Фильтр низких частот реферат

Обновлено: 04.07.2024

В простейшем и наиболее часто используемом варианте фильтр включается между резистивными нагрузками (рисунок 1.).

Как уже отмечалось, для формирования требования к фильтру используется рабочее затухание

есть нормированная (рабочая) АЧХ фильтра. Кроме нормированной АЧХ для удобства расчётов может использоваться нормирование и других величин:

- нормированное операторное сопротивление;

- нормированное резистивное сопротивление;

- нормированный оператор Лапласа.

Здесь щ0, f0, R0 являются нормирующими величинами.

Если в результате решения задачи найдены нормированные величины, то денормирование производится по формулам:

Графики АЧХ и затухания идеальных ФНЧ показаны на рисунке 2.

Именно эти зависимости являются исходными при аппроксимации.

1. Полиномиальные ФНЧ с максимально плоскими характеристиками затухания (Баттерворта)

Полиномиальными называются ФНЧ, у которых ОПФ имеет вид:

Не трудно показать, что нормированная АЧХ полиномиального фильтра определяется следующим выражением:

Осуществим аппроксимацию по Тейлору АЧХ фильтра нижних частот.

При этом потребуем, чтобы в точке =0, функция была равна единице, а все её ¦n-1¦ первых производных обращались бы в нуль. В этом случае АЧХ синтезируемого фильтра будет максимально плоской.

Решение аппроксимации даёт следующий результат:

то есть любое вещественное положительное число (в противном случае нарушается УФР).

Следовательно, а() = 10lg (дБ).

Чрезвычайно удобно положить А0=(10 0,1Д а -1), где Да - допустимая неравномерность затухания в полосе пропускания.

Так, при Да = 3дБ получается10 0,1*3 =10 0,3 =2, следовательно А0=1 и формула приобретает вид:

нормирующая частота щ0 в таком случае выбирается из условия:

Эту частоту принято называть граничной частотой ПП фильтра. На рисунке 3 приведено семейство АЧХ для разных значений n.

Из него следует, что чем выше n, тем точнее аппроксимируется характеристика идеального фильтра.

Затухание рассматриваемых фильтров:

в полосе задерживания, где >>1 приближенно равно а20nlg и возрастает со скоростью 6n дБ/октаву.(Октава - удвоение частоты).

Если заданы требования к ФНЧ, то выбор порядка фильтра при Да = 3дБ осуществляется из условия, которое следует из графика на рисунке 4.

В случае, когда Да3дБ и а0 10дБ, порядок фильтра может быть подсчитан по формуле:

Нормированная операторная передаточная функция находится для выражения:

Полиномы , образующие определённый подкласс полиномов Гурвица, получили название полиномов Баттерворта по имени автора, предложившего максимально плоскую аппроксимацию АЧХ фильтров. Они приводятся в справочной литературе, например в [Л2], стр. 290.

Реализация функции Т(р) может быть осуществлена любым из ранее рассмотренных методов. Однако для полиномиальных передаточных функций наибольшее распространение получила лестничная реализация, показанная на рисунке 5.

Заметим, что число реактивных элементов этих схем всегда будет равно порядку передаточных функций Т(р), то есть числу n. Предпочтительное применение эти фильтры получили в случаях, когда надо уменьшить искажение формы передаваемых сигналов и не возникает необходимости в фазовом корректировании.

В настоящее время имеется большое число справочной литературы с табулированными решениями для фильтров Баттерворта, например [Л.2], стр. 291.

2. Полиномиальные ФНЧ с равноволновыми характеристиками затухания ( ф-ры Чебышева)

Пусть задана неравномерность затухания Да, которая может быть на любой частоте полосы пропускания. Потребуем, чтобы при заданном n (числе элементов) затухания фильтра в полосе задержания, а0 было бы максимально возможным.

Решение задачи аппроксимации, соответствующей сформулированным требованиям, основано на экстремальных свойствах равномерного (чебышевского) приближения. Аналитическая запись такого решения имеет вид:

где Рп()=cos(n?arccos()) - полином Чебышева степени n.

Поскольку cos a=chj, то существует и другая форма записи полиномов Чебышева:

В литературе приводятся доказательства, что Рп() действительно является полиномом степени n. Эти полиномы приводятся в справочной литературе, например в [Л.2], стр. 290.

n=5; Ps()=cos(5?arcos)=16 5 -20 3 +5.

В полосе пропускания, то есть на интервале от 0 до квадрат полинома Чебышева будет меняться в пределах [0;1], принимая поочерёдно крайние значения (n+1) раз. При этом функция а на рассматриваемом интервале частот будет принимать такое же число раз значения[0;Да].

На рисунке 6 приведены графики затухания чебышевских полиномиальных ФНЧ для значений n=2 и n=5 при одинаковых Да.

Исследование функции а() позволяет сделать ряд важных и интересных для практики выводов:

При одном и том же значении Да увеличение порядка передаточной функции приводит к увеличению крутизны характеристики затухания за пределами полосы пропускания.

При неизменном значении n затухание вне полосы пропускания тем больше, чем больше Да.

Затухание фильтра в полосе задержания с увеличением частоты возрастает монотонно.

По заданным требованиям к характеристике затухания в полосе задерживания порядок ФНЧ Чебышева рассчитывается так же, как и порядок ФНЧ Баттерворта, исходя из условия а()а0.

Решив данное неравенство относительно n получим:

Конструирование функции Т(р) по известной |T(j)| 2 производится обычным путём. Схемы лестничной реализации будут иметь тот же вид, что и у любого другого полиномиального ФНЧ при одинаковом n.

Различие будет лишь в значениях величин параметров элементов. Табулированные решения по расчёту чебышевских ФНЧ приводятся в справочной литературе.

Преимущество фильтра Чебышева состоит в том, что при одинаковом количестве элементов и при одинаковом, Да в полосе пропускания, этот фильтр имеет большее затухание в полосе задерживания по сравнению с фильтром Баттерворта.

3. ФНЧ со всплесками затухания (ф-ры Золотарева)

Отличительной особенностью характеристик затухания полиномиального ФНЧ является их монотонное возрастание по мере удаления от полосы пропускания. Однако, если необходимо синтезировать ФНЧ со значительным уровнем гарантированного затухания а0 и при узкой полосе перехода, то применение полиномиальных конструкций приводит к неоправданно большому количеству элементов в таких случаях имеет смысл обратиться к другим передаточным функциям, в частности имеющими нули полинома, а в полосе задержания всплеск затухания, то есть к функциям вида:

Частотная зависимость затухания имеет вид:

Среди ФНЧ, передаточная функция которых имеет вид дроби (5), наибольшее распространение получили ФНЧ с изоэкстремальными характеристиками затухания или ФНЧ Золотарёва.

Требования к характеристике затухания ФНЧ такого типа формулируется следующим образом: затухание фильтра в полосе пропускания не должно превышать заданной величины Да, а в полосе задержания быть не менее заданной величины а0.

В подобных случаях, при аппроксимации характеристик затухания фильтра используется одна из задач наилучшего приближения функций, сформулированная и решённая Е.И. Золотарёвым (1847-1878), профессором Петербургского университета, учеником П.Л. Чебышева, а именно задача о рациональной функции порядка n, значения которой по абсолютной величине в интервале -1 1 не превышали бы единицы, а в интервале || > 1 наименьшее по абсолютной величине её значение было бы максимально возможным.

Соответствующая рациональная функция может быть названа дробью Золотарёва.

Если в выражение а = 10lg(1+A0Pn 2 ()) под Pn() понимать дробь Золотарёва, то в соответствии со свойствами последней наименьшее значение затухания такого фильтра в полосе задержания будет максимально возможным по сравнению со всеми другими фильтрами с теми же значениями.

График затухания ФНЧ с характеристиками Золотарёва, а также возможные схемы реализации приведены для случая n = 5 на рисунке 7.

Видно, что всплески затухания расположены так, что значения минимумов в полосе задержания оказываются одинаковыми и равными.

Фильтры с характеристиками Золотарёва (или просто ФНЧ Золотарёва) называют иногда эллиптическими, поскольку значения нулей и полюсов дроби Золотарёва выражаются через эллиптические функции.

Решения, связанные с расчётом ФНЧ Золотарёва, в настоящее время табулированы и доведены до схем и значений параметров элементов (см. Л.2, стр. 292-295).

Эффективность ФНЧ Золотарёва может быть подтверждена примером, где к ФНЧ предъявляются довольно жёсткие требования.

Расчёт порядка n различных фильтров, удовлетворяющий указанным требованиям, даст следующие результаты:

Число элементов равняется соответственно 7, 18, 80.

В данном примере ФНЧ Золотарёва явно оказывается вне конкуренции.

Подробное изучение свойств различных фильтров позволяет сделать вывод, что в отдельных частных случаях при сравнительно широких полосах перехода минимальным числом элементов может обладать полиномиальный ФНЧ. Могут иметь место такие ситуации, когда по числу элементов ФНЧ Золотарёва и полиномиальный ФНЧ Чебышева оказываются одинаковыми. Тогда предпочтение отдают тому типу, который более полно удовлетворяет другим требованиям (габариты, технология изготовления и т.д.).

Литература, используемая для подготовки лекции

Амплитудно-частотная характеристика фильтра Баттерворта. Параметры фильтра Чебышева. Фильтры на основе неинвертирующего усилителя и с многопетлевой обратной связью, их преимущества. Исследование основных параметров и характеристик фильтров нижних частот.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 29.10.2012
Размер файла 274,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

“Схемотехника аналоговых компонентов схем”

на тему: " Фильтры низкой частоты"

Записка пояснительная к практической работе содержит: 31 стр., 13 рис. и 9 таблиц

Предмет исследования - активные RC-фильтры нижних частот.

Цель курсовой работы - систематизация и углубление знаний по принципам работы, характеристикам и методам построения активных RC-фильтров нижней частоты.

Метод исследования - использование литературы и программного средства ElektronicWorkBench 32.

1. Теоретическое описание фильтров нижних частот

1.1 Характеристики фильтров нижних частот

1.2 Фильтр Баттерворта

1.3 Фильтр Чебышева

1.4 Фильтр Бесселя

2. Обзор основных схем

2.1 На основе неинвертирующего усилителя

2.2 С многопетлевой обратной связью

2.3 Схема Саллена-Кея

2.4 На основе конверторов полного сопротивления

3. Практическая часть

3.1 Постановка лабораторной работы

3.3 Порядок выполнения работы

3.4.1 Фильтр нижних частот Чебышева

3.4.2 Фильтр нижних частот по Баттервотру

3.4.3 Фильтр нижних частот Бесселя

3.5 Вопросы для самоконтроля

5. Литература и источники

До недавнего времени результаты сопоставления цифровых и аналоговых устройств в радиоаппаратуре и технических средствах электросвязи не могли не вызывать чувства неудовлетворённости. Цифровые узлы, реализуемые с широким использованием интегральных микросхем (ИМС), выгодно отличались своей конструктивно-технологической завершённостью. Иначе обстояло дело с узлами аналоговой обработки сигналов, которые, например, в телекоммуникациях составляли от 40 до 60% объёма и массы аппаратуры связи. Громоздкие, содержащие большое число ненадёжных и трудоёмких намоточных элементов, они выглядели на фоне больших интегральных схем столь удручающе, что породили у ряда специалистов мнение о необходимости “тотальной цифризации” радиоэлектронной аппаратуры.

Последнее однако, как любая другая крайность, не привело к результатам, адекватным ожидаемым. Истина, как и во всех других случаях, оказалась где-то посередине. В ряде случаев более эффективной оказывается аппаратура, построенная на функциональных аналоговых узлах, элементный базис которых адекватен возможностям и ограничениям микроэлектроники.

Адекватность в данном случае может быть обеспечена переходом к активным RC-цепям, в элементный базис которых не входят катушки индуктивностей и трансформаторы, принципиально не реализуемые средствами микроэлектроники.

Обоснованность такого перехода определяется в настоящее время, с одной стороны, достижениями теории активных RC-цепей, а с другой - успехами микроэлектроники, предоставившей в распоряжение разработчиков высококачественные линейные интегральные схемы, в том числе и интегральные операционные усилители (ОУ). Эти ОУ, обладая большими функциональными возможностями, существенно обогатили аналоговую схемотехнику. Особенно ярко это проявилось в схемотехнике активных фильтров.

До недавнего времени для реализации фильтров применялись, в основном пассивные элементы, т.е. индуктивности, конденсаторы и резисторы. Основной проблемой при реализации таких фильтров оказывается размер катушек индуктивности (на низких частотах они становятся слишком громоздкими). С разработкой интегральных операционных усилителей появилось новое направление проектирования активных фильтров на базе ОУ. В активных фильтрах применяются резисторы, конденсаторы и ОУ (активные компоненты), но в них нет катушек индуктивности. В дальнейшем активные фильтры почти полностью заменили пассивные. Сейчас пассивные фильтры применяются только на высоких частотах (выше 1 МГц), за пределами частотного диапазона большинства ОУ широкого применения. Но даже во многих высокочастотных устройствах, например в радиопередатчиках и приёмниках, традиционные RLC-фильтры заменяются кварцевыми фильтрами и фильтрами на поверхностных акустических волна

Сейчас во многих случаях аналоговые фильтры заменяются цифровыми. Работа цифровых фильтров обеспечивается, в основном, программными средствами, поэтому они оказываются значительно более гибкими в применении по сравнению с аналоговыми. С помощью цифровых фильтров можно реализовать такие передаточные функции, которые очень трудно получить обычными методами. Тем не менее, цифровые фильтры пока не могут заменить аналоговые во всех ситуациях, поэтому сохраняется потребность в наиболее популярных аналоговых фильтрах - активных RC-фильтрах.

1. Теоретическое описание фильтров нижних частот (ФНЧ)

Фильтры нижних частот без искажения передают сигналы нижних частот. На высоких частотах обеспечивает затухание сигнала и запаздывание по фазе, относительно входных сигналов.

Рис.1.1. Простой фильтр нижних частот первого порядка.

Для расчета амплитудно-частотной характеристики схемы применим формулу отношения напряжений, представленной в комплексной форме.

Va* - комплексная амплитуда выходного напряжения;

Ve* - комплексная амплитуда выходного напряжения;

A* - комплексный коэффициент усиления (передачи).

получим выражения для частоты среза

Фазовый сдвиг на этой частоте - 450. Заменив в (1.1) на .

Получим передаточную функцию фильтра:

Передаточная функция определяет зависимость преобразований Лапласа выходного и входного напряжений для произвольных временных сигналов. Переход от передаточной функции к частотной характеристики для синусоидальных входных сигналов можно выполнить, положив . Для реализации общего подхода нормируем комплексную переменную р:

Щ - нормированная частота

Частота среза фильтра на рис.1.1

Используя передаточную функцию (1.2) запишем:

При ; т.е. f >>fg это соответствует снижению коэффициента передачи фильтра 20дБ / декаду. Для более быстрого уменьшения коэффициента передачи включают последовательно n фильтров низких частот.

Для последовательно включенных n фильтров нижних частот:

Где 1, 2….. n - действительные положительные коэффициенты.

Из (1.5) следует, что при 1.

Уменьшение коэффициента передачи характеризуется величиной n 20дБ на каждую декаду. Корни передаточной функции (1.5) являются отрицательными и действительными. Таким свойством обладают пассивные RC фильтры n - ного порядка.

В общем, виде передаточная функция фильтра нижних частот:

где c1, c2, cn - положительные действительные коэффициенты.

Порядок фильтра определяется максимальной степенью переменной Р.

Для реализации фильтра необходимо разложить полином знаменателя на множители. Если среди корней полинома есть комплексные, то (1.5) следует записать в виде произведения сомножителей второго порядка.

где ai и bi - положительные действительные коэффициенты. Для нечетных порядков полинома bi = 0.

1.1 Характеристики фильтров нижних частот

В табл.1.1 приведены значения времени нарастания и задержки выходного сигнала, а также относительно перерегулирования для фильтров нижних частот различного типа, схемная реализация которых будет описана в нижеследующих разделах.

Время нарастания определяет интервал, за который выходной сигнал увеличивается от 10 до 90% своего установившегося значения.

Время задержки соответствует интервалу, в течение, которого выходной сигнал достигает 50% установившегося значения.

В простейшем и наиболее часто используемом варианте фильтр включается между резистивными нагрузками (рисунок 1.).


Как уже отмечалось, для формирования требования к фильтру используется рабочее затухание



есть нормированная (рабочая) АЧХ фильтра. Кроме нормированной АЧХ для удобства расчётов может использоваться нормирование и других величин:


- нормированная частота;


- нормированное операторное сопротивление;


- нормированная индуктивность;


- нормированная ёмкость;


- нормированное резистивное сопротивление;


- нормированный оператор Лапласа.

Здесь ω0 , f0 , R0 являются нормирующими величинами.

Если в результате решения задачи найдены нормированные величины, то денормирование производится по формулам:

; ; ; ;

Графики АЧХ и затухания идеальных ФНЧ показаны на рисунке 2.


Именно эти зависимости являются исходными при аппроксимации.

1. Полиномиальные ФНЧ с максимально плоскими характеристиками затухания (Баттерворта)

Полиномиальными называются ФНЧ, у которых ОПФ имеет вид:


(1)

Не трудно показать, что нормированная АЧХ полиномиального фильтра определяется следующим выражением:


(2)

Осуществим аппроксимацию по Тейлору АЧХ фильтра нижних частот.

При этом потребуем, чтобы в точке =0, функция была равна единице, а все её │n-1│ первых производных обращались бы в нуль. В этом случае АЧХ синтезируемого фильтра будет максимально плоской.

Решение аппроксимации даёт следующий результат:

то есть любое вещественное положительное число (в противном случае нарушается УФР).

Следовательно, а() = 10lg (дБ).

Чрезвычайно удобно положить А0 =(10 0,1Δа –1), где Δа - допустимая неравномерность затухания в полосе пропускания.

Так, при Δа = 3дБ получается10 0,1*3 =10 0,3 =2, следовательно А0 =1 и формула приобретает вид:

a() = 10lg(1+ 2 n )

нормирующая частота ω0 в таком случае выбирается из условия:


Эту частоту принято называть граничной частотой ПП фильтра. На рисунке 3 приведено семейство АЧХ для разных значений n.


Из него следует, что чем выше n, тем точнее аппроксимируется характеристика идеального фильтра.

Затухание рассматриваемых фильтров:


а = 10lg(1+ 2 n )

в полосе задерживания, где >>1 приближенно равно а20nlg и возрастает со скоростью 6n дБ/октаву.(Октава – удвоение частоты).

Если заданы требования к ФНЧ, то выбор порядка фильтра при Δа = 3дБ осуществляется из условия, которое следует из графика на рисунке 4.


В случае, когда Δа3дБ и а0 10дБ, порядок фильтра может быть подсчитан по формуле:


(3)

Нормированная операторная передаточная функция находится для выражения:



Полиномы , образующие определённый подкласс полиномов Гурвица, получили название полиномов Баттерворта по имени автора, предложившего максимально плоскую аппроксимацию АЧХ фильтров. Они приводятся в справочной литературе, например в [Л2], стр. 290.

Реализация функции Т(р) может быть осуществлена любым из ранее рассмотренных методов. Однако для полиномиальных передаточных функций наибольшее распространение получила лестничная реализация, показанная на рисунке 5.


Заметим, что число реактивных элементов этих схем всегда будет равно порядку передаточных функций Т(р), то есть числу n. Предпочтительное применение эти фильтры получили в случаях, когда надо уменьшить искажение формы передаваемых сигналов и не возникает необходимости в фазовом корректировании.

В настоящее время имеется большое число справочной литературы с табулированными решениями для фильтров Баттерворта, например [Л.2], стр. 291.

2. Полиномиальные ФНЧ с равноволновыми характеристиками затухания ( ф-ры Чебышева)

Пусть задана неравномерность затухания Δа, которая может быть на любой частоте полосы пропускания. Потребуем, чтобы при заданном n (числе элементов) затухания фильтра в полосе задержания, а0 было бы максимально возможным.

Решение задачи аппроксимации, соответствующей сформулированным требованиям, основано на экстремальных свойствах равномерного (чебышевского) приближения. Аналитическая запись такого решения имеет вид:


а = 10lg(1+A0 Pn 2 ()),


где Рп ( )=cos(n·arccos( )) – полином Чебышева степени n.


Поскольку cosa=chj, то существует и другая форма записи полиномов Чебышева:

Рп ()=ch(n·arch()).


В литературе приводятся доказательства, что Рп () действительно является полиномом степени n. Эти полиномы приводятся в справочной литературе, например в [Л.2], стр. 290.

n=2; P2 ()=cos(2·arccos)=2 2 -1;

n=5; Ps ()=cos(5·arcos)=16 5 -20 3 +5.

В полосе пропускания, то есть на интервале от 0 до квадрат полинома Чебышева будет меняться в пределах [0;1], принимая поочерёдно крайние значения (n+1) раз. При этом функция а на рассматриваемом интервале частот будет принимать такое же число раз значения[0;Δа].


На рисунке 6 приведены графики затухания чебышевских полиномиальных ФНЧ для значений n=2 и n=5 при одинаковых Δа.


Исследование функции а() позволяет сделать ряд важных и интересных для практики выводов:

1. При одном и том же значении Δа увеличение порядка передаточной функции приводит к увеличению крутизны характеристики затухания за пределами полосы пропускания.

2. При неизменном значении n затухание вне полосы пропускания тем больше, чем больше Δа.

4. Затухание фильтра в полосе задержания с увеличением частоты возрастает монотонно.

По заданным требованиям к характеристике затухания в полосе задерживания порядок ФНЧ Чебышева рассчитывается так же, как и порядок ФНЧ Баттерворта, исходя из условия а()а0 .

Решив данное неравенство относительно n получим:


(4).


Конструирование функции Т(р) по известной |T(j)| 2 производится обычным путём. Схемы лестничной реализации будут иметь тот же вид, что и у любого другого полиномиального ФНЧ при одинаковом n.

Различие будет лишь в значениях величин параметров элементов. Табулированные решения по расчёту чебышевских ФНЧ приводятся в справочной литературе.

Преимущество фильтра Чебышева состоит в том, что при одинаковом количестве элементов и при одинаковом, Δа в полосе пропускания, этот фильтр имеет большее затухание в полосе задерживания по сравнению с фильтром Баттерворта.

3. ФНЧ со всплесками затухания (ф-ры Золотарева)

Отличительной особенностью характеристик затухания полиномиального ФНЧ является их монотонное возрастание по мере удаления от полосы пропускания. Однако, если необходимо синтезировать ФНЧ со значительным уровнем гарантированного затухания а0 и при узкой полосе перехода, то применение полиномиальных конструкций приводит к неоправданно большому количеству элементов в таких случаях имеет смысл обратиться к другим передаточным функциям, в частности имеющими нули полинома, а в полосе задержания всплеск затухания, то есть к функциям вида:


(5)

Частотная зависимость затухания имеет вид:


(6)

Среди ФНЧ, передаточная функция которых имеет вид дроби (5), наибольшее распространение получили ФНЧ с изоэкстремальными характеристиками затухания или ФНЧ Золотарёва.

Требования к характеристике затухания ФНЧ такого типа формулируется следующим образом: затухание фильтра в полосе пропускания не должно превышать заданной величины Δа, а в полосе задержания быть не менее заданной величины а0 .

В подобных случаях, при аппроксимации характеристик затухания фильтра используется одна из задач наилучшего приближения функций, сформулированная и решённая Е.И. Золотарёвым (1847-1878), профессором Петербургского университета, учеником П.Л. Чебышева, а именно задача о рациональной функции порядка n, значения которой по абсолютной величине в интервале -11 не превышали бы единицы, а в интервале || > 1 наименьшее по абсолютной величине её значение было бы максимально возможным.

Соответствующая рациональная функция может быть названа дробью Золотарёва.

Если в выражение а = 10lg(1+A0 Pn 2 ( )) под Pn ( ) понимать дробь Золотарёва, то в соответствии со свойствами последней наименьшее значение затухания такого фильтра в полосе задержания будет максимально возможным по сравнению со всеми другими фильтрами с теми же значениями.

График затухания ФНЧ с характеристиками Золотарёва, а также возможные схемы реализации приведены для случая n = 5 на рисунке 7.




Видно, что всплески затухания расположены так, что значения минимумов в полосе задержания оказываются одинаковыми и равными.

Фильтры с характеристиками Золотарёва (или просто ФНЧ Золотарёва) называют иногда эллиптическими, поскольку значения нулей и полюсов дроби Золотарёва выражаются через эллиптические функции.

Решения, связанные с расчётом ФНЧ Золотарёва, в настоящее время табулированы и доведены до схем и значений параметров элементов (см. Л.2, стр. 292-295).

Эффективность ФНЧ Золотарёва может быть подтверждена примером, где к ФНЧ предъявляются довольно жёсткие требования.


Δа=0,01 Hп, a0 =5.0 Hп, к =1,08.


(7)

Расчёт порядка n различных фильтров, удовлетворяющий указанным требованиям, даст следующие результаты:


Число элементов равняется соответственно 7, 18, 80.

В данном примере ФНЧ Золотарёва явно оказывается вне конкуренции.

Подробное изучение свойств различных фильтров позволяет сделать вывод, что в отдельных частных случаях при сравнительно широких полосах перехода минимальным числом элементов может обладать полиномиальный ФНЧ. Могут иметь место такие ситуации, когда по числу элементов ФНЧ Золотарёва и полиномиальный ФНЧ Чебышева оказываются одинаковыми. Тогда предпочтение отдают тому типу, который более полно удовлетворяет другим требованиям (габариты, технология изготовления и т.д.).

Литература, используемая для подготовки лекции

Основным назначением фильтров является подавление одних частотных составляющих сигнала и пропускание других. Частотная характеристика фильтра есть кривая зависимости затухания в нем от частоты.

Фильтры нижних частот имеют характеристику затухания, показанную на рис. 1. Для расчета ФНЧ СВЧ диапазона обычно используют метод сравнения с фильтрами-прототипами нижних частот из элементов с сосредоточенными параметрами. Это позволяет воспользоваться широко табулированными значениями элементов нормированных по частоте фильтров с чебышевскими или максимально плоскими характеристиками и совершенно не касаться сложных вопросов синтеза фильтров.

Рис. 1. Частотная характеристика ФНЧ.


Для лучшего совпадения значений распределенных и сосредоточенных элементов длины отрезков линии и должны быть меньше или равны . Здесь и длины отрезков, аппроксимирующих индуктивность и емкость соответственно; - длина волны в полосковом волноводе с диэлектриком, соответствующая частоте среза фильтра.

Токонесущая полоска СВЧ фильтра нижних частот изображена на рис. 2. Последовательные отрезки волноводов высокого характеристического сопротивления аппроксимируют индуктивность фильтра прототипа, каждая же емкость фильтра состоит из двух одинаковых разомкнутых отрезков несимметричных полосковых волноводов относительно низкого характеристического сопротивления.

Рис. 2. Эскиз токонесущей части микрополоскового ФНЧ.


1. Анализ технического задания

В данной курсовой работе нужно рассчитать фильтр низкой частоты. С заданными электрическими параметрами: частота среза fС = 3,5 ГГц; Z = 50 Ом; максимальное затухание в полосе пропускания АП ≤0,5 Дб; затухание на частоте fЗ = 4,9 ГГц; заданное затухание АЗ ≥ 30 Дб. Кроме этих данных, в расчёте потребуются электрические данные подложки, это диэлектрическая проницаемость ε, а также тангенс угла диэлектрических потерь подложки tgδ. Эти параметры влияют на активные потери (затухание в диэлектрике) в фильтре, с увеличением этих параметров, увеличиваются потери в диэлектрике, что приводит к снижению КПД СВЧ устройства.

Данный фильтр низкой частоты должен работать при температуре окружающей среды t 0 = −30 0 С…+50 0 С. Годовая программа выпуска данного устройства 150 шт.

Основным достоинством полосковых и микрополосковых линий и устройств СВЧ диапазона на их основе является простота, компактность, дешевизна производства и малая масса. Рабочая полоса частот полосковых линий значительно больше, чем у стандартных прямоугольных волноводов.

Полосковые линии находят применение в СВЧ устройствах, работающих в диапазоне от 500 МГц до 15 ГГц. В последнее время широкое применение находят симметричные полосковые и микрополосковые линии, использующиеся как базовые элементы узлов СВЧ трактов и схем.

Способы изготовления печатных плат классифицируются следующим образом:

1) проводящее покрытие наносится только на те участки изоляционного основания, которые должны стать токопроводящими;

2)на основание предварительно наносится сплошной металлический слой, который в дальнейшем удаляется с участков, не входящих в схему. Рассмотрим эти способы.

Нанесение проводящих участков схемы:

Штамповка. При этом способе медную фольгу покрывают соответствующим клеящим веществом и помещают в штамповальный пресс, в котором фольга вырубается и впрессовывается в изоляционный материал. Нагретый штамп одновременно расплавляет склеивающее вещество, что обеспечивает сцепление, не уступающее механическому.

Металлизация токопроводящей краской. Производство схем этим способом включает применение в качестве подложек керамических материалов, стекла, кварца с последующим вжиганием краски. Металлизирующая краска состоит обычно из мелкодисперсионого порошка углекислого серебра или окиси серебра, связки и растворителя. Для защиты

полученного проводящего слоя применяют осаждение меди электролитическим способом.

Металлизация горячим распылением. Этот способ заключается в осаждении металлического тумана на изоляционную панель, на которую предварительно укладывают трафарет, изготовленный по контуру схемы.

Вакуумные способы получения проводящих покрытий. Способ вакуумного испарения металлов заключается в нагревание испаряемого металла выше точки плавления в герметически изолированном пространстве установки.

Изготовление схем способом химического и электролитического осаждения металла. Химическое осаждение плёнок из раствора на поверхность подложки основано на явлении вытеснения металла из раствора его соли восстановителем.

Подложки для печатных схем СВЧ диапазона:

Керамические материалы. Стеатитовая керамика, используемая в качестве изоляционных оснований, изготавливается на основе талька, углекислого кальция и бария, глины и органических пластификаторов.

Стекло и ситаллы. Стекло и изделия из стекла получают сплавлением стеклообразующих окислов с модификаторами. Модификацией стекла являются ситаллы. По механическим свойствам они превосходят высокоуглеродистые стали, легче алюминия, химически стойки, обладают малыми диэлектрическими потерями.

Листовые пластические материалы. Пластические материалы представляют собой комплексы низко- и высокомолекулярных групп, обладающих разными диэлектрическими свойствами. К этим материалам относятся: полиэтилен, фторопласты, полистирол, пенопласты, стеклопласты, сополимеры.

2. Расчёт электрических параметров элементов схемы

Исходные данные:

· частота среза fС = 3,5 ГГц;

· максимальное затухание в полосе пропускания АП ≤0,5;

· затухание на частоте fЗ = 4,9 ГГц;

· заданное затухание АЗ ≥ 30 Дб.

Материал подложки:

Ситалл СТ – 38 – 1 (ТХО.781.009.ТУ)

Электрический расчёт:

Находим отношение Ω - нормированную частоту:

(1)

По графику рис. 3.9 [1] для АП = 0,5 Дб и АЗ = 30 Дб при Ω=1,4 находим число элементов фильтра n=6

По табл.1 [1] находим для АП = 0,5 Дб и n=6:

Определим характеристические сопротивления разомкнутых отрезков, аппроксимирующих ёмкости фильтра-прототипа:

; (4.2) Ом ; (2)


Ом; (3)


Ом. (4)

Определим характеристические сопротивления короткозамкнутых отрезков L2, L4, L6, аппроксимирующих индуктивности фильтра-прототипа:


; (5)


Ом; (6)


Ом; (7)


Ом. (8)

По данным электрического расчёта определяем конструктивные размеры элементов фильтра. Результаты расчётов приведены в табл. 1



Длины 50–омных отрезков выбираются произвольно. Пусть = 20 мм.

Определим активные потери в фильтре на частоте среза: tgδ=3·10 −2 . Потери в металле по графику рис. 3.8 [1]


;(9)


. (10)

Затухание в диэлектрике:


(11)

Результаты расчёта затухания в элементах фильтра приведены в табл. 2.


Подставив величины длин отрезков резонаторов в формулу , которая для данного случая имеет вид:


(12)

Подставив значения, получим:


(13)

Рис. 4.1. Токонесущая полоска фильтра


Определим геометрические размеры подложки, для этого вычислим общую длину токонесущей полоски фильтра. Общая длинна полоски фильтра равна 74,7 мм. Выберем размер подложки, табл. П.3 [2]. Размеры подложки: габариты 75х48 мм; толщина – 1±0,05 мм.

Определим предельную частоту. Частота, на которой происходит интенсивное возбуждение поверхностных волн низшего типа, является предельной частотой использования микрополосковой линии в конкретных конструкциях и определяется соотношением:


(14)

где h – толщина подложки, в мм;

fпр – предельная частота, в ГГц;

εr – относительная диэлектрическая проницаемость.

Подставив значения, получим:


ГГц (15)

На практике fпр получается в 4 – 5 раза меньше, чем рассчитанная, это объясняется тем, что в теории не учитывается влияние различных неоднородностей.

3. Выбор корпуса

В процессе хранения и эксплуатации устройства СВЧ подвергаются воздействию различных внешних факторов: механических, климатических. Для уменьшения влияния этих факторов на работоспособность устройств, осуществляют её защиту.

Основным способом защиты устройств СВЧ от воздействия дестабилизирующих факторов (температуры, влажности, плесневых грибков, агрессивных химических сред, механических воздействий) является герметизация. Её осуществляют с помощью специально разработанных корпусов.

В зависимости от условий хранения и эксплуатации к корпусам устройств СВЧ предъявляются различные требования: достаточная механическая прочность, позволяющая выдерживать нагрузки при сборке и эксплуатации; минимальные габариты, для обеспечения компактности сборки; конструкция корпуса должна позволять легко и надёжно выполнять электрические соединения внутри корпуса; обеспечивать минимальные паразитные параметры, надёжную изоляцию элементов, герметичность, минимальное тепловое сопротивление между подложкой и окружающей средой; защищать устройство от воздействий электромагнитного поля, света; иметь минимальную стоимость.

В связи с необходимостью обеспечения хорошего электрического контакта экранирующих трактов, а также компонентов микросборки с экранирующими металлическими слоями подложек одним из конструктивных требований к монтажу таких устройств, является необходимость многократной пайки в блоке без выведения из строя уже выполненных соединений.

Рис. 5.1. Конструкция герметичного СВЧ соединителя.


Выводы СВЧ сигнала из гермообъёма выполняются с помощью коаксиального микрополоскового герметичного соединения рис. 5.1. Где 1 – корпус; 2 – штырь; 3,4 – изоляционные втулки; 5 – стекло. Для герметизации штыря соединителя используется металлостеклянный спай, для этого применяют твёрдые стёкла с коэффициентом теплового расширения α=(45…55)·10 -7 , 1/ 0 с. Чаще всего в качестве материалов корпуса используют ковар (α=47·10 -7 , 1/ 0 с, Fe - 54%, Ni – 29%, Co – 17%, обладает хорошей теплопроводностью) и молибден (α=55·10 -7 , 1/ 0 с). Эти материалы образуют хороший спай с твёрдыми стёклами. Соединитель герметизируется опайкой, электрические соединения между СВЧ микросборками и гермосоединителем осуществляются перемычками из фольги, как показано на рис. 5.2. Где 1 – соединитель; 2 - корпус блока; 3 – перемычка; 4 – СВЧ микросборка. Расстояние А от плоскости установки микросборки до оси гермосоединителя зависит от способа крепления микросборок и толщины подложек табл. 2.6 [2]. В данной курсовой работе используется подложка толщиной 1 мм и способ крепления подложки к корпусу – приклейка, для этих данных коэффициент А равен 1,6±0,05 мм.

Рис. 5.2. Монтаж СВЧ соединителя.


Вычислим конструктивные размеры для микрополосковой линии. Расстояние до верхнего экрана выбирается из условия:


(5.1)

где b – расстояние между нижним и верхним экраном корпуса;

h – толщина диэлектрика.

Подставив значения, получим, что b=6 мм.

Минимальное расстояние между боковыми экранами определяется по формуле:


(5.2)

где a – ширина между боковыми экранами;

W – максимальная ширина токонесущей пластинки.

Подставив значения получим, a = 3·8,7 = 26,1 мм.

Корпус для данного ФНЧ фильтра показан на рис. 5.3. Где 1 – СВЧ соединители; 2 – перемычки; 3 – СВЧ микросборка.

Рис. 5.3. Корпус ФНЧ фильтра.


Для уменьшения напряжений, вызванных изменением температуры окружающей среды и (или) СВЧ устройства, между корпусом и подложкой прокладывается медная сетка. В следствие этих напряжений, возможно разрушение подложки. Эта сетка, также будет играть роль контакта, между корпусом и нижней металлизированной стороной подложки. Для соединения корпуса с сеткой, а также сетки с подложкой используется пайка. Общая герметизация СВЧ устройства, достигается с помощью пайки по контуру верхнего экрана (крышки). Крепление подложки к корпусу, а также крепление верхнего экрана показано на рис. 5.4. Где, 1 – верхний экран (крышка); 2 – подложка; 3 – корпус.

Рис. 5.4. Крепление подложки и верхнего экрана (крышки) к корпусу.


Заключение

Во время выполнения данной курсовой работы были освоены методики конструкционных расчётов устройств СВЧ. Проведен расчет фильтра низкой частоты СВЧ устройства. Сделан анализ и разработана конструкция микросборки. Таким образом, все требования технического задания были выполнены.

Список литературы

2. Конструирование экранов и СВЧ устройств/ сост.: Васильев Е.П. Захарьящев Л.И. – Рязань: РРТИ 1984 г. 36с.

3. Конструирование тонкоплёночных гибридных микросборок/ сост.: Клочков А.Я., Дьяков С.Н., Чистяков В.В. – Рязань: РГРТА 2002. 160с.

Читайте также: