Физика и военная техника реферат

Обновлено: 05.07.2024

Научно-технический прогресс всегда оказывал решающее влияние на способы ведения войны, ее характер. Но никогда эта его роль не проявлялась столь быстро, так всеобъемлюще и с такими последствиями, как в наши дни. Научные достижения и открытия привели к созданию таких мощных средств ведения боя, которые изменили существовавшие долгое время взгляды на роль различных видов вооруженных сил в войне, заставили пересмотреть основные положения тактики, оперативного искусства и стратегии.

Какие же научные достижения нашего времени оказали столь решающее воздействие на военное дело? К ним следует прежде всего отнести открытие способов использования ядерной энергии, развитие ракетной техники, математики и вычислительной техники, радиоэлектроники, автоматики, химии, металлургии, приборостроения. Особое место принадлежит физике, которая также непременно должна быть включена в этот перечень. Не говоря уже о том, что ей военное дело обязано появлением ядерного оружия, на использовании разнообразных физических законов базируется создание всех без исключения образцов боевой техники и вооружения.

Как известно, физика изучает наиболее общие формы движения материи — механические, тепловые, электромагнитные и другие и их взаимные превращения. В настоящее время эта наука включает разделы: механику, молекулярную физику, учение о колебаниях и волнах, учение об электричестве, теорию электромагнитного поля, оптику, ядерную физику. Границы между физикой и некоторыми другими естественными науками не очерчены резко. В последнее время появились обширные пограничные области между физикой и химией, астрономией, наукой о Земле и другими областями знания.

Успехи физики и химии, наряду с успехами других естественных наук, оказали исключительно большое влияние на развитие материалистического мировоззрения. Диалектический материализм самым широким образом использовал для обоснования своих положений физические открытия.

Толчком к развитию физики, как и всех других наук, послужили требования практики, возникавшие в процессе исторического развития общественных формаций. Крупные открытия конца XVII и начала XVIII столетий были сделаны под влиянием развивающейся техники и военного дела.

Основоположник русской физики и химии М. В. Ломоносов тесно сочетал научную работу с требованиями практики. Его многочисленные и разнообразные исследования по оптике, электричеству, метеорологии, по природе жидких и твердых тел были самым тесным образом связаны с практическими потребностями. Многие примеры из истории развития физики показывают, что нередко весьма абстрактные (отвлеченные), на первый взгляд, физические открытия со временем находили самое разнообразное применение в технике и военном деле.

Открытие в 1831 г. Фарадеем электромагнитной индукции создало условия для широкого использования в технике и в военном деле электрических явлений. Появились различные электрические машины, средства управления, контроля, измерений, что оказало революционизирующее влияние на технику вообще и военную технику в частности.

Периодический закон Д. И. Менделеева не только сыграл выдающуюся роль в развитии учения об атоме и природе химических явлений, но и стал руководящим при решении огромного количества практических задач химии и физики. На базе этого закона и последующих успехов физики удалось открыть элементы, способные участвовать в реакциях деления и синтеза (соединения), что в дальнейшем привело к созданию самого мощного оружия поражения — ядерного оружия.

Во второй половине прошлого века английский ученый Максвелл создал общую теорию электромагнитного поля. На основе этой теории он пришел к выводу о возможности распространения электромагнитной энергии в виде волн. Открытие Максвелла было использовано А. С. Поповым для создания радиотелеграфа. Это выдающееся изобретение русского ученого привело к исключительно мощному развитию средств связи войск, созданию различных радиотехнических систем, к появлению радиолокации — технической основы радиотехнических войск противовоздушной обороны. На счету радиотехники множество и других военных средств, которыми оснащаются армия и флот.

Исследования русского ученого А. Г. Столетова по активноэлектрическим явлениям сыграли большую роль в изучении фотоэлектрического эффекта (физического явления, состоящего в том, что при действии видимого света, ультрафиолетовых, инфракрасных, рентгеновских лучей, а также гамма-лучей на вещество изменяются его электрические свойства). Фотоэлектрический эффект широко применяется в современной технике (телевидение, aвтоматикa, звуковое кино и т. д.). Телевизионные приборы и системы нашли самое широкое применение в военном деле. Они используются в системах управления различными боевыми средствами, служат датчиками информации, используются для связи космических объектов с Землей.

В развитии современной оптики большую роль сыграли советские физики. А. Ф. Иоффе и Н. И. Добронравов произвели ряд опытов над элементарным фотоэффектом и получили важные результаты, подтверждающие закон, гласящий, что световая энергия поглощается отдельными порциями, величина которых пропорциональна частоте световых колебаний. С. И. Вавилов разработал метод, позволяющий визуально обнаруживать изменения слабых световых потоков, обусловленных их прерывистой структурой. Д. С. Рождественский развил учение о спектрах своими работами по аномальной дисперсии и по теории атомов.

На базе достижений науки возникла мощная оптическая промышленность. Тончайшие оптические явления, изучаемые в физике, нашли самое широкое применение в технике и военном деле. Это различные системы наведения и управления, приборы контроля и измерений, элементы автоматических систем и многое другое. Область использования достижений оптики расширяется с каждым днем.

Но, конечно, особенное значение для военного дела имело развитие ядерной физики. Открытие способов боевого применения ядерной энергии явилось результатом длительного изучения объективных свойств окружающей нас природы, обобщением многочисленных вновь установленных фактов. Оно стало возможным благодаря достижениям современной физики, в результате которых было разработано учение о строении атома, о радиоактивности и изотопах, искусственном расщеплении ядер.

Возьмем такой пример. Элементарные частицы, входящие в состав ядра атома, движутся с большими скоростями. Например, скорость альфа-частиц составляет 20 тыс. км/сек, а их кинетическая энергия в 200 млн. раз превосходит энергию молекулы газа при комнатной температуре. Изучать движение частиц с такими, сравнимыми со скоростью света, скоростями методами классической механики нельзя. Для этих случаев применимы положения теории относительности и квантовой механики.

Важнейший закон теории относительности — закон взаимосвязи массы и энергии. Сущность его такова: внутренняя энергия тела равна массе покоя, умноженной на квадрат скорости света. До установления этого закона можно было использовать лишь ничтожные доли внутренней энергии (тепловая энергия, энергия химических реакций). Достижения в области физики ядра, развитие квантовой механики (науки о законах движения элементарных частиц) позволили открыть и извлечь атомную энергию. У людей появились практически неисчерпаемые запасы энергии. Как известно, это выдающееся достижение физики империализм использовал прежде всего в военных целях, что заставило и Советский Союз создать атомное оружие. Так в арсенале современных вооруженных сил появились атомные бомбы, основанные на реакции деления тяжелых ядер урана-235, урана-233 и плутония-239.

Вслед за реакцией деления была получена реакция синтеза изотопов водорода — дейтерия и трития с превращением их ядер в тяжелые ядра гелия. Такие реакции могут протекать при очень высоких температурах, порядка 10–15 млн. градусов. Подобные температуры возникают во время ядерных процессов на Солнце и на звездах, в результате которых выделяется огромная тепловая энергия. На Земле термоядерные реакции осуществляются пока в момент взрыва термоядерных бомб. Таким образом, другое выдающееся открытие физики привело к созданию еще более мощного оружия массового поражения — термоядерного оружия. В нашей стране созданы самые мощные термоядерные бомбы с тротиловым эквивалентом в 50 и даже 100 мгт. Они обладают колоссальной разрушительной силой и могут вызывать сильное радиоактивное заражение на огромных пространствах.

Во время второй мировой войны наиболее распространенными крупными боеприпасами были фугасные авиационные бомбы, в которые снаряжалось примерно 0,5 т взрывчатого вещества — тротила. Если бы уложить 200 млн. этих бомб в одном месте и взорвать, ударная волна была бы такой же, как при взрыве одной современной термоядерной бомбы в 100 мгт. Однако нужно иметь в виду, что в этом случае появляются новые мощные факторы поражения — проникающая радиация и радиоактивное заражение местности. Взрыв одной термоядерной бомбы средней мощности в крупном промышленном районе с большой плотностью населения может привести, как отмечалось в печати, к гибели 1,5 млн. человек. В последующем от пагубного действия радиоактивного заражения может погибнуть еще 0,5 млн. человек.

В зарубежной печати приводились расчеты, показывающие, что для вывода из строя Западной Германии, например, достаточно восьми термоядерных бомб мощностью по 3–5 мгт.

А вот что пишет американский ученый Полинг: «Всего в районах, по которым, вероятно, будут нанесены сильные ядерные удары, проживает около миллиарда человек. В течение 60 дней с момента атомного удара

На вооружении современных армий состоит теперь также ядерное оружие малого калибра, которое коренным образом меняет характер боя. Наша армия сейчас располагает ядерным оружием в большом ассортименте. Необходимость такого оружия диктуется вот какими обстоятельствами. Ядерные заряды большой мощности на поле боя применить трудно. Они поражают большие площади, и использовать их в условиях непосредственного соприкосновения с противником невозможно без риска поразить свои войска.

Как отмечалось в зарубежной печати, в США испытывались ядерные заряды мощностью 100 т и менее. Действие такого заряда в 200 раз слабее взрыва бомбы, сброшенной американцами в 1945 г. над Хиросимой.

Что дают в тактическом отношении малокалиберные ядерные боеприпасы? Ударная волна их взрыва на незначительном удалении вызывает лишь средние разрушения кирпичных зданий. Световое излучение может вызывать ожог второй степени, а проникающая радиация хотя и приводит к лучевой болезни, но не в опасной форме.

Ядерные боеприпасы малого калибра можно применять даже в том случае, когда свои войска находятся в положении непосредственного соприкосновения с противником. Они способны уничтожать или надежно подавлять противотанковые опорные пункты, огневые позиции артиллерии. В результате таких ударов в обороне противника образуются бреши, которые могут быть использованы наступающими для расчленения боевых порядков врага и просачивания в его тыл. Бой принимает исключительно маневренный, скоротечный характер.

Достижения ядерной физики позволили осуществить и управляемую ядерную реакцию. На ее основе были созданы различные атомные силовые установки. Военное использование управляемых ядерных реакций привело прежде всего к созданию атомных подводных лодок-носителей баллистических ракет с ядерными боеприпасами. Применение атомных энергетических установок на зарубежных лодках позволило, как отмечалось, увеличить скорость подводного хода до 50 км/час. Для работы атомных силовых установок не нужен атмосферный воздух, поэтому с их появлением подводные лодки стали подводными кораблями в полном смысле этого слова. Они долгое время могут не всплывать на поверхность.

В перспективе следует ожидать, как считают зарубежные специалисты, применения ядерных двигателей и на ракетах, что позволит резко улучшить их тактикотехнические свойства. Огромное значение будут иметь ядерные силовые установки и ядерные источники питания для космических аппаратов различного назначения.

Ядерное оружие приобрело стратегическую значимость благодаря созданию совершенных носителей его — ракет. Современные баллистические и глобальные ракеты способны доставлять мощные ядерные боеприпасы в любой район земного шара. Чтобы преодолеть расстояние, скажем, в 10 тыс. км, межконтинентальной баллистической ракете требуется всего 25–30 минут. От ее удара вряд ли можно укрыться. А советские глобальные ракеты вообще вычеркнули понятие географической неуязвимости. Их удар неотвратим. Сочетание ядерных боеприпасов и ракет определило характер будущей войны как ракетно-ядерной войны межконтинентального размаха.

К важнейшим открытиям и достижениям физики, использованным при создании современной ракетной техники, следует отнести глубокую разработку вопросов аэродинамики, газовой динамики и ракетодинамики. В настоящее время эти научные направления — уже самостоятельные, чрезвычайно сложные и объемистые науки, имеющие много разветвлений. Но принципиально все они относятся к физическим наукам, их основы закладываются в механике, разделе физики, изучающем простейшее из всех форм движения — механическое движение.

Без развития аэродинамики было бы немыслимо создание современных боевых самолетов и крылатых ракет. Развитие реактивной авиации стало возможным благодаря появлению газовой динамики, основы аэродинамики больших скоростей и теории реактивных двигателей. Основоположник ее — выдающийся русский ученый академик С. А. Чаплыгин. Еще в 1902 г. он установил основные зависимости для движения газов с большими дозвуковыми и сверхзвуковыми скоростями. Результаты достижений газовой динамики нашли практическое применение при создании современной реактивной авиации и ракетной техники.

Скорости полета современных военных самолетов сейчас в 2–3 раза превышают скорость распространения звука. Но, как выяснилось, и это не предел. Дальнейшее увеличение скорости полета вызвало появление новой ветви аэродинамики — гиперзвуковой аэродинамики. Эта наука позволит обстоятельно изучить движение газа с большими сверхзвуковыми скоростями. Военное использование гиперзвуковой аэродинамики, по-видимому, приведет к созданию новых летательных аппаратов. Как считают за рубежом, они могут явиться новыми совершенными носителями ядерного оружия, а также мощными средствами противосамолетной и противоракетной обороны.

Полеты баллистических ракет и космических аппаратов на высотах 100–150 им в сильно разреженной атмосфере потребовали тщательного изучения законов движения летательных аппаратов в условиях, когда молекулы газа имеют большую длину свободного пробега, исчисляемую сотнями метров и даже несколькими километрами. Не случайно в настоящее время быстро — развивается экспериментальная и теоретическая аэродинамика сильно разреженных газов. Она позволяет рассчитывать параметры движения баллистических ракет при движении их в конце активного участка траектории и при входе в атмосферу, исследовать законы движения орбитальных самолетов, помогает более точно определять время существования космических аппаратов на орбите.

Для этого вида оружия характерна высокая боевая эффективность во всем диапазоне дальностей, начиная от нескольких десятков и кончая несколькими сотнями километров. Ракеты оперативно-тактического назначения надежны в эксплуатации, не требуют много времени для подготовки к пуску. Они могут нести и ядерные заряды. Это открывает широкие возможности для поражения ядерными ударами любых объектов противника на поле боя. Точность наведения ракет сегодня такова, что ракета, пролетев свыше 12 тыс. км, отклоняется от заданной точки не более одного километра.

Физика в последние годы многого добилась и в области учения об электричестве и магнетизме, теории электромагнитного поля, электромагнитных волн и других разделов. Это привело к появлению таких самостоятельных наук, как, например, радиофизика и электроника. Они стали основой современных достижений в области радиоэлектроники, телемеханики, автоматики, вычислительной техники, без которых немыслимо развитие и применение современной военной техники.

Выдающееся научное достижение замечательного русского ученого А. С. Попова, открывшего принцип радиосвязи и явление отражения электромагнитных волн, последующие открытия физиков в области радиолокации и радиофизики ультракоротких волн привели к бурному внедрению в армии различных радиотехнических и радиоэлектронных систем. Они составляют сейчас основы систем связи, аппаратуры ночного видения, обнаружения самолетов и ракет в полете, управления полетом крылатых и баллистических ракет, используются для создания помех радиотехническим средствам управления противника.

Особое значение в военном деле получила радиолокация. Она стала важнейшим средством при создании эффективной противосамолетной и противоракетной обороны. Современные радиолокаторы, как отмечалось в зарубежной печати, в состоянии отыскать цель (самолет, ракету) на расстоянии 5000 км и более.

Большие возможности открываются благодаря достижениям в области физики твердого тела и полупроводников. Аппаратура связи, радиолокации, наведения становится более надежной в работе, компактной по размерам. Электронные приборы на полупроводниках не боятся ударов, тряски и могут служить в 5—10 раз дольше, чем на обычных радиолампах. Аппаратура становится более удобной и миниатюрной. Уже сейчас на вооружении армий появились компактные радиолокаторы на полупроводниках, легко переносимые одним-двумя солдатами. Есть отдельные типы радиостанций, которые можно разместить в каске.

Однако это не все. Достижения молекулярной электроники позволяют создать аппаратуру поистине микроскопических размеров. Она может быть собрана на специальных тончайших пленках или на так называемых твердых схемах. Твердыми их называют потому, что вся схема прибора спрятана внутри твердого вещества — кристалла.

Несколько слов еще об одном новом направлении в физике — квантовой радиофизике. Ее успехи открывают пути получения электромагнитных колебаний высокой интенсивности в узких лучах. Такие приборы в зарубежной литературе называют лазерами. По данным американской печати, при помощи лазеров удалось получить в импульсе мощность порядка 1–3 млн. вт. Подсчитано, что радиостанции на лазерах будут способны одновременно передавать тысячи телевизионных программ и телефонных переговоров. Некоторые зарубежные специалисты пытаются использовать квантовые генераторы для создания нового вида оружия — лучевого, которое якобы способно уничтожать живую силу и технику.

Мы рассмотрели основные направления, по которым физика — поистине безграничная в своих возможностях наука — влияет на современное военное дело. Как видно, это влияние огромно, и, несомненно, оно будет непрерывно возрастать. Точно так же обстоит дело и с другими областями современной науки. Это обязывает советских воинов всесторонне изучать не только тот вид техники, который им вверен, но и овладевать основами всех научно-технических знаний, связанных с прогрессом в военном деле. Широкие знания помогут воинам лучше усвоить свою роль и место как вооруженных защитников Родины, с большим эффектом выполнять задачи, связанные с дальнейшим укреплением оборонного могущества нашей страны.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

hello_html_m1487a6dd.jpg

Физика и техника Великой Отечественной Войны.

hello_html_m1487a6dd.jpg

автор работы: Лебедев Анатолий

ученик 9 класса

руководитель: учитель физики

Андреева Людмила Анатольевна .

2. 1Орлы воздушной авиации.

5.Список использованной литературы.

Выбор темы проекта: Как и многие современные дети, я люблю играть в компьютерные игры. Благодаря одной из игр, я увлеклась изучением военной техники. Мне стало интересно узнать о том, как были созданы военные виды техники, кто их изобрёл.

Актуальность проекта. Сегодня школьникам, мало что известно о подвигах советских ученых, в годы войны, об открытиях и изобретениях, сыгравших немаловажную роль в победе над фашизмом. Данная работа рассказывает о деятельности выдающихся физиков в годы войны, их мужестве, героизме, самоотверженном труде, благодаря чему, наша армия была обеспечена новым вооружением, новыми технологиями и одержала победу.

Данная работа особенно актуальна сейчас. Так как в следующем году наша страна будет отмечать один из самых незабываемых праздников для страны - 75-летие Великой Победы. Этот день занимает особое место среди всех праздников в нашей стране.

За основу своей работы взяла проведенное анкетирование среди учащихся 5-9классов, и выявленные пробелы в их кругозоре. О людях науки, трудившихся дни и ночи в годы Великой Отечественной войны, обучающиеся знают мало. Посчитала возможным, что через информационный проект можно воспитывать в подрастающем поколении патриотизм, чувство гордости за достижения советской науки и народа, воспитывать волю к победе на исторических примерах. В этом заключается практическое значение этого проекта.

Цель: показать роль науки в достижении победы, перечислить наиболее значимые открытия, изобретения, конструкторские находки, ставшие решающими факторами в деле Победы и принесшие славу и приоритет советской науке, показать вклад учёных - физиков в дело Великой Победы.

-Изучить источники об образцах вооружения, созданных в годы Великой Отечественной войны.

-Проанализировать собранный материал.

-Систематизировать собранный материал.

-Создать презентацию как форму отчёта

Объект исследования:

Вклад советских учёных – физиков в дело Великой Победы.

Предмет исследования:

Оружие, созданное физиками в годы Великой Отечественной войны.

Методы работы над проектом: Статистические методы – математические методы обработки результатов исследования, математические расчеты с использованием физических формул;

Теоретические методы – методы систематизации теоретического материала, исследовательские методы, обобщение накопленного материала, изучение и анализ научной и публицистической литературы по проблеме исследования; поиск, анализ и систематизация материала по теме, анкетирование.

Результат работы над проектом:

Создана мультимедийная презентация, материал которой можно использовать на уроках физики, истории, внеклассных мероприятиях, посвящённых празднованию Дня Победы.

Практическая значимость: материалы данной работы могут быть использованы на уроках истории и краеведения в школе.

Гипотеза: я предполагаю, что данный проект заинтересует учащихся и учителей школы, а также ребят, интересующихся историей и желающих служить в армии.

Этапы работы над проектом:

1. Подготовительный -Выбор темы

-Определение цели, формулирование задач.

2. Поисково-исследовательский этап

- Определение источников информации.

- Планирование способов сбора и анализа информации.

- Подготовка к исследованию и его планирование.

- Проведение исследования. Сбор и систематизация материалов (фактов, результатов) в соответствии с целями работы, подбор иллюстраций.

3. Трансляционно-оформительский этап

- Предзащита проекта (в классе)

- Доработка проекта с учетом замечаний и предложений.

-Подготовка к публичной защите проекта:

- определение программы и сценария публичной защиты;

4. Заключительный этап

- Публичная защита проекта.

- Подведение итогов, конструктивный анализ выполненной работы.

Орлы воздушных армий

В разгар Великой Отечественной войны. В суровых условиях военного времени, был создан ряд новых машин. Назовём лишь несколько: истребитель высокого класса Ла-5 (конструктор С.А. Лавочкин) обладал скороподъёмностью, маневренностью, огневой мощью и большим потолком полёта (более 11 км); он был прост в управлении и лёгок, от предыдущей модели ЛаГГ-3 отличался более мощным двигателем пятиконечной формы с воздушным охлаждением, такой двигатель, как броня, защищал лётчика при лобовых атаках;

Як-3 – самый лёгкий и маневренный истребитель Второй мировой войны (1943 г., конструктор А.С. Яковлев); взлётная масса2650 кг, потолок 12 км, для подъёма на5 кмтребовалось всего 4,1 мин;

пикирующий бомбардировщик Ту-2 (КБ А.Н.Туполёв) с двумя двигателями мощностью по 1361,6 кВт, потолок9,5 км, дальность полёта 2100 км; скорость до 570 км/ч, бомбовая нагрузка100 кг! Специальное оборудование позволяло прицельно сбрасывать бомбы при разных режимах полёта – по горизонтали и при пикировании.

Флаттер — это слово наводило ужас на летчиков-испытателей в предвоенные годы. Но вот в борьбу с этим, тогда таинственным явлением, вызывающим разрушение самолетов в воздухе, вступили математики и механики. После того, как профессором М.В.Келдышем была разработана математическая теория флаттера, таинственность этого явления исчезла. Ученым были даны рекомендации, которые требовалось учитывать при конструировании самолетов. Их приняли во внимание, и за время войны не было случаев разрушения самолетов из-за флаттера. Флаттер — это сочетание изгибных и крутильных колебаний крыльев, хвостового оперения и других элементов самолета. Возбуждение колебаний происходит самопроизвольно, причем с большой амплитудой и ведет к разрушению машины.

Мы от меча шагнули до ракеты, чтобы спасти планету от огня

Рожденный в госпитальной палате

Подводные лодки

. В годы Второй мировой войны ожесточенные сражения велись не только на суше, в воздухе и на воде, но еще и под ней. Боевые субмарины несли огромную опасность вражескому флоту. Большой ошибкой было недооценивать мощь и потенциал подводных лодок, которые были идеальными машинами войны .

Результаты и выводы.

Невозможно назвать все имена, но вклад ученых в дело Победы в ВОВ оценен по достоинству. За научные исследования, способствующие укреплению военной и хозяйственной мощи нашей Родины, выполненные в период Великой Отечественной войны, свыше 500 ученых награждены Государственными премиями.

Родина высоко оценила вклад ученых, конструкторов, инженеров, техников, изобретателей в разгром фашизма. И молодежь, выросшая в мирные послевоенные годы, должна знать об этом гражданском подвиге, совершенном в годы тяжких для Родины испытаний в научных кабинетах и лабораториях, на полигонах, где проверялось новое оружие, в цехах предприятий, где создавалась более совершенная промышленная технология. И не только знать, но и с благодарностью помнить тех, кто помог завоевать для нас мирную счастливую жизнь.

Проведя анкетирование(Приложение 1 ), я выяснил

, что выбранная тема актуальна, так как ребята не владеют информацией о роли ученых в Великой Отечественной войне, не знают имена выдающихся физиков, внесших вклад в Великую победу.

Данный проект может служить для развития интереса учащихся к физике и

другим наукам не только в знаменательные дни, но и в дальнейшем.

1. Знаете ли вы: какие физические открытия были сделаны в период Великой

2. Знаете ли вы: имена выдающихся физиков, внесшие вклад в дело Великой

3 . Согласны ли Вы с утверждением: « Любая война, помимо разрушительного,

свои суждения в защиту этого утверждения.

4. Что должен сегодня знать наш современник о главных уроках Великой Отечественной войны?

Результаты опроса учащихся показали:

2 . Конкретные имена назвали – 7 человек (И.В.Курчатова и авиаконструктора Яковлева) – 35% опрошенных.

Заключение:

Эти примеры подвига людей, которые все силы, знания и волю к победе, соединили в единый удар по фашистским захватчикам, развивая науку и усовершенствуя технику, найдут свое отражение на уроках физики, истории, при подготовки празднования Дня Победы .

Паспорт проекта

Сегодня школьникам, мало что известно о подвигах советских ученых, в годы войны, об открытиях и изобретениях, сыгравших немаловажную роль в победе над фашизмом.

Данная работа особенно актуальна сейчас. Так как в следующем году наша страна будет отмечать один из самых незабываемых праздников для страны - 75-летие Великой Победы.

Пробелы в кругозоре учеников.

Вклад советских учёных – физиков в дело Великой Победы.

Оружие, созданное физиками в годы Великой Отечественной войны.

Статистические методы – математические методы обработки результатов исследования, математические расчеты с использованием физических формул;

Теоретические методы – методы систематизации теоретического материала, исследовательские методы, обобщение накопленного материала, изучение и анализ научной и публицистической литературы по проблеме исследования;

Материал проекта можно использовать на уроках физики, истории, внеклассных мероприятиях, посвящённых празднованию Дня Победы.

2. Левшин Л.В. Сергей Иванович Вавилов. М.: Просвещение, 1970.

Список используемой литературы………………………………………..

Чем дальше в прошлое уходит война, тем более значим, для нас становится подвиг Советского народа. Прошел 71год со дня окончания Великой Отечественной войны. Наш народ ценой огромных потерь (27 млн. человек) победил фашистскую Германию, освободив Советский Союз и Восточную Европу от захватчиков. Правительство СССР знало о неизбежности войны, но всеми возможными способами старались выиграть хоть какое-то время от начала военных действий.

Стоит отметить, что, не смотря на все тяготы, народ выстоял, не упал, не сломился перед многочисленными войсками врага. Каждый человек внес свой вклад в эту войну, но весомым подвигом стал вклад учёных и конструкторов в эту победу! Физика - одна из наук на основе, которой базируется техника.

Цель данной работы: показать роль физики в этой войне. Показать вклад учёных в эту Победу

2. Физика в предвоенный период

2.1. Создание новых учебных заведений.

К началу Великой Отечественной войны была поставлена цель: создать новые высшие образовательные учреждения в СССР. И большую роль в этом сыграл выдающийся учёный доктор физики Абрам Фёдорович Иоффе. Свою педагогическую деятельность он начал в 1907 г. в Петербургском политехническом институте и продолжал её до 1947г. Он читал лекции по курсу физики, термодинамике и др. Педагогический принцип Иоффе - тесная связь теории с практикой. Физика стала основой инженерного образования. Ленинградский физико-механический факультет-первенец инженерно-физического образования в СССР. Физико-технический институт развивался делением. В разные годы из его состава выделялись 15 новых научно-исследовательских институтов во главе которых были ученики Иоффе. Например: Ленинградский институт химической физики, физики металлов в Свердловске, институты в Харькове, Томске, Днепропетровске. Иоффе вырастил блестящую плеяду учеников. Среди них академики: А.П. Александров, А.И. Алиханов, Л.А. Арцимович, П.Л. Капица, И.К. Кикоин, И.В. Курчатов, Н.Н.Семёнов и многие другие. (1)

Абрам Фёдорович Иоффе

(1880 – 1960 гг.)

2.2. Тесная связь достижений физики с промышленностью.

Один из ярких примеров тесной связи достижение научной физики с практическим применением её в промышленности является работы Сергея Яковлевича Соколова.

В 1928 г. Соколов изобрёл способ использования ультра - звуковых колебаний для определения свойств металлических образцов - наличие в них раковин, трещин, степени закалки, химического состава, механической однородности и т. д. Хорошо чувствуя запросы промышленности, Соколов создал подразделение общей акустики (электроакустической аппаратуры), акустических измерений, гидроакустики, аэроакустики, усилителей студийных устройств и мощных усилителей. В 1932 г. Был издан первый учебник "Основы электроакустики" С. Я. Соколова. В 1937 г. промышленность приступила к изготовлению ультра - звукового дефектоскопа. С помощью этого прибора можно обнаружить мелкие раковины и трещины в металле, была достигнута надёжная разбраковка деталей и изделий. (3)

Сергей Яковлевич Соколов

(1897 – 1957 гг.)

2.3. Работа над новыми образцами военной техники иоборудованием.

В предвоенные годы в нашей стране происходиламодернизация всех видов вооружения Красной Армии. Перед войной была создана тяжёлая индустрия: металлургия, топливно-энергетическая промышленность, машиностроение, авиационная промышленность, танковая. Строились заводы по производству вооружения и оптического приборостроения.

В период кануна Великой Отечественной Войны электричество стало одним из решающих факторов освоения новой техники, освоение различных систем механизации и автоматизации технологических процессов.

Увеличивались мощности электросиловых установок, совершенствовались их конструкции, повышалась экономичность работы. Паровые поршневые машины-первичные двигатели тепловых электростанций конца XIX- начала XX столетия -постепенно заменялись более экономичными, быстроходными, компактными паровыми турбинами. Конструировались и вводились в эксплуатацию паровые котлы рассчитанные на получение пара высоких параметров (напримеркотлы У. Ламонтасконструированные в США, а с 1934 г. изготовлявшиеся в СССР по проектам Л.К. Рамзина)

Выполнялись работы по конструированию и постройке генераторов электрического тока: увеличивалось их единичная мощность (до 50-100000 к Вт.), повышался коэффициент полезного действия, вводились рациональные системы охлаждения в частности система водородного охлаждения, при которой значительно уменьшаются размеры генераторных установок и удлиняется срок службы их узлов.

Реактивные двигатели конструировались на основе теоретических работ Циолковского. Испытания различных типов жидкостно-реактивных (ракетных) воздушно-реактивных двигателей производились в СССР (Ф.А. Цандер,Б.С. Стечкин, И.А. Меркулов). В 30-х г. в СССР состоялся первый запуск ракеты на жидком топливе

С 1935г в СССР начала распространяться комплексная механизация литейных работ; (формовка, заливка, выбивка и т. д.), освоение и совершенствование способов электросварки, замена громоздких и неэкономичных паровых молотов в кузнечном - штамповочных цехах более производительными и эксплуатационно более выгодными гидравлическими прессами. На заводских контрольных пунктах началось использование методов рентгенодефектоскопии, впервые предложенной физиком С.Я. Соколовым в 1928 году. (3)

3. Великая Отечественная война 1941 – 1945гг.

В апреле 1939 г. была спроектирована многозарядная пусковая установка (МУ-2).

Вначале 1941г. было принято решение о начале изготовления опытных образцов пусковой установки. Новое оружие получило высокую оценку от руководства страны и Красной Армии. Это послужило началом формирования ракетных войсковых частей. К 1 июля 1941 года была сформирована первая реактивная батарея из 7 боевых установок, 50 машин со снарядами и машин 100 в обозе. 10 июля 1941 г. у станции г. Орша скопилось много немецких эшелонов с войсками, техникой, боеприпасами, горючим. Капитан батареи Флеров дал команду открыть огонь. За 7-8 секунд было выпущено 112 снарядов, Железнодорожный узел был стёрт с лица земли.

В ночь на 7 октября батарея попала в засаду. Капитан Флеров подорвал пусковые установки погиб сам, не дав врагу захватить секретное оружие. (4)

3.1. Эвакуация институтов и заводов.

В 1941 г. 22 июня без объявления войны фашистская Германия напала на нашу Родину. Фашисты очень быстро продвигались на восток.

Встаёт острый вопрос о быстрейшей эвакуации предприятий оборонной промышленности, заводов, фабрик, учебных заведений.

Ощущается острая нехватка в специалистах высокого класса. Многие выдающиеся учёные, конструкторы, военачальники, врачи были арестованы в 1937-1939г по 58 статье. Одни из них уже расстреляны, многие погибли в лагерях. В 1939 г. наркомом НКВД назначен Лаврентий Берия, Берия решил организовать в подмосковном посёлке Болшеве так называемую "шарагу". Сюда свозили технических специалистов со всех тюрем и лагерей Советского Союза. Это были люди, которые были в большинстве своём лидерами мирового масштаба: теоретики и конструкторы пушек, танков, самолётов, боевых кораблей. Среди них - артиллерист Е.А. Беркалов (формула Беркалова, по которой во всём мире рассчитывали орудия), авиаконструктор Роберт Бартини, механик Некрасов, конструктор подводных лодок Кассациер, Надашкевич, гл. конструктор самолётов БОК-15 Чижевский. Туполев, как только попал из Бутырки в "шарагу", предложил делать двух моторный пикирующий бомбардировщик. Для создания бомбардировщика Туполеву нужны были специалисты, которые были разбросана по разным лагерям. На Лубянке Туполеву предложили составить список нужных людей. Болшевская "шарага" была переведена в другое помещение и называлась ЦКБ-29 НКВД.

В сентябре 1940 г. туда привезли Сергея Королёва. Королёв стал работать вместе с Туполевым. (7)

Туполев Андрей Николаевич Королев Сергей Павлович

(1888—1972гг.) (1907 – 1966 гг.)

В первые месяцы войны происходила эвакуация высших учебных заведений. Многие институты с Украины эвакуировались на восток страны. В основном это были города Урала и Сибири: Северодвинск, Челябинск, Томск, Новосибирск, Омск и другие. Эвакуировано было 17 миллионов человек и 2,5 тысячи предприятий. Ленинградский физико-технический институт был эвакуирован в Казань. Самые трудные условия эвакуации сложились в Изюме (Харьковская обл.). Там был один из крупнейших оптических заводов в стране. Весь демонтаж и погрузка велась вручную, имелся один трёхтонный автокран. Не хватало вагонов, ежедневно погрузочная площадка подвергалось бомбёжке. Грозило окружение- воинские части были выведены из города. Ценой неимоверных усилий было эвакуировано 7 эшелонов с оборудованием завода. На местах эвакуации были не приспособленные помещения, перебой с поставкой материалов, подачей электроэнергии, топлива и др.

Но уже через месяц начали выпускать оптические приборы, так необходимые фронту.

В Омск был эвакуировано несколько ремонтных авиазаводов из Смоленска, Севастополя, Ленинграда. Там начали строить один завод. Завод был построен на пустом месте и уже 15 февраля 1942 г. в Омске взлетает первый серийный бомбардировщик Ту-2-это лучший пикирующий бомбардировщик второй мировой войны.

3.2.Урал и Сибирь - основная база промышленности СССР

Размах военных действий, требовал от тыла огромных усилий, чтобы в достатке обеспечить Красную Армию вооружением и боевым снаряжением. В настоящий арсенал фронта были превращены Урал, Сибирь и др. восточные районы страны. На Урале производилось 40% всей продукции военной промышленности. Недаром Урал назвали "кузницей победы". Электростанции страны вырабатывали в 1943 г. - 32,3 млрд. кВт-ч, в 1944 г. -39,2 млрд. кВт-ч.

Только в освобождённых районах Украины, где в 1943 г. было произведено всего лишь 28,1 млн. кВт-ч электроэнергии в 1944г её производство составило 1281 млн. кВт-ч. Необходимо отметить производство и поставку танков на фронт. Основной танк Великой Отечественной Войны Т-34 был детищем Харьковского завода, тяжёлые танки KB и ИС-Ленинградского и затем Челябинского заводов. На Урале Харьковский завод стал самым крупным по производству танков. Занимались производством танков и другие заводы страны: "Красное Сормово", завод в городе Кирове, Горьковский автозавод и многие другие.

Кроме танков, Уральские и Сибирские заводы выпускали миномёты, реактивную артиллерию (Катюши), стрелковое оружие, авиацию, оптику, патроны, боеприпасы (взрыватели, гильзы, мины, различные виды гранат).

4.Вклад различных отраслей физики в победу над врагами

Трудно переоценить вклад наших учёных-физиков в победу в Великой Отечественной войне.

На фронт было поставлено десятки тысяч танков, самолётов, пулемётов, и других вооружений. Без знания физических законов невозможно было бы людям управлять этим сложными машинами. Недаром в каждом военном училище или в военных академиях, кроме специальных предметов, преподавали физику и математику. И хотя в годы Великой Отечественной войны было произведено и поставлено на фронт огромное количество различных приборов, человеческий фактор не отменялся.

Каждый офицер Красной Армии должен был, в случае необходимости производить самостоятельно различные расчёты. В начале Великой Отечественной Войны многие физико-механические заводы Ленинграда, Москвы, Харькова были эвакуированы на Урал. И уже через месяц заводы стали выпускать для фронта оптические приборы. Был создан новый прицел массового применения ОПБ-1p. По сравнению с прошлыми прицелами он повышал меткость бомбометания, автоматически определял угол прицеливания и путевую скорость, освобождал штурмана от производства расчётов в условиях полёта, сокращал сроки обучения штурмана бомбометанию. Создан ив 1941 г. поставлен на производство синхронный бомбардировочный прицел ПС-1-для бомбардировочной авиации дальнего действия. Прицел ОТ1-2Л устанавливался на бомбардировщики Пс-2, Ту-2, Ил-4. Для новых танков был создан прицел ТШ-2. Были созданы перископическая артиллерийская буссоль ПАБ-2, блиндажный перископ, большая стереотруба БСТ, зенитный дальномер и др. Большая работа проводилась по маскировочному освещению с помощью светящихся составов крупных городских объектов. Была разработана фотокамера для съёмки через перископ подводной лодки. Всего за годы войны были поставлены оптические приборы для 489900 орудий, 1368 самолётов, около 100000 танков и самоходных орудий, сотен тысяч миномётов, громадное количество биноклей и прицелов для снайперских винтовок. За время войны разработано и поставлено на производство 85 новых и модернизированных оптических приборов. Были выпущены приборы ночного видения нового типа.

Большой вклад физических открытий внёс учёный физик-ядерщик Курчатов Игорь Васильевич (1903-1960 г.) Свою научную деятельность начал со свойств кристаллов сегнетовой соли. Создал учение о сегнетоэлектрике. С 1933 г. занимался ядерной физикой,исследовал делениетяжёлых ядер. Созданывысоковольтная установка, ускорительная трубка, получен пучок протонов энергией в 350 т электрон-Вольт.

В 1934-1939 г.- работал над циклотроном.

1940 г.- первый план овладения атомной энергией.

В то время мало кто предполагал, какое значение будут иметь эти исследования для обороны страны. Приступив к изучению искусственной радиоактивности, возникающей при облучении ядер нейтронами, открыл новое явление изомерию искусственных атомных ядер. Одновременно с изучением открытой им изомерии Курчатов ведёт и другие опыты с нейтронами. Курчатов ищет ответ на главный вопрос: происходит ли размножение нейтронов в различных композициях урана и замедлителя. Эту задачу он поручает своим сотрудникам Флерову и Петржаку и они её выполнили. Намеченная Курчатовым программа научных работ была прервана и вместо ядерной физики он начинает заниматься разработкой систем размагничивания боевых кораблей.

г. -размагничивание боевых кораблей в Севастополе.

г.- начало работ по овладению атомной энергии.

Курчатов становиться первым руководителем урановой проблемы в нашей стране, создателем реакторов, ядерного оружия и атомных электростанций. 1944г.- пуск первого московского циклотрона. (6)

Игорь Васильевич Курчатов

5. Заключение

Вклад ученых в дело Победы в Великой Отечественной войнеоценен по достоинству. За научные исследования, способствующие укреплению военной и хозяйственной мощи нашей Родины, выполненные в период Великой Отечественной войны, свыше 500 ученых награждены Государственными премиями.

Огромную роль в дело победы внесли учёные и конструкторы, создавшие лучшие образцы военной техники, танки, самолёты, автоматы ППШ, артиллерийское оружие. С.И. Вавилов сказал: "Советская техническая физика с честью выдержала суровые испытания войны. Следы этой физики всюду: на самолёте, танке, на подводной лодке и линкоре, в артиллерии, в руках нашего радиста, дальномерщика, в ухищрениях маскировки. Дальновидное объединение теоретических высот с конкретными техническими заданиями, неуклонно проводившееся в советских физических институтах, в полной мере оправдало себя в пережитые грозные годы". (4)

Пусть немеркнущим великим примером для каждого молодого человека нашей страны станет любовь к Родине, которую так ярко проявили их сограждане – деды и прадеды – в лихую годину Великой Отечественной войны!

Всемирная история. Канун второй мировой войны / А.Н. Бадак, И.Е. Войнич, Н.М. Волчек [и др.]; Литература, 1998.- 458с.

. Давыдова, Л.Г. Александр Антонович Смуров (1884-1937г.)/ Л.Г. Давыдова М.: Наука, 1994.- 205с.

Иоффе,В.К. Сергей Яковлевич Соколов/В.К.Иоффе, Е.Н. Мясникова, Е.С. Соколова (1897-1957г.) Ленинград: Наука, 2006.- 187с.

Новиков, В.Н. Оружие победы (1941-1945)/ В.Н. Новиков. – М.: Машиностроение, 2005.- 168с.

Чернощекова, Т.М. А.Ф. Иоффе (1880-1960г.)/ Т.М.Чернощекова.- М.: Просвещение, 2003. – 275с.

. Чернощекова,Т.М. И.В. Курчатов / Т.М. Чернощекова, В.Я. Френкель М.: Просвещение, 2009.-293с

Шевчук , С.А. Сергей Королёв (1907-1966гг.) / С.А. Шевчук.- Харьков Фолио, 1999.- 397с.

Нажмите, чтобы узнать подробности

Актуальность данного исследования состоит в том, что реальных участников событий Великой Отечественной войны почти не осталось в жизни, наши ровесники знают о войне лишь из книг и кинофильмов. Но память человеческая несовершенна, многие события забываются.

Муниципальное казенное общеобразовательное учреждение

«Крестищенская средняя общеобразовательная школа"

Советского района Курской области

Проектно–исследовательская


Болтенкова Анастасия, ученица 10 класса

Ивасенко Зинаида Александровна,

Глава 1. Теоретическая часть……. 5

1.1. “Всё для фронта, всё для победы!”……………………………………………5

1.2. Принцип размагничивания кораблей …………………………………………6

1.4. Советская авиационная техника. 9

1.6. Участие в боевых действиях . 12

Глава 2. Практическая часть……. 13

2.1. Анкетирование…………………………. 13

Список литературы. 16

Актуальность данного исследования состоит в том, что реальных участников событий Великой Отечественной войны почти не осталось в жизни, наши ровесники знают о войне лишь из книг и кинофильмов. Но память человеческая несовершенна, многие события забываются. Мы должны знать реальных людей, которые приближали победу и подарили нам будущее. Работая над проектом, из книг, энциклопедий, газетных и журнальных статей мы узнавали все новые факты о вкладе науки в Победу. Об этом надо рассказывать, этот материал надо приумножать и хранить, чтобы люди знали и помнили, кому мы обязаны годами мирной жизни без войны, кто спас мир от чумы фашизма.

Великая Отечественная война - одна из самых трагичных страниц в истории России. Выстоять в этой войне стало возможным только ценой огромного напряжения сил и величайших жертв. Немалую роль в достижении Победы сыграли деятели науки. И я решила выяснить, что знают обучающие нашей школы по этому вопросу и провела опрос.

Цель моей работы: 1. Определить вклад советских ученых в победу в Великой Отечественной войне.

Показать уровень развития науки в период ВОВ.

Доказать, что у нас есть научные достижениями, которыми мы можем гордиться.

Выяснить, кто из учёных принимал участие в боевых действиях.

Предмет исследования: научные разработки ученых - физиков в годы войны, материалы школьного музея.

Методы исследования: изучение, анализ литературы и интернет – ресурсов, сравнение и систематизация материала, анкетирование.

Практический выход:

Исследование проводилось в течение 4-х месяцев в пять этапов:

I этап – организационный (декабрь), он состоял в определении темы и целей проекта, его исходного положения.

II этап – информационный (январь), изучение литературы по проблеме, исследование материалов Интернета.

III этап – практический (февраль), проведение исследований. Сбор и систематизация полученных теоретических и практических материалов.

IV этап – оценочно – аналитический (март), анализ результатов исследовательской работы, подведение итогов.

V этап – заключительный (март), защита проекта

Глава 1. Теоретическая часть

1.1. “Всё для фронта, всё для победы!”

На рассвете 22 июня на нашу страну вероломно напал враг. Началась Великая Отечественная война, которая продолжалась 1418 дней и ночей и была самой жестокой и тяжелой в истории нашей Родины.
Работая над проектом, я узнала:

В нем также говорилось: "В этот час решительного боя советские ученые идут со своим народом, отдавая все силы борьбе с фашистскими поджигателями войны - во имя защиты своей родины и во имя защиты свободы мировой науки и спасения культуры, служащей всему человечеству". Под этим обращением стоят в числе других подписи крупнейших советских физиков Абрама Федоровича Иоффе и Петра Леонидовича Капицы.
Лозунг – “Всё для фронта, всё для победы!” стал ведущим для всей научно-исследовательской работы.

С первых дней войны началась эвакуация научных учреждений и вузов, прежде всего из прифронтовой полосы в более удалённые места. Наука была объявлена важнейшим государственным делом: нужно было, во что бы то ни стало сохранить и учёных, и научную базу страны.

Война сдвинула со своих мест 35 научных учреждений Академии наук СССР, переместились на новые места около 4000 научных сотрудников. К началу 1942 года учреждения Академии наук размещались в 45 пунктах страны.

Научные центры начали работать в новых условиях уже через 2-3 месяца после объявления войны. И уже это равносильно подвигу. В годы войны учёным и научно-исследовательским коллективам было присуждено около 950 Государственных премий.

1. 2. Принцип размагничивания кораблей

В своей работе я провела исследование принципа размагничивания кораблей.

И установила, что готовясь к войне с СССР, фашисты рассчитывали уничтожить основную часть нашего флота неожиданным мощным ударом, а другую – “запереть” на морских базах с помощью различного типа мин и уничтожать постепенно.

Уже с 18 июня гитлеровцы приступили к установке минных заграждений практически во всех бухтах и заливах и, тем самым, создали реальную угрозу уничтожения нашего флота. Но удалось обнаружить, что мины – магнитные.

Магнитные мины срабатывали под действием магнитного поля проходящего корабля. Уже в первые дни Великой Отечественной войны наш флот понес большие потери в технике и в людях. Поэтому идея размагничивания кораблей стала спасением для тысячи человеческих жизней.

Адмирал Н.Т. Кузнецов говорил, что кардинальную помощь флоту могла оказать только квалифицированная научная сила. И эта помощь пришла.

Еще до войны в Ленинградском физико-техническом институте под руководством профессора А.П. Александрова группой ученых были начаты работы по уменьшению возможности поражения кораблей магнитными минами.


В их ходе был создан обмоточный метод размагничивания судов.

Заключался он в следующем. На палубе прокладывали или подвешивали с наружной стороны бортов большую петлю (1) из специального кабеля, по которой пропускали электрический ток. Этот ток создавал вокруг корабля магнитное поле (2) противоположного направления по отношению к собственному магнитному полю (3) корабля. В результате этого общее магнитное поле судна становилось незначительным и не вызывало срабатывания магнитной мины.

27 июня 1941 года был издан приказ об организации бригад по срочной установке размагничивающих устройств на всех кораблях флота. В их состав входили офицеры, учёные ленинградского физтеха, инженеры, монтажники. Научным руководителем работ был назначен Анатолий Петрович Александров. В состав группы учёных добровольно вошел Игорь Васильевич Курчатов. Работа велась круглосуточно, в тяжелейших условиях: при нехватке оборудования, под бомбёжками и обстрелами. Но уже к августу 1941 года основная часть боевых кораблей была защищена от вражеских мин. Потом был создан и безобмоточный метод размагничивания. От магнитных мин были защищены и подводные лодки. Это была ещё одна победа учёных!

В процессе этих работ были сохранены для Родины сотни кораблей и многие тысячи жизней наших военных моряков. Этот подвиг ученых увековечен памятником им в Севастополе.

В ходе проведенного исследования я изучила историческое развитие теории размагничивания кораблей, раскрыла физическую суть обмоточного

и безобмоточного метода размагничивания кораблей. Установила, что в настоящее время этот принцип широко используется:

- электромагниты, используемые в электронных замках, реле и т.д. поддерживают их в рабочем состоянии;

- размагничивание, применённое к магнитному носителю, может уничтожить все данные быстро и эффективно;

- размагничивание нефти и газопроводных труб позволяет устранить вредные последствия действия намагниченности;

- размагничивание запчастей автомобиля, продлевает их срок службы.

Спустя десятки лет принцип размагничивания кораблей применяется в науке и технике и находит все новые и новые области применения. Ведь прогресс не стоит на месте.

Работая над проектом, я узнала:

Ученые под руководством Павла Павловича Кобеко провели исследования и выяснили причины: главную роль играет деформация льда. Эта деформация и распространяющиеся от нее по льду упругие волны зависят от скорости движения транспорта. Критическая скорость 35 км/ч: если транспорт шел со скоростью, близкой к скорости распространения ледовой волны, то даже одна машина могла вызвать гибельный резонанс и пролом льда. Большую роль играла интерференция волн сотрясений, возникающих при встрече машин или обгоне; сложение амплитуд колебания вызывало разрушение льда.

Они разработали методику регистрации колебаний льда в разных условиях и создали аппаратуру, которая позволяла регистрировать всё, что происходило со льдом под влиянием нагрузок, причём, делать это быстро и автоматически, ведь немцы передышек не давали.

Наконец, первая партия приборов (автоматических установок) была изготовлена и установлена вдоль всей дороги на кромке льда. Исследования проходили в темноте, на ветру, в тридцатиградусную стужу, под обстрелом. А надо было изучить пластическую деформацию и вязкость льда, его проломы и грузоподъёмность, изменение амплитуды ветровых колебаний, суточные колебания ледяной толщи и многое другое.

На основе полученных данных учёные разработали правила безопасного движения по ледовой дороге, рассчитали допустимые скорости при движении с любым грузом. Таблицы и инструкции были размножены и неукоснительно использовались на всём фронте, ледовые аварии прекратились.

А в сентябре 1942 года инженеры Ленэнерго прорвали энергетическую блокаду Ленинграда, проложив линию электропередачи по дну Ладожского озера.

Эти и другие работы ленинградских учёных сыграла огромную роль в прорыве блокады и помогли выстоять Ленинграду. Автоматическая установка еще долгое время использовалась в мирное время.

Работая над проектом, я узнала также:

… что в ходе войны советская авиационная техника совершенствовалась, причём, небывало быстрыми темпами. Нужно было добиться количественного превосходства над воздушным флотом врага и иметь качественно лучшую технику. Требовалось увеличить высоту полёта, скорости подъёма и движения, маневренность машин, их огневую мощь, уменьшить посадочную скорость.

Советские авиаконструкторы в разгар Великой Отечественной войны, в суровых условиях военного времени создали ряд новых машин. Назову лишь несколько:

а) истребители высокого класса Ла-5 конструкции С.А.Лавочкина обладал скороподъемностью, маневренностью, огневой мощью, большим потолком полета (более 11 км); самолет был прост в управлении и легок. Уже в сентябре 1942 года истребительные полки, оснащенные машинами Ла-5, участвовали в сражении под Сталинградом и добились крупных успехов. Бои показали, что новый советский истребитель обладает серьезными преимуществами перед фашистскими самолетами такого же класса;

б) самые легкие и маневренные истребители Второй мировой войны Як-3, созданные в конструкторском бюро А.С.Яковлева в 1943 г., появились на фронтах Великой Отечественной войны в разгар летних сражений этого же года. Достоинство Як-3 – сочетание простоты пилотирования с мощным вооружением; его взлетная масса была равна 2650 кг, высота полета почти 12 км, для подъема на 5 км ему требовалось 4, 1 мин.

Отличные летные данные машины, многочисленные вражеские самолеты, поверженные в боях на этом истребителе, и высокий эмоциональный подъем, характерный для заключительного периода войны способствовали тому, что в сознании многих пилотов Як-3 стал символом советского истребителя предвестником Победы.

самые легкие и маневренные истребители Второй мировой войны Як-3, созданные в конструкторском бюро А.С.Яковлева в 1943 г;

г) пикирующий бомбардировщик Ту-2 — детище конструкторского бюро А.Н.Туполева, имел два двигателя мощностью по 1850 л.с., потолок полета 9,5 км и дальность 2100 км; развивал скорость до 570 км/ч; его бомбовая нагрузка составляла 1000 кг. Специальное оборудование позволяло прицельно сбрасывать бомбы при разных режимах полета - по горизонтали и пикировании;

д) высокоскоростной истребитель МиГ-3 (аббревиатура от "Микоян и Гуревич"), предназначенный для ведения воздушного боя на больших высотах, нашел широкое применение на фронтах Второй мировой. "МиГ-3" по своим скоростным и боевым характеристикам в то время превзошел зарубежные аналоги. После завершения производства МиГ-3 еще достаточно долго применялся в ВВС, в частности, в полках ПВО.

На завершающем этапе войны количественное и качественное превосходство нашей авиации было уже абсолютным – в небе уничтожался любой самолёт врага! И в этом – героическая заслуга советских учёных, конструкторов и инженеров.

Работая над проектом, я узнала что, Михаил Иосифович Гуревич , наш земляк, уроженец Суджанского района Курской области. Его имя, как одного из создателей легендарных МиГов, покрыто неувядаемой славой. Создатель всех без исключения МиГов, от 1-го до 25-го, он всегда оставался как бы в тени своих знаменитых крылатых машин. Роль М.И. Гуревича в становлении и развитии ОКБ МиГ трудно переоценить и его имя прочно вошло в историю всей советской авиации.

А его МиГ-25 был первым в мире серийным истребителем, достигшим рубежа скорости 3000 км/ч. Он стал рекордсменом по числу установленных мировых рекордов (29), из них 3 – абсолютные, а в1975году Светланой Савицкой установлено 4 женских рекорда высоты и скорости полета.

При посещении школьного музея, я обратила внимание на фотографию летчика, выпускника нашей школы Бакланова Александра. Как оказалось, после окончания Ейского высшего авиационного училища он несколько лет летал на легендарных МиГах.(Приложение 1)

К осени 1944 г были построены боевые самолеты, на которых дополнительно к поршневым двигателям монтировались ракетные двигатели- ускорители, они служили для увеличения горизонтальной скорости полета, скороподъемности, облегчения старта, их установкой на самолетах Пе-2Р занимался С. П. Королев

На завершающем этапе войны количественное и качественное превосходство нашей авиации было уже абсолютным – в небе уничтожался любой самолёт врага! И в этом – героическая заслуга советских учёных, конструкторов и инженеров.

Работая над проектом, я узнала :

По своей боевой мощи "Катюша" не имела себе равных. Каждый снаряд по

мощности был примерно равен гаубичному, но при этом сама установка могла практически одновременно выпустить, в зависимости от модели и величины боеприпасов, от восьми до 32 ракет.

В основе полёта снаряда лежит наука баллистика. Разработка и проектирование видов и систем баллистического оружия основываются на применении математики, физики, химии. Основателем современной баллистики принято считать Исаака Ньютона, который, опирался на математическую теорию динамики твердого тела, которую разработали немецкий учёный Иоганн Мюллер и итальянцы Фонтана и Галилео Галилей.

Новое оружие было впервые применено в бою 14 июля 1941 года, батарея капитана И. А. Флерова произвела залп из семи пусковых установок на железнодорожной станции Орша. Очевидцы вспоминают об этом так: “Мы на наблюдательном пункте оцепенели, когда услышали первый залп. С оглушительным рёвом, свистом и раскатистым скрежетом вслед за огромными клубами красно-чёрного дыма прочертили небо над нашими головами горящие кометы. И всё это в какое-то мгновение. Уму непостижимо, что творилось в четырёх километрах от нас. Не то что там танки и машины – горела даже земля! Сердце захватывала радость, гордость за Родину, за творцов грозного оружия”.

За годы Великой Отечественной войны фронт получил более 10 тыс. многозарядных самоходных пусковых установок и более 12 млн. реактивных снарядов. А в боях за Берлин участвовало 219 дивизионов "Катюш".

В создании реактивного оружия – артиллерийской установки “Катюши” участвовали ученые и конструкторы: Н.И. Тихомиров, В.А. Артемьев, Б.С. Петропавловский, Г.Э. Лангеман, И.Т. Клейменов и многие другие.

1.6. Участие в боевых действиях

Работая над проектом, я узнала :

… что многие из ученых, повинуясь своему патриотическому порыву, ушли на фронт, вступили в отряды народного ополчения, ушли в партизанские отряды, чтобы с оружием в руках защищать свою Родину.

Участниками Великой Отечественной войны были авторы учебников физики, ученые, учителя. Исаак Константинович Кикоин и Борис Борисович Буховцев.

При посещении школьного музея, меня заинтересовал материал о Прасолове Митрофане Ивановиче. Прасолов Митрофан Иванович – ветеран Великой Отечественной войны. Участвовал в боевых действиях с 1942 по 1945 год, воевал на Курской дуге, в Белоруссии. Проработал в нашей школе учителем физики 30 лет. (Приложение 2)

Глава 2. Практическая часть

2.1.Анкетирование

В анкетировании приняли участие 28 обучающихся.

Проанализировав результаты анкетирования, были получены следующие результаты.

Читайте также: