Эволюция ксилемы у растений реферат

Обновлено: 03.07.2024

Состав ксилемы.В состав ксилемы входят проводящие, механические, запасающие и некоторые другие элементы. Рассмотрим подробнее проводящие элементы как наиболее важные, определяющие характер всей ткани. Остальные элементы будут рассмотрены позднее.

Строение и функции трахеальных элементов.Различают два типа проводящих, или трахеальных элементов — трахеиды и трахеи, или сосуды (иногда к трахеальным, элементам причисляют и древесинные волокна, поскольку между ними и трахеидами нет резкой границы).

Трахеида представляет собой сильно вытянутую в длину водопроводящую клетку с ненарушенными первичными стенками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через эти стенки, точнее, через окаймленные поры. Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда путем растворения возникают сквозные отверстия (перфорации). По сосудам растворы передвигаются значительно легче, чем по трахеидам.


Схема строения и сочетания трахеид (1) и члеников сосуда (2) (отдельная трахеида и членик сосуда зачернены)

В сформировавшемся, т.е. в функционирующем, состоянии трахеальные элементы состоят лишь из оболочек, так как протопласты распадаются, а полости трахеальных элементов заполняются растворами.

Сосуды и трахеиды передают растворы не только в продольном, но и в поперечном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. Но в то же время они обладают различного рода утолщениями, придающими стенкам прочность. В зависимости от характера боковых стенок трахеальные элементы называются кольчатыми, спиральными, сетчатыми, лестничными и точечно-поровыми.

Типы утолщения (1—5) и поровости (6—8) боковых стенок у трахеальных элементов:


Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной оболочке посредством узкого выступа. При сближении утолщений и затем при образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры.

Эту серию можно рассматривать как морфогенетический, эволюционный ряд. Но эта же последовательность (хотя представленная не всеми членами) возникновения сначала кольчатых и спиральных элементов, а потом остальных наблюдается в гистогенезе одного и того же проводящего пучка. Наличие различных элементов в одном пучке объясняется тем, что первые из них возникают в то время, когда еще не закончился рост в длину всего органа, а кольчатые и спиральные элементы не препятствуют этому росту, так как способны растягиваться. Когда рост органа прекращается, возникают сетчатые, лестничные и точечно-поровые элементы, неспособные к продольному растяжению.

Эволюция трахеальных элементов.Трахеиды появились у высших растений в связи с выходом на сушу. Они найдены у ринии и других риниофитов. Сосуды появились значительно позже путем преобразования трахеид.

Эволюция перфораций:

1 - лестничная поровость трахеиды (перфорации отсутствуют); 2,3- лестничные перфорации; 4, 5- простые перфорации


На рисунке показаны превращение трахеиды в членик сосуда и постепенное видоизменение последнего в процессе эволюции. Окаймленные поры превратились в сквозные отверстия — перфорации. Концы возникших сосудов, первоначально сильно скошенные, заняли горизонтальное положение, а примитивная лестничная перфорация со многими перекладинами превратилась в простую перфорацию. Параллельно этому членики сосудов становились более короткими и широкими. Сосудами обладают почти все покрытосеменные растения. Папоротникообразные и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких высших споровых, как селагинелла, хвощи и некоторые папоротники, а также у немногих голосеменных (гнетовых). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных.

Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.

Гистогенез трахеальных элементов.Членики сосуда возникают из живых клеток, которые имеют тонкие растяжимые оболочки и растут в ширину. После достижения окончательных поперечных размеров протопласт утолщает боковые стенки и в то же время растворяет поперечные стенки (образует перфорации). Превращение исходной живой клетки в зрелый членик сосуда (или в трахеиду) протекает быстро, иногда за несколько часов. За этот короткий срок протопласт выполняет большую работу, а затем разрушается. Соответственно этому изменяется его характер: на первых этапах в протопласте хорошо развиты структуры, ответственные за построение оболочки (эндоплазматический ретикулум, диктиосомы, микротрубочки). После утолщения боковых и растворения поперечных стенок развиваются лизосомы, происходят сильная вакуолизация и лизис всего протопласта. Остается оболочка, а полость заполняется жидкостью.


Схема гистогенеза членика сосуда:

1 - клетка, образованная камбием; 2 -растяжение; 3 -утолщение боковых стенок; 4 - образование перфораций и отмирание протопласта

Древесинные волокна имеют толстые оболочки и узкие простые (неокаймленные) поры. Древесинные волокна эволюционно возникли, как и сосуды, из трахеид, но их преобразование шло в другом направлении, именно в сторону потери проводящей функции и повышения механической прочности. Наличие волокон в составе древесины делает эту ткань прочнее.

Эволюционный переход от трахеиды 1 к волокнистой трахеиде 2 и к древесинному волокну 3

Ксилема выполняет в растении две основные функции: по ней движется вода вместе с растворенными минеральными веществами и она служит опорой органам растения. Таким образом, ксилема играет в растении двоякую роль — физиологическую и структурную. В состав ксилемы входят гистологические элементы четырех типов: трахеиды, сосуды, паренхимные клетки и волокна. На рис. 6.9 эти гистологические элементы представлены и поперечном и продольном разрезах.

Трахеиды ксилемы

На рисунке представлено строение трахеид. У покрытосеменных число трахеид по сравнению с числом сосудов относительно невелико. Сосуды считаются более эффективным приспособлением для транспорта воды, нежели трахеиды; появление сосудов связано, как полагают, с тем, что у покрытосеменных с их большой листовой поверхностью транспира-ция идет более активно.

Сосуды ксилемы

Ксилема. Строение ксилемы. Функции ксилемы

Протоксилема и метаксилема

Первые по времени образования сосуды — протоксилема — закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки еше продолжают вытягиваться. Зрелые сосуды про-токсилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки еще не сплошь одревеснели —лигнин откладывается в них лишь кольцами или по спирали (рис. 6.12). Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня. С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают свое развитие в зрелых частях органа; так формируется ме-гаксшема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мертвые, жесткие? полностью одревесневшие трубки. Если бы их развитие завершалось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу.

У сосудов метаксилемы обнаруживаются три главных типа утолщений: лестничные, сетчатые и точечные.

Длинные полые трубки ксилемы — идеальная система для проведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревеснев-шие части клеточной стенки. Вследствие одревеснения клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением (разд. 13.4).

Вторую свою функцию — механическую — ксилема выполняет также благодаря тому, что она состоит из ряда одревесневших трубок. В первичном теле растения ксилема в корнях занимает центральное положение, помогая корню противостоять тянущему усилию надземных частей, изгибающихся под порывами ветра, В стебле проводящие пучки либо образуют по периферии кольцо, как у двудольных, либо располагаются беспорядочно, как у однодольных; в обоих случаях стебель пронизывается отдельными тяжами ксилемы, обеспечивающими ему определенную опору. Особенно важное значение опорная функция ксилемы приобретает там, где имеет место вторичный рост. Во время этого процесса быстро нарастает количество вторичной ксилемы; к ней переходит от колленхимы и склеренхимы роль главной механической ткани, и именно она служит опорой у крупных древесных и кустарниковых пород. Рост стволов в толщину определяется в известной мере нагрузками, которым подвергается растение, так что иногда наблюдается дополнительный рост, смысл которого состоит в усилении структуры и обеспечении ей максимальной опоры.

Ксилема. Строение ксилемы. Функции ксилемы

Древесинная паренхима ксилемы

Древесинная паренхима ксилемы содержится как в первичной, так и во вторичной ксилеме, однако в последней ее количество больше и роль важнее. Клетки древесинной паренхимы, подобно любым другим паренхимным клеткам, имеют тонкие целлюлозные стенки и живое содержимое.

Во вторичной ксилеме имеются две системы паренхимы. Обе они возникают из меристемати-ческих клеток, называемых в одном случае лучевыми инициалями, а вдругом — веретеновидны-ми инициалями (гл. 22). Лучевая паренхима более обильна. Она образует радиальные слои ткани, так называемые сердцевинные лучи, которые, пронизывая сердцевину, служат живой связью между сердцевиной и корой. Здесь запасаются различные питательные вещества, скапливаются таннины, кристаллы и т. п., и здесь же осуществляется радиальный транспорт питательных веществ и воды, а также газообмен по межклетникам.

Из веретеновидных инициалей обычно развиваются сосуды ксилемы и ситовидные трубки флоэмы вместе с их клетками-спутницами, однако время от времени они дают начало также и паренхимным клеткам. Эти паренхимные клетки образуют во вторичной ксилеме вертикальные ряды.

Древесинные волокна ксилемы

Полагают, что древесинные волокна, так же как и сосуды ксилемы, ведут свое происхождение от трахеид. Они короче и уже трахеид, а стенки их гораздо толще, но поры их сходны с порами, имеющимися в трахеидах, и на срезах волокна иногда трудно отличить от трахеид, поскольку между теми и другими есть ряд переходных форм. Древесинные волокна очень напоминают уже описанные волокна склеренхимы; их торцевые стенки также перекрываются. В отличие от сосудов ксилемы древесинные волокна не проводят воду; поэтому у них могут быть гораздо более толстые стенки и более узкие просветы, а значит, они отличаются и большей прочностью, т. е. придают ксилеме дополнительную механическую прочность.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Проводящие ткани осуществляют функцию проведения воды и растворов различных питательных веществ по всему телу растения. Они состоят из ксилемы (древесины), проводящей воду и растворённые в ней вещества из корней, и флоэмы (луба), проводящей из листьев органические вещества.

Ксилема (древесина)

В состав ксилемы (рис. 12) входят проводящие элементы — сосуды и трахеиды, а также живые паренхимные клетки и механические волокна.

Трахеиды

Трахеиды представляют собой замкнутые удлинённые клетки с вытянутыми концами и с утолщёнными одревесневшими стенками, на которых имеются поры. Передвижение растворов происходит через поры. Кроме проводящей функции трахеиды несут механическую нагрузку. У папоротников и голосеменных трахеиды служат единственным проводящим элементом.

Сосуды (трахеи)

Сосуды, или трахеи, представляют собой трубки, состоящие из многих клеток, поперечные перегородки между которыми разрушаются (рис. 13). Боковые стенки их утолщаются и одревесневают, но в них остаются поры, через которые происходит передвижение веществ в горизонтальном направлении. По характеру утолщений стенок различают кольчатые, спиральные, лестничные, точечные и сетчатые сосуды. Кольчатые и спиральные сосуды эластичны, они могут вытягиваться, поэтому не препятствуют росту органов растений и появляются в них раньше других. Протопласты трахеид и сосудов отмирают.


Рис. 13. Разные типы утолщения стенок сосудов и поровости: 1 — кольчатый; 2 — 4 спиральные; 5 — сетчатый; 6 — лестничный; 7 — супротивная поровость; 8 — очередная поровость

Флоэма (луб)

Флоэма состоит из ситовидных трубок, клеток-спутниц, лубяной паренхимы и лубяных волокон.

Проводящая ткань — одна из растительных тканей, которая необходима для перемещения питательных веществ по организму. Это важный структурный компонент генеративных и вегетативных органов размножения.

Проводящая система являет собой совокупность клеток с межклеточными порами, а также паренхиматозных и передаточных клетки, которые вместе обеспечивают внутренний транспорт жидкости.

Проводящая ткань растений

Эволюция проводящих тканей. Биологи предполагают, что появление сосудистой системы растений обусловлено переходом из воды на сушу. При этом образовалась подземная и надземная части: стебель и листья оказались на воздухе, а корень – в почве. Так появилась проблема передачи пластических и минеральных соединений. Благодаря появлению проводящих тканей, стала возможной циркуляция жидкости, минералов, АТФ по всему организму.

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

Ксилема (древесина)

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.

Мертвыми элементами проводящей ткани растений могут быть сосуды (трахеи) и трахеиды, так как состоят из отмерших клеток.

Трахеи — представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений — до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды — одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их — около 1мм, но может быть 4-7мм (сосна). Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки. Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.

Общность строения трахей и трахеид объясняется единой функцией. По трахеям и трахеидам идет восходящее движение минерализованной воды от корней в надземную часть растения. Подробнее про поглощение воды корнем.

Строение проводящей ткани растений

Строение проводящей ткани растений

Флоэма (луб)

Флоэма также состоит из трех тканей:

  • Собственно проводящей (ситовидная система);
  • механической (лубяные волокна);
  • паренхиматозной.

Наиболее важные структурные единицы флоэмы это ситовидные трубки и клетки, которые объединены в единую систему посредством специальных полей и межклеточных контактов.

Ситовидные трубки — продолговатые, живые клетки, размеры их колеблются в пределах от 0,1 миллиметра до 2мм. Как и сосуды, они наиболее длинны у лиан. Продольные стенки их также утолщены, но остаются целлюлозными и не одревесневают. Поперечные оболочки продырявливаются, подобно ситу и называются ситовидными пластинками.

Органические продукты синтеза (энергия АТФ) перемещаются от листьев, к нижерасположенным частям, по разобщенным протопластам (смесь вакуолярного сока с цитоплазмой).

Цитоплазма клеток сохраняется, а ядро разрушается в самом начале формирования трубок. Даже при отсутствии ядра, клетки не отмирают, но их дальнейшая деятельность зависит от специфических клеток-спутниц. Они находятся рядом с ситовидными трубками. Это живые, тонкие, вытянутые по направлению ситовидной трубки клетки. Клетки спутницы являются своеобразной кладовой ферментов, которые через поры выделяются в членик ситовидной трубки и стимулируют перемещение органических веществ по ним.

Клетки-спутницы и ситовидные трубки тесно взаимосвязаны и не могут функционировать отдельно.

Ситовидные клетки не имеют специальных клеток-спутниц и не утрачивают ядра, ситовидные поля хаотично разбросаны на боковых стенках.

Проводящие ткани растений их строение и функции кратко излажены в таблице.

Структура Расположение Значение
Ксилема – проводящая ткань, состоит из полых трубок – трахеид и сосудов с уплотненной клеточной оболочкой.Древесина (ксилема), внутренняя часть дерева, которая находится ближе к осевой части, у травяных растений – больше в корневой системе, стебле.Восходящее движение воды и минеральных веществ от почвы в корни, листья, соцветия.
Флоэма имеет клетки-спутницы и ситовидные трубки, которые построены из живых клеток.Луб (флоэма) расположен под корой, формируется вследствие деления клеток камбия.Нисходящее движение органических соединений от зеленых, способных к фотосинтезу частей в стебель, корень.

Где находится проводящая ткань у растений

Если сделать поперечный срез дерева, можно увидеть несколько слоев. Вещества перемещаются по двум из них: по древесине и в лубе.

Луб (отвечает за нисходящее движение) находится под корой и при делении инициальных клеток к лубу отходят элементы оказавшиеся снаружи.

Древесина образуется из клеток камбия, что отошли к центральной части дерева и обеспечивает восходящий ток.

Читайте также: