеров.

В 1979 году фирма IBM – мировой лидер в разработке и производстве больших компьютеров решила попробовать свои силы на рынке персональных компьютеров. В 1981 году новый компьютер под названием IBM PC был представлен публике.

Через несколько лет персональные компьютеры фирмы IBM стали ведущими на рынке. Фактически IBM PC стал стандартом персонального компьютера. Сейчас такие компьютеры (совместимые с IBM PC) составляют около 90% всех производимых в мире персональных компьютеров.

Главным достоинством компьютеров IBM является так называемый принцип открытой архитектуры, то есть возможность собирать компьютер из различных блоков, присоединяя их к материнской плате при помощи стандартных разъемов – слотов. Это позволяет увеличивать объем памяти, устанавливать новые устройства для обработки изображений и т.д.

Современный персональный компьютер по своим возможностям превосходит первый, как первая электронная вычислительная машина превосходила счетную машину Паскаля. Однако есть области человеческой деятельности, где их мощности недостаточно. Это относится к обработке очень больших объемов информации в научных исследованиях, инженерных расчетах, создании видеофильмов. В этих случаях позволяют хранить и обрабатывать совершенно немыслимые объемы информации. Если персональный компьютер хранит сотен Гбайт информации и имеет скорость работы в сотни миллионов операций в секунду, то супер-эвм может хранить до тысяч Гбайт информации и обрабатывать ее со скоростью в несколько триллионов операций в секунду.

Для успешной работы на персональном компьютере необязательно знать его устройство. Однако лучше все-таки знать какие устройства входят в состав ПК, основные принципы их работы и характеристики. Это позволит сознательно использовать все технические возможности компьютера, совершенствовать его.

2. Основные компоненты современного ПК, их виды и характеристики

Одним из существенных достоинств современного ПК является гибкость архитектуры, обеспечивающая ее адаптивность к разнообразным применениям в сфере управления, науки, образования и в быту. Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной – ЭВМ. Его структурный состав сильно отличался от состава современных компьютеров.

К основным компонентам современного ПК, без которых ЭВМ не сможет полнофункционально работать, относят:

Монитор (дисплей) – это основное устройство для отображения информации, выводимой во время работы программы на компьютере. Дисплеи могут существенно различаться, от их характеристик зависят возможности компьютера и используемого программного обеспечения.

По конструкции монитор аналогичен электронно-лучевой трубке (ЭЛТ) цветного телевизора. Однако, в отличие от телевизионного, экран монитора строит изображение из более мелких точек и сменяет их со значительно большей частотой (около 100 раз в секунду, а телевизионное изображение имеет частоту смены – 25 раз в секунду). Благодаря этому изображение на экране монитора не мерцает и выглядит более четким и красочным. Размер экрана определяется по диагонали в дюймах. Современные мониторы имеют размеры 15, 17 и 19 дюймов. Применяют мониторы и больших размеров, но они значительно дороже.

Наиболее распространенными являются ЖК-дисплеи (их еще называют LCD-мониторы), плазменные панели, OLED и LEP дисплеи [ссылка 4].

Жидкокристаллический дисплей (ЖК) – плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

LCD (Liquid Сrystal Display ) – разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея. Жидкокристаллические дисплеи были разработаны в 1963 году в исследовательском центре Давида Сарнова компании RCA.

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие соответственно шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами на лицевой стороне экрана и электродом адресации на задней стороне.

LED (Light Emitting Diode ) – монитор с жидкокристаллическим экраном, подсветка которого осуществляется светодиодной матрицей (LED).

С потребительской точки зрения ЖК-телевизоры со светодиодной подсветкой отличают четыре улучшения относительно ЖК c подсветкой электролюминесцентными лампами:

– улучшенная контрастность (не реализовано на Edge-LED);

– улучшенная цветопередача (особенно с RGB-матрицей);

– пониженное энергопотребление, если сравнивать с ЖК (CCFL), то на 40;

– чрезвычайно малая толщина (только у Edge-LED).


2.2 Системный блок

Системный блок – функциональный элемент, защищающий внутренние компоненты компьютера от внешнего воздействия и механических повреждений, поддерживающий необходимый температурный режим внутри, экранирующий создаваемые внутренними компонентами электромагнитное излучение и являющийся основой для дальнейшего расширения системы.

Системные блоки массово изготавливают заводским способом из деталей на основе стали, алюминия и пластика. Для креативного творчества используются такие материалы, как древесина или органическое стекло. В качестве привлечения внимания к проблемам защиты окружающей среды, выпущен корпус из гофрокартона.

Основными компонентами, который входят в системный блок, являются микропроцессор, материнская плата, оперативная память, жесткий диск, CD-DVD привод, видеокарта, блок питания.

Микропроцессор – устройство, выполняющее алгоритмическую обработку информации, и, как правило, управление другими узлами компьютера или иной электронной системы.

По функциональной направленности микропроцессоры разделяются на [ссылка 7]:

Еще при создании первых компьютеров в 1945 году знаменитый математик Джон фон Нейман описал, как должен быть устроен компьютер, чтобы он был универсальным и эффективным устройством для обработки информации. Эти основы конструкции компьютера называются принципами фон Неймана. Сейчас подавляющее большинство компьютеров в основных чертах соответствуют принципам фон Неймана.

Файлы: 1 файл

Документ Microsoft Office Word.docx

Функциональная схема компьютера (основные устройства, их функции и взаимосвязь). Характеристики современных персональных компьютеров

Еще при создании первых компьютеров в 1945 году знаменитый математик Джон фон Нейман описал, как должен быть устроен компьютер, чтобы он был универсальным и эффективным устройством для обработки информации. Эти основы конструкции компьютера называются принципами фон Неймана. Сейчас подавляющее большинство компьютеров в основных чертах соответствуют принципам фон Неймана.

Прежде всего, компьютер, согласно принципам фон Неймана, должен иметь следующие устройства:

  • – арифметико-логическое устройство, выполняющее арифметические и логические операции;
  • – устройство управления, которое организует процесс выполнения программ;
  • – запоминающее устройство, или память для хранения программ и данных;
  • – внешние устройства для ввода-вывода информации.

Современный персональный компьютер может быть реализован в настольном (desktop), портативном (notebook) или карманном (handheld) варианте.

Все основные компоненты настольного компьютера находятся внутри системного блока. Основным аппаратным компонентом компьютера является системная (материнская) плата (motherboard). На системной плате реализована магистраль обмена информацией, имеются разъемы для установки процессора и оперативной памяти, а также слоты для установки контролеров внешних устройств.

Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство (АЛУ) и устройство управления (УУ).

Процессор аппаратно реализуется на большой интегральной схеме (БИС). БИС на самом деле не является "большой" по размеру и представляет собой маленькую плоскую полупроводниковую пластину размером примерно 20×20 мм, заключенную в плоский корпус с рядами металлических штырьков (контактов). БИС является большой по количеству элементов.

Важнейшей характеристикой, определяющей быстродействие процессора, является тактовая частота, т.е. количество тактов в секунду. Такт – это промежуток времени между началами подачи двух последовательных импульсов специальной микросхемой ndash; генератором тактовой частоты, синхронизирующим работу узлов компьютера. На выполнение процессором каждой базовой операции (например, сложения) отводится определенное количество тактов. Чем больше тактовая частота, тем больше операций в секунду выполняет процессор. Тактовая частота измеряется в МГц (мегагерцах) и ГГц (гигагерцах). Тактовая частота современных процессоров достигает 4 ГГц.

Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность определяется количеством двоичных разрядов, которые могут передаваться или обрабатываться процессором одновременно. Часто уточняют разрядность процессора и пишут 64/36, что означает, что процессор имеет 64-разрядную шину данных и 36-разрядную шину адреса.

Производительность процессора является его интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и др.).

Хотя внутри процессора всегда имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации, в нем сознательно не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство ndash; память.

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю. Исторически это действительно было связано с размещением внутри или вне процессорного шкафа. Однако с уменьшением размеров машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее, терминология сохранилась.

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. Сейчас такая память изготавливается на базе самых современных полупроводниковых технологий. Наиболее существенная часть внутренней памяти называется оперативное запоминающее устройство (ОЗУ, RAM: random access memory − память произвольного доступа). Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Наверное, каждому пользователю известно, что при выключении питания содержимое ОЗУ полностью теряется.

Оперативная память изготавливается в виде модулей памяти. Модули памяти представляют собой пластины с рядами контактов, на которых размещаются БИС памяти. Модули памяти могут различаться между собой по размеру и количеству контактов (DIMM: dual in-line memory module − модуль памяти с двухрядным расположением выводов, DDR: double data rate − двойная скорость передачи данных), быстродействию (максимально возможная частота операций записи или считывания информации из ячеек памяти), информационной емкости (в МБайтах).

Кэш-память может быть встроена непосредственно внутрь процессора (кэш-память, встроенная в кристалл), а может существовать в виде отдельного элемента. Кэш-память работает на той же частоте, что и сам процессор, имеет небольшой объем. Заметим, что именно размером кэш-памяти отличаются между собой идентичные в остальном процессоры Pentium и Celeron фирмы Intel, а также Athlon и Duron фирмы AMD. Как и для ОЗУ, увеличение объема кэша повышает эффективность работы компьютерной системы.

В состав внутренней памяти современного компьютера, помимо ОЗУ, также входят и некоторые другие разновидности памяти.

Постоянное запоминающее устройство (ПЗУ) или BIOS (Basic Input-Output System – базовая система ввода-вывода). В ПЗУ (BIOS) хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера (для лучшего понимания можно указать на некоторую аналогию между информацией в ПЗУ и "врожденными" безусловными рефлексами у живых существ). Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости обновлять его даже не извлекая из компьютерной платы.

CMOS (complementary metal-oxide semiconductor − комплементарный (дополняющий) металло-оксидный полупроводник) или полупостоянная память. Небольшой участок памяти для хранения параметров конфигурации компьютера. Его называют CMOS-памятью, поскольку эта память обычно выполняется по технологии, обладающей низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера, поскольку для ее электропитания используется специальный аккумулятор. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера – SETUP. Она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дискет. Программа настройки конфигурации вызывается, если пользователь во время начальной загрузки нажмет клавишу Del.

Видеопамять (VRAM: video random access memory − запоминающее устройство с произвольным доступом для сопряжения микропроцессора с монитором, ОЗУ видеоизображений). Еще один вид памяти, который используется для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран. Она характеризуется объемом, которая в последние годы достигла значения в 512 МБайт.

Контролеры. Электронные схемы, управляющие различными устройствами компьютера, называются контролерами – контролер для управления клавиатурой, монитором (видеоконтроллер), звуковой контролер, сетевой контролер, контролеры дисководов.

Некоторые контролеры входят в состав материнской платы. Такие контролеры называются встроенными или интегрированными (в материнскую плату). Так контролер клавиатуры всегда является встроенным. На современных материнских платах обычно имеются встроенные контролеры дисководов, портов ввода-вывода, иногда видеоконтроллер и аудиоконтролер.

Разным пользователям в компьютере нужен разный набор контролеров. Поэтому материнские платы продаются как со встроенными видео- и аудиоконтролерами, так и без них. Поэтому видео-, аудиоконтролеры и др. располагаются на отдельных электронных платах – платах контролеров. Эти платы вставляются в специальные разъемы (слоты) на материнской плате компьютера.

При вставке в разъем материнской платы контролер подключается к системной шине – магистрали передачи данных между оперативной памятью и контролерами. Существуют два типа шин: последовательная и параллельная. Скорость работы последовательных шин принято выражать в мегабитах в секунду, а параллельных − в мегабайтах в секунду. Виды шин:

  • ISA (Industry Standard Architecture − архитектура, соответствующая промышленному стандарту) − шина для контролеров низкоскоростных устройств (для обмена данными с клавиатурой, мышью, дисководами), устаревшая шина;
  • Шина PCI (Peripheral Component Interconnect bus − шина взаимодействия периферийных устройств) − параллельная, 32 бита: обеспечивает обмен информацией с контролерами периферийных устройств: звуковой платой (аудиоконтролером), сетевой платой (для организации локальной сети и подключения к Интернет и др. видам сетей), внутренний модем (устройство для соединения компьютера с телефоном). Частота контролеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше − 33 МГц. Теоретическая пропускная способность шины составляет 32 бита×33 МГц/8=132 Мбайт/с.
  • PCI Express x1 − последовательная шина, теоретическая пропускная способность шины составляет 250 Мбит/с.
  • Шина AGP (Accelerated Graphic Port − ускоренный графический порт) − используется для подключения видеоплаты.
  • UDMA (Ultra Direct Memory Access − прямое подключение к памяти) − для подключения устройств хранения информации (жесткие диски, CD-ROM и др.).
  • USB 1.1 (Universal Serial Bus − универсальная последовательная шина) − последовательная шина, теоретическая пропускная способность шины составляет 12 Мбит/с.
  • Hi-Speed USB (USB 2.0) − последовательная шина, теоретическая пропускная способность шины составляет 480 Мбит/с.
  • IEEE1394 (FireWire) (Institute of Electrical and Electronics Engineers − Институт инженеров по электротехнике и электронике: профессиональное объединение, выпускающие свои собственные стандарты) − последовательная шина, 400 Мбит/с.
  • Шины памяти SDRAM PC100 МГц и SDRAM PC133 МГц (DIMM) − параллельные шины, 64 бита, теоретическая пропускная способность шин составляет 800 и 1064 Мбайт/с.
  • Шина памяти DDR с частотами 200/266/333/400 МГц (один канал) − параллельная, 64 бита, теоретическая пропускная способность шины составляет соответственно 1600/2100/2700/3200 Мбайт/с.
  • Шина памяти DDR400 (два канала) − параллельная, 128 бит, теоретическая пропускная способность шины составляет 128 бит×200 МГц×2(DDR)/8=6400 Мбайт/с.

Одним из контролеров, которые присутствуют почти в каждом компьютере, является контролер портов ввода-вывода. Порты ввода-вывода бывают следующих типов:

  1. Параллельные (LPT), имеющий 25 контактов, обычно подключаются принтеры, сканеры, скорость передачи данных составляет 5 Мбайт/с;
  2. Последовательный (СОМ) (9 контактов) подключаются мышь, модем и др. устройства, скорость передачи данных составляет 112 Кбит/с (0,1 Мбит/с);
  3. игровой порт для джойстика;
  4. порт USB (1.1 или 2.0) − обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств (принтеры, сканеры, модемы, мыши, флэш-память и др.);
  5. PS/2 – подключение мыши и клавиатуры.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние пользователи жаргонно именуют винчестерами), а также оптические дисководы (устройства для работы с CD-ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее, внешняя память позволяет сохранить огромные объемы информации с целью последующего использования. Подчеркнем, что информация во внешней памяти, прежде всего, предназначена для самого компьютера и поэтому хранится в удобной ему форме; человек без использования машины не в состоянии, например, даже отдаленно представить содержимое немаркированной дискеты или диска CD-ROM.

Современные программные системы способны объединять внутреннюю и внешнюю память в единое целое, причем так, чтобы наиболее редко используемая информация попадала в более медленно работающую внешнюю память. Такой метод дает возможность очень существенно расширить объем обрабатываемой с помощью компьютера информации.

Если процессор дополнить памятью, то такая система уже может быть работоспособной. Ее существенным недостатком является невозможность узнать что-либо о происходящем внутри такой системы. Для получения информации о результатах необходимо дополнить компьютер устройствами вывода, которые позволяют представить их в доступной человеческому восприятию форме. Наиболее распространенным устройством вывода является дисплей, способный быстро и оперативно отображать на своем экране как текстовую, так и графическую информацию. Для того чтобы получить копию результатов на бумаге, используют печатающее устройство, или принтер; плоттер (графопостроитель), ризограф.

Читайте также: