Эволюция скелета человека в филогенезе и онтогенезе реферат

Обновлено: 05.07.2024

Скелет (skeletos, греч. - высушенный) представляет комплекс плотных образований, развивающихся из мезенхимы, имеющих механическое значение. Он состоит из отдельных костей, соединенных между собой при помощи соединительной, хрящевой или костной ткани, вместе с которыми и составляет пассивную часть аппарата движения.

Значение скелета

Костная система выполняет ряд функций, имеющих или преимущественно механическое, или преимущественно биологическое значение. Рассмотрим функции, имеющие преимущественно механическое значение. Для всех позвоночных характерен внутренний скелет, хотя среди них встречаются виды, которые наряду с внутренним скелетом имеют еще и более или менее развитый наружный скелет, возникающий в коже (костная чешуя в коже рыб).

В начале своего появления твердый скелет служил для защиты организма от вредных внешних влияний (наружный скелет беспозвоночных). С развитием внутреннего скелета у позвоночных он сначала стал опорой и поддержкой (каркасом) для мягких тканей. Отдельные части скелета превратились в рычаги, приводимые в движение мышцами, вследствие чего скелет приобрел локомоторную функцию. В итоге механические функции скелета проявляются в его способности осуществлять защиту, опору и движение.

Опора достигается прикреплением мягких тканей и органов к различным частям скелета.
Движение возможно благодаря строению костей в виде длинных и коротких рычагов, соединенных подвижными сочленениями и приводимых в движение мышцами, управляемыми нервной системой.

остеология - анатомия костей

Наконец, защита осуществляется путем образования из отдельных костей костного канала - позвоночного, защищающего спинной мозг; костной коробки - черепа, защищающего головной мозг; костной клетки - грудной, защищающей жизненно важные органы грудной полости (сердце, легкие); костного вместилища - таза, защищающего важные для продолжения вида органы размножения.

Биологическая функция костной системы связана с участием скелета в обмене веществ, особенно в минеральном обмене (скелет является депо минеральных солей - фосфора, кальция, железа и др.). Это важно учитывать для понимания болезней обмена (рахит и др.) и для диагностики с помощью лучистой энергии (рентгеновские лучи, радиоактивные изотопы). Кроме того, скелет выполняет еще кроветворную функцию.
При этом кость не является просто защитным футляром для костного мозга, а последний составляет органическую часть ее. Определенное развитие и деятельность костного мозга отражаются на строении костного вещества, и, наоборот, механические факторы сказываются на функции кроветворения: усиленное движение способствует кроветворению; поэтому при разработке физических упражнений необходимо учитывать единство всех функций скелета.

развитие скелета

Развитие скелета

На низших ступенях организации, а также в эмбриональном периоде у всех позвоночных первым зачатком внутреннего скелета является спинная струна - chorda dorsalis, происходящая из мезодермы. Хорда является характерным признаком низшего представителя типа хордовых - ланцетника (Amphioxus lanceolatus), у которого скелет состоит из вытянутой вдоль тела с его дорсальной стороны спинной струны и окружающей ее соединительной ткани.

У низших видов позвоночных [круглоротые, селахии (акулы) и хрящевые ганоиды] соединительнотканный скелет вокруг хорды и на остальном протяжении замещается хрящевым скелетом, который в свою очередь у более высокоорганизованных позвоночных, начиная с костистых рыб и кончая млекопитающими, становится костным.

С развитием последнего хорда исчезает, за исключением ничтожных остатков (студенистое ядро межпозвоночного диска). Водные формы могли обходиться хрящевым скелетом, так как механическая нагрузка в водной среде несравненно меньше, чем в воздушной. Но только костный скелет позволил животным выйти из воды на сушу, поднять свое тело над землей и прочно стать на ноги.

Таким образом, в процессе филогенеза как явление приспособления к окружающей среде происходит последовательная смена 3 видов скелета. Эта смена повторяется и в процессе онтогенеза человека, в течение которого наблюдаются 3 стадии развития скелета:
1) соединительнотканная (перепончатая),
2) хрящевая и
3) костная.

Эти 3 стадии развития проходят почти все кости, за исключением костей свода черепа, большинства костей лица, части ключицы, которые возникают непосредственно на почве соединительной ткани, минуя стадию хряща.

Эти, как их называют, покровные кости можно рассматривать как производные некогда бывшего наружного скелета, сместившиеся в глубь мезодермы и присоединившиеся в дальнейшей эволюции к внутреннему скелету в качестве его дополнения.

Опорно-двигательный аппарат человека включает скелет и скелетные разделенными мышцы. С помощью этого аппарата человек приспосабливается к условиям окружающей среды, может двигаться в пространстве, выполнять различные движения.

В процессе развития (филогенез, онтогенез) опорно-двигательный аппарат претерпевает существенные изменения. Даже у взрослого человека в процессе его трудовой деятельности он совершенствуется, постоянно формируются сложные двигательные навыки.

Опорно-двигательный аппарат принято делить на пассивную и активную части. Пассивной частью скелетом, активной – мышцы. Скелет состоит из костей, одни соединяются между собой подвижно с помощью суставов, другие (таз, череп) – неподвижно (синостоз). Благодаря суставам возможные перемещения одних костей относительно других (сгибание, разгибание, отведение, приведение и др.), Что и обеспечивает динамическую работу мышц. Те кости, соединяются неподвижно, как правило, образуют полости, где содержатся важные внутренние органы. Например, череп защищает головной мозг. Опорно-двигательный аппарат обеспечивает не только динамическую, но и статическую работу (стояние, сидение и др.). Кроме того, динамическая работа основном выполняется на фоне статической мышечной работы. Например, ходьба осуществляется с осанки стояния. Как динамическая, так и статическая работа опорно-двигательного аппарата возможна благодаря работе его активной части – скелетных мышц, которые своими сухожилиями присоединяются к костям и под влиянием нервов и тех импульсов, поступающих к ним от двигательных нервных центров спинного и головного мозга, сокращаются. Изменение напряжения мышц происходит рефлекторно благодаря наличию центральной и периферической нервной систем (рефлекторных дуг). Об изменении функционального состояния мышц постоянно информируют нервные центры и проприорецепторы, а также рецепторы сухожилий, суставов, вследствие чего они приспосабливают деятельность опорно-двигательного аппарата к условиям внешней среды и изменений функционального состояния этих органов.

Филогенез позвоночника. Впервые осевой скелет в виде хорды появился у представителя низших животных – ланцетника. Хорда – упругий, прочный, эластичный тяж, пролегает вдоль тела.

У рыб позвоночник костный, состоит из двух отделов – туловищный с ребрами и хвостового – без ребер. У высших животных – рептилий, птиц и млекопитающих – костный позвоночник имеет 5 отделов: шейный, грудной, поясничный, крестцовый и хвостовой. Каждый из отделов состоит из позвонков. Количество позвонков неодинакова у разных видов животных, но постоянная для данного вида. Позвонки у рыб сходны между собой, голова с туловищем у них соединяется неподвижно. У амфибий впервые появляется Атлант, который сочленяется с черепом способствует некоторой подвижности головы. Впервые грудная кость появляется у амфибий. К одному тазового позвонка присоединяется тазовая кость.

У рептилий позвоночник состоит из шейного, грудного и поясничного отделов. Ребра у них развиты только в грудном отделе.

У млекопитающих и человека только в грудном отделе сохранились ребра, а в шейном и поясничном отделах остались их рудименты, они срослись с поперечными отростками позвонков, а в крестцовом отделе – вошли в состав его боковых крестцовых гребней.

Филогенез черепа. У хрящевых рыб соответственно и череп хрящевой, делится он на два отдела – мозговой и висцеральный. Мозговой череп у акул сплошной, с боковыми выемками для глазных яблок, под его покровом содержатся мозг, органы слуха и обоняния. Висцеральный череп присоединяется к мозговому подвижно и состоит из челюстной, подъязычной и 5 жаберных дуг.

В костно-хрящевых рыб (осетровые) уже появляются покровные кости, которые образуются из соединительной ткани кожи головы.

У костистых рыб в некоторых местах уже происходит окостенение хряща и образования вторичных костей.

У амфибий количество участков окостенения увеличивается, но в черепе еще довольно значительное количество хряща.

У рептилий окостенения почти полное. У птиц некоторые кости черепа срастаются между собой и их количество уменьшается.

У млекопитающих и человека череп костный, остатки хряща есть только в носовой перегородке.

Филогенез конечностей. Впервые конечности появились у древних амфибий – стегоцефалов и представляли собой преобразованы парные плавники рыб. Такая концовка имела 5 пальцев; этот признак сохранилась в основных группах животных и человека. В некоторых позвоночных она изменилась в соответствии с их образа жизни. Так, у птиц уменьшилось количество костей запястья и пальцев, передняя конечность превратилась в крыло. У некоторых млекопитающих развилось пальцеходиння. У других животных в связи с редукцией пальцев образовались защитные приспособления – копыта. В однокопытных развился только один палец, в парнокопытных – два пальца, каждый с копытом.

В наземных позвоночных различают плечевой и тазовый пояса со свободными передними и задними конечностями. Передние конечности состоят из плеча, предплечья и кисти, а задние – из бедра, голени и стопы.

Плечевой пояс ископаемых амфибий существенно отличается своим строением. Он состоит из лопатки, передней кости коракоида, который на разных стадиях эволюционного развития сросся с лопаткой, образовав при этом вороний отросток и ключицы кожного происхождения. Тазовый пояс стегоцефалам состоит из подвздошной, седалищной и лобковой костей, соединяющихся между собой широким хрящевым слоем, в котором содержится суставная впадина для сочленения со свободной нижней конечностью. У рептилий названы Из кости соединяются между собой в одну безымянную кость в области вертлужной впадины.

Костная ткань. Рассматривая распил кости под микроскопом, можно увидеть, что она состоит из закономерно Распределенных костных пластинок, образованных коллагеновыми волокнами кости, пропитанными костной основным веществом и остеоцитами.

Костные пластинки концентрически расположены вокруг гаверсовых канала, в котором проходит кровеносный капилляр. Эти пластинки, канал и капилляр составляют отдельную структурную единицу кости – остеон. Через центральный канал остеона происходит иннервация и васкуляризация кости.

Количество костных пластинок в каждом остеона неодинакова.

Между остеонами есть промежутки, заполненные костными пластинками, которые соединяют остеоны между собой. Интерстициальные костные пластинки находятся на поверхности и внутри компактного вещества кости, поэтому их соответственно называют пластинками оточувальнимы внешними и оточувальнимы внутренними.

Лекция "Возрастная анатомия опорно-двигательного аппарата"

Стадии развития скелета в филогенезе.

У животных выделяют наружный и внутренний скелет.

Наружный скелет у разных животных (рис. 1) имеет разное строение и происхождение. У многих беспозвоночных он является продуктом выделения кожного эпителия: кутикула дождевого червя, хитин членистоногих, известковые раковины молюсков.

Наружный скелет у позвоночных появляется в форме чешуи у рыб. Из чешуй у высших рыб развиваются покровные кости головы и плечевого пояса.

Чешуя рыб и кожные окостенения наземных позвоночных всегда дополняются внутренним скелетом.

Внутренний скелет у низших животных (рис. 1) развит слабо и представляет собой систему соединительнотканных образований, иногда включающих рогоподобные волокна, кремниевые или известковые иглы.

Внутренний скелет у головоногих молюсков представлен хрящом.

У позвоночных животных внутренний скелет всегда хорошо развит.

У бесчерепных он перепончатый, у низших рыб – хрящевой, у высших рыб и наземных позвоночных он построен преимущественно из костной ткани.

Развитие скелета в онтогенезе у человека.


Согласно основному биогенетическому закону Геккеля-Мюллера онтогенез есть краткое повторение филогенеза. Онтогенез твердого скелета у человека не является исключением: в развитии костей у человека выделяются три последовательных стадии (рис. 2):

1. Соединительнотканная.
2. Хрящевая.
3. Костная.

Большинство костей в своем развитии последовательно проходят все три стадии – это вторичные кости. Ряд костей при развитии пропускают хрящевую стадию – это первичные кости. К первичным по развитию костям относятся: кости свода черепа, кости лицевого черепа, часть ключицы (акромиальный конец).

Первичные и вторичные кости.


По развитию кости человека делятся на две группы (рис. 3):

  1. Первичные – проходят в своем развитии две стадии: соединительнотканная и костная.
  2. Вторичные кости – проходят в своем развитии три последовательных стадии: соединительнотканную, хрящевую и костную.

Характеристика остеобластов и остеокластов развиваюшейся кости.


Для развития костной ткани в костях необходимо наличие популяций двух видов клеток (рис. 4):

Остеобласты представляют собой кубовидной формы клетки (20-30 мкм в диаметре) с одним крупным ядром, располагающиеся близко друг к другу на костном матриксе (межклеточном веществе). Фибробласты продуцируют все компоненты костного матрикса. Они имеют два разных эмбриональных источника:

  1. нервные гребешковые клетки (выделяются из краев нервного желобка эмбриона при замыкании его в нервную трубку). Они дают начало волокнистой костной ткани костей черепа.
  2. мезенхимальные клетки закладки кости. Они дают начало пластинчатой костной ткани.

Остеокласты - многоядерные (от 2 до 100 ядер в клетке), большие (от 20 до 100 мкм) клетки гемопоэтической природы. Заносятся в соединительнотканные и хрящевые закладки костей по кровеносным сосудам. Функция остеокластов – резорбция кости.

Для формирования кости как органа необходимо совместная работа двух видов клеток: остеобластов и остеокластов.

Cпособы развития костей (окостенения).


В зависимости от того где начинается формирование костной ткани в костях (включая их закладки) выделяют четыре способа окостенения (рис. 5):

  1. Эндесмальное окостенение.
  2. Перихондральной окостенение.
  3. Энхондральное окостенение.
  4. Периостальной окостенение.

При эндесмальном окостенении (рис. 5) первичная точка окостенения появляется в центре соединительнотканной закладки кости. Затем новообразующаяся костная ткань распространяется от цента органа к периферии. Таким способом окостеневают первичные кости. На месте первичной точки окостенения обычно наблюдается утолщение (например, теменной бугор, наружный затылочный выступ и т.п.).

Периходральное окостенение характерно для вторичных костей. Остеобласты выстраиваются на поверхности хрящевой закладки кости и начинают синтезировать костный матрикс. Это приводит с сдавливанию и нарушению трофика подлежащей хрящевой ткани, изменения которой активирует остеокласты. В результате этого на поверхности хрящевой закладки кости появляется и постепенно нарастает костная ткань (рис. 5). За счет перихондрального окостенения формируется компактное костное вещество. У длинных трубчатых костей так во внутриутробном периоде образуется диафиз.

При энхондральном окостенении точка (первичный очаг) окостенения появляется в центре хрящевой закладки кости. Затем костная ткань разрастается из центра к периферии (рис. 6). В результате этого формируется губчатое костное вещество. Этим способом развиваются вторичные кости: эпифизы и апофизы трубчатых костей, губчатые, плоские (кроме свода черепа) кости.

Периостальное окостенение происходит за счет надкостницы (periosteum, лат – надкостница). У детей за счет надкостницы кости растут в толщину (напоминаем, что рост кости в длину идет за счет метафизарного хряща)(рис. 6). У взрослых периостальное окостенение обеспечивает физиологическую регенерацию кости.

Развитие костей туловища (общие свойства). Развитие и аномалии развития позвонков.


Рис. 8. Развитие и аномалии развития позвонков.


Рис. 9. Расщелина дуг позвонков на протяжении всех грудных позвонков.

Кости туловища по развитию относятся к вторичным костям. Они окостеневают энхондрально (рис. 7).

Развитие позвонков:

У зародыша закладывается 38 позвонков: 7 шейных, 13 грудных, 5 поясничных, 12-13 крестцовых и копчиковых (рис. 8).

13-й грудной превращается в 1-й поясничный, последний поясничный – в 1-й крестцовый, Идет редукция большинства копчиковых позвонков.

Каждый позвонок имеет первоначально три ядра окостенения: в теле и по одному в каждой половинке дуги. Они срастаются лишь к третьему году жизни.

Вторичные центры появляются по верхнему и нижнему краям тела позвонка у девочек в 6-8 лет, у мальчиков – в 7-9 лет. Они прирастают к телу позвонка в 20-25 лет.

Самостоятельные ядра окостенения образуются в отростках позвонков.

Аномалии развития позвонков (рис. 8, 9):

- Врожденные расщелины позвонков:

- Spina bifida - расщелина только дуг.
- Рахишизис – полная расщелина (тело и дуга).

- Клиновидные позвонки и полупозвонки.

- Платиспондилия – расширение тела позвонка в поперечнике.

- Брахиспондилия – уменьшение тела позвонка по высоте, уплощение и укорочение.

- Аномалии суставных отростков: аномалии положения, аномалии величины, аномалии сочленения, отсутствие суставных отростков.

- Спондилолиз – дефект в межсуставной части дуги позвонка.

- Врожденные синостозы: полный и частичный.

- Os odontoideum – неслияние зуба с телом осевого позвонка.

- Ассимиляция (окципитализация) атланта – слияние атланта с затылочной костью.

- Сакрализация – полное или частичное слияние последнего поясничного позвонка с крестцом.

- Люмбализация – наличие шестого поясничного позвонка (за счет мобилизации первого крестцового).

Развитие и аномалии развития ребер и грудины.

Рис. 10. Развитие и аномалии развития ребер.

Рис. 11. Развитие и аномалии развития грудины.

Развитие ребер (рис. 10):

Закладывается 13 пар ребер. Затем 13-е ребро редуцируется и срастается с поперечным отростком 1-го поясничного позвонка.

Основных точек окостенения в ребре две: точка окостенения на месте будущего угла ребра (окостеневает тело ребра) и в головке ребра (на 15-20 году жизни). У 10 верхних ребер появляется точка окостенения в бугорке ребра.

Передние концы 9 пар верхних ребер образуют грудные полоски – источник развития грудины.

Развитие грудины (рис. 11):

Источником развития грудины являются грудные полоски – расширенные концы хрящевых концов девяти пар верхних ребер. В грудине бывает до 13 точек окостенения.

Аномалии развития ребер (рис. 10):

- Отсутствие ребра
- Отсутствие части ребра
- Дефект ребра
- Раздвоение ребра (вилка Лушки)
- Шейное ребро
- XIII ребро

Аномалии развития грудины (рис. 11):

- Аплазия рукоятки грудины
- Отсутствие отдельных сегментов тела грудины - Расщепление грудину
- Отсутствие тела грудины
- Воронкообразная деформация
- Куриная грудь

По теме: “Профилактика деформаций скелета в связи с анатомо-физиологическими особенностями костно-мышечной системы у детей и подростков”.

Выполнил:Никонов Михаил Юрьевич.

Преподаватель:доцент А.А. Величко

Москва 2000

Оглавление

I. Анатомо-физиологические особенности у детей и подростков.

1. Строение грудной клетки.

2. Краткий очерк развития костей туловища в фило - и онтогенезе.
3. Мышца.

· Развитие мышц

· Иннервация мышц.

· Функции мышц.

· Свойства мышц.

· Сократительная деятельность мышц.

Остеопороз.

· Факторы риска перелома

Сколиоз.

II. Профилактика деформации скелета.

Профилактика остопороза.

Профилактика сколиоза.

· Обоснование правильной позы.

· Подбор мебели

III. Заключение.

IV. Список используемой литературы.

Рост ребенка — программированный процесс увеличения длины и массы тела, который проходит параллельно с его развитием, становлением функциональных систем. В определенные периоды развития ребенка органы и физиологические системы подвергаются структурно-функциональной перестройке, происходит замена молодых на более зрелые тканевые элементы, белки, ферменты (эмбрионального, детского, взрослого типа).

Генетическая программа обеспечивает весь жизненный цикл индивидуального развития, включая последовательность переключения и депрессии генов, контролирующих смену периодов развития в соответствующих условиях жизни ребенка. Благодаря изменяющемуся взаимовлиянию генной и нейроэндокринной регуляции каждый период развития ребенка характеризуется особыми темпами физического роста, возрастными физиологическими и поведенческими реакциями.

Одна из важнейших биологических особенностей растущего организма заключается в наличии “критических периодов развития”, когда диапазон адаптационных реакций ограничивается, а чувствительность организма к экзогенным воздействиям повышается .

Термин “критические периоды развития” введен П. Г. Светловым для характеристики тех фаз внутриутробной жизни, когда эмбрион и плод особенно чувствительны к повреждающим экзогенным влияниям, формированию врожденных пороков развития или внутриутробной гипотрофии. В критические периоды организм ребенка оказывается в неустойчивом состоянии, подвергаясь более высокому риску развития пограничных и патологических состояний при воздействии неадекватных его возможностям или патогенных раздражителей (инфекционные агенты, ксенобиотики, токсические радикалы, ионизирующая радиация и др.).

Поэтому для дальнейшего развития темы необходимо иметь представление о особенностях костно- мышечной системе детей и подростков.

Строение грудной клетки.

2- рукоятка грудины

3- верхняя апертура грудной клетки

7- мечевидный отросток грудины

Краткий очерк развития костей туловища в фило-и онтогенезе.

В развитии скелета позвоночных животных различают три стадии развития:

· “Осевым” органом в раннем периоде онтогенеза у всех позвоночных животных является хорда. Хорда впервые в филогенезе появляется у низших хордовых животных (ланцетника), она сохраняется в течение всей индивидуальной жизни организма. Вокруг хорды из мезодермы формируется перепончатый скелет (у ланцетника).

Хорда возникает у 2,5-недельного эмбриона человека в виде округлого тяжа с заостренными концами, который очень рано окружается эмбриональной соединительной тканью, а затем зачатком гиалинового хряща, формирующим полость, в которой залегает хорда. Хорда преобразуется в студенистые ядра межпозвоночных дисков. Клетки хорды сохраняются в толще студенистого ядра у детей в возрасте до 7 лет. Вокруг новообразованной хорды и между зародышевыми листками возникает и распространяется эмбриональная зародышевая соединительная ткань, которая замещается хрящевой. Последняя, в свою очередь, окончательно перестраивается в костную.

Кости туловища человека (и других позвоночных) развиваются из первичных сегментов (сомитов) — производных дорсального отдела мезодермы, состоящих из клеток мезенхимы. Клетки мезенхимы, выделяющиеся из медиовентральной части каждого сомита (склеротома), размножаются, постепенно окружают хорду и нервную трубку, в результате чего образуются первичные (перепончатые) позвонки. Каждый вторичный (окончательный) позвонок образуется из двух рядов лежащих склеротомов — задней части вышележащего и передней — нижележащего склеротома.
На 5-й неделе эмбрионального развития человека в телах и возникающих дорсальных и вентральных дугах позвонков появляются отдельные гнезда хрящевой ткани, которые в дальнейшем сливаются друг с другом. Дорсальные дуги позвонков разрастаются и, сливаясь, образуют остистые отростки, парные суставные и поперечные отростки.

У человека закладывается 38 позвонков: 7 шейных, 13 грудных,
5 поясничных и 12—13 крестцовых и копчиковых. В процессе развития XIII грудной позвонок превращается в 1 поясничный, а V поясничный позвонок — в 1 крестцовый. В дальнейшем большинство копчиковых позвонков редуцируются. У новорожденного ребенка позвоночный столб состоит из 33—34 позвонков.

Копчиковые позвонки срастаются в возрасте от 12 до 25 лет, причем этот процесс идет в направлении снизу вверх.

Соединительная ткань, а затем хрящевые модели передних дуг позвонков растут в стороны и проникают в вентральные отделы миотомов, формируя ребра. Передние концы девяти верхних хрящевых ребер расширяются и на каждой стороне сливаются в хрящевые (грудные) полоски.

Точка окостенения в головке ребра возникает в возрасте 15—25 лет, головка срастается с телом ребра в 18—25 лет.

У десяти верхних ребер на 15—20-м году жизни точка окостенения появляется также и в бугорке ребра.

К концу 2-го месяца внутриутробного развития верхние концы правой и левой грудных полосок сливаются, образуя рукоятку грудины. Несколько позже образуются тело и мечевидный отросток благодаря соединению друг с другом нижних отделов грудных полосок.

У новорожденного ребенка грудина состоит из 4—5 отдельных костей, соединенных между собой прослойками хрящевой ткани.

В возрасте около 17—18 лет начинается их сращение
по направлению снизу вверх. Полное окостенение грудины заканчивается в возрасте 30—35 лет.

Мечевидный отросток начинает окостеневать на 6—20-м году и срастается с телом грудины лишь после 30 лет. Рукоятка и тело срастаются позже всех частей грудины или вовсе не срастаются.

· Развитие мышц.

Рост мышечной массы происходит в основном за счет увеличения продольных и поперечных размеров каждого мышечного волокна( 90 % ), тогда как общее число их увеличивается незначительно ( 10% ). Рост же миона в толщину происходит за счет увеличения количества миофибрилл в нем.

Менее интенсивный рост мышечной массы наблюдается в первый год жизни, когда ребенок еще не начал ходить.

Масса мышц в конце первого года жизни составляет 16% массы тела. После первого года в результате тренировки мышечная масса увеличивается более интенсивно и к 8 годам жизни достигает 27 % массы тела, у подростков 15 лет – 33%, у юношей 17 –18 лет – 44 %, т.е. как у взрослых ( до 15 лет ежегодный прирост мышечной массы составляет 0,7 – 0,8 %, в возрасте от 15 до 17 лет – 5-6%)

В первые три года жизни происходит не только усиленное образование миофибрилл, но и интенсивное развитие всех видов внутримышечной соединительной ткани.
В период от 3 до 7 лет число миофибрилл в мышечном волокне увеличивается в 15-20 раз. Во всех мышцах интенсивно растут сухожилия, продолжает разрастаться соединительная ткань.
В 6 лет в основном заканчивается созревание мионов, расположение в них миофибрилл становится плотным.
В 15-18 лет продолжается дальнейший рост поперечника мышечных волокон, внутримышечных соединительнотканных волокнистых образований, а следовательно – и всей мышцы. Развитие мышцы, ее сосудистой системы и иннерваци продолжается до 25 –30 лет.

· Иннервация мышц.

У новорожденных афферентная иннервация, имеющая достаточно высокую степень зрелости, в первые годы жизни продолжает развиваться усиленно и к 7-8 годам по морфологической организации достигает уровня взрослых.
Помимо структурных изменений, происходящих в самих нервомышечных веретенах, с возрастом изменяется их распределение в мышце, так, если у новорожденного ребенка и у детей 1 года жизни эти образования распологаются в мышцах чаще всего равномерно по всей длине, то уже к 4-11 годам нервно-мышечные веретена обнаруживаются в большей степени в концевых третях мышц.
С возрастом число мышечных веретен увеличивается особенно значительно в тех участках мыщцы, которые испытывают наибольшее растяжение: в проксимальной трети,затем в дистальной и менее всего в средней трети мышцы.

· Функции мышц.

В процессе увеличения двигательной активности грудного ребенка, терморегуляционная функция скелетной мускулатуры уменьшается и возрастает локомоторная функция.
К 5 годам происходит более интенсивное развитие разгибателей и соответственно увеличение их тонуса, что соответствует перераспределению мышечного тонуса, свойственного взрослому организму.

· Свойства мышц.

Возбудимость мышц плода крайне низка, что обнаруживается при прямом и непрямом раздражении.

детей также отмечается пониженная возбудимость нервно-мышечной системы большой порог раздражения и длительная хронаксия.

Проводимость.Для раннего детского возраста характерным является отсутствие пессимального торможения мышц. Мышцы независимо от характеристики раздражителя по частоте и интенсивности,отвечают тоническим типом сокращения, которое длится столько, сколько продолжается раздражение, без признаков перехода в состояние пессимума. Отсутствие выраженного пессиума связывают с недостаточным структурным оформлением мионевральных синапсов.

Стабильность.В раннем детском возрасте, скелетные мышцы и иннервирующие их нервы также характеризуются признаками низкой лабильности. Низкая лабильность обьясняется длительностью абсолютной и относительной рефрактерных фаз, длительностью одиночного мышечного сокрашения. С возрастом лабильность мышц увеличивается, что ведет, естественно, и к увеличению быстроты движений.

Эластичность мышц детей раннего возраста значительно больше, чем у взрослых, с возрастом она уменьшается. Упругость и прочность мышц,напротив, с возрастом увеличивается.

Социальное обеспечение и социальная защита в РФ: Понятие социального обеспечения тесно увязывается с понятием .

Что входит в перечень работ по подготовке дома к зиме: При подготовке дома к зиме проводят следующие мероприятия.

Читайте также: