Этапы решения задач на эвм реферат

Обновлено: 02.07.2024

Этапы подготовки и решения задач на ЭВМ На ЭВМ могут решаться задачи различного характера, например: научно-инженерные; разработки системного программного обеспечения; обучения; управления производственными процессами и т. д. В процессе подготовки и решения на ЭВМ научно -инженерных задач можно выделить следующие этапы:

постановка задачи; математическое описание задачи; выбор и обоснование метода решения; алгоритмизация вычислительного процесса; составление программы; отладка программы; решение задачи на ЭВМ и анализ результатов.

В задачах другого класса некоторые этапы могут отсутствовать, например, в задачах разработки системного программного обеспечения отсутствует математическое описание. Перечисленные этапы связаны друг с другом. Например, анализ результатов может показать необходимость внесения изменений в программу; алгоритм или даже в постановку задачи. Для уменьшения числа подобных изменений необходимо на каждом этапе по возможности учитывать требования, предъявляемые последующими этапами. В некоторых случаях связь между различными этапами, например, между постановкой задачи и выбором метода решения, между составлением алгоритма и программированием, может быть настолько тесной, что разделение их становится затруднительным.

Постановка задачи. На данном этапе формулируется цель решения задачи и подробно описывается ее содержание. Анализируются характер и сущность всех величин, используемых в задаче, и определяются условия, при которых она решается. Корректность постановки задачи является важным моментом, так как от нее в значительной степени зависят другие этапы.

Математическое описание задачи. Настоящий этап характеризуется математической формализацией задачи, при которой существующие соотношения между величинами, определяющими результат, выражаются посредством математических формул. Так формируется математическая модель явления с определенной точностью, допущениями и ограничениями. При этом в зависимости от специфики решаемой задачи могут быть использованы различные разделы математики и других дисциплин. |

Математическая модель должна удовлетворять по крайней мере двум требованиям: реалистичности и реализуемости. Под реалистичностью понимается правильное отражение моделью наиболее существенных черт исследуемого явления.

Реализуемость достигается разумной абстракцией, отвлечением от второстепенных деталей, чтобы свести задачу к проблеме с известным решением. Условием реализуемости является возможность практического выполнения необходимых вычислений за отведенное время при доступных затратах требуемых ресурсов.

Выбор и обоснование метода решения. Модель решения задачи с учетом ее особенностей должна быть доведена до решения при помощи конкретных методов решения. Само по себе математическое описание задачи в большинстве случаев трудно перевести на язык машины. Выбор и использование метода решения задачи позволяет привести решение задачи к конкретным машинным операциям. При обосновании выбора метода необходимо учитывать различные факторы и условия, в том числе точность вычислений, время решения задачи на ЭВМ, требуемый объем памяти и другие.

Одну и ту же задачу можно решить различными методами, при этом в рамках каждого метода можно составить различные алгоритмы. Алгоритмизация вычислительного процесса. На данном этапе составляется алгоритм решения задачи согласно действиям, задаваемым выбранным методом решения. Процесс обработки данных разбивается на отдельные относительно самостоятельные блоки, и устанавливается последовательность выполнения блоков. Разрабатывается блок-схема алгоритма.

Составление программы. При составлении программы алгоритм решения задачи переводится на конкретный язык программирования. Для программирования обычно используются языки высокого уровня, поэтому составленная программа требует перевода ее на машинный язык ЭВМ. После такого перевода выполняется уже соответствующая машинная программа.

Процесс решения задач на компьютере – это совместная деятельность человека и ЭВМ. На долю человека приходятся этапы, связанные с творческой деятельностью – постановкой, алгоритмизацией, программированием задач и анализом результатов, а на долю персонального компьютера – этапы обработки информации в соответствии с разработанным алгоритмом.

Первый этап постановказадачи. На этом этапе участвует человек, хорошо представляющий предметную область задачи (биолог, экономист, инженер). Он должен чётко определить цель задачи, дать словесное описание содержания задачи и предложить общий подход к её решению.

Второй этап – выбор метода решения (математическое или информационное моделирование). Цель данного этапа – создать такую математическую модель решаемой задачи, которая могла быть реализована в компьютере. Существует целый ряд задач, где математическая постановка сводится к простому перечислению формул и логических условий.

Этот этап тесно связан с первым, и его можно отдельно не рассматривать. Однако возможно, что для полученной модели известны несколько методов решения, и необходимо выбрать лучший. Заметим, что появление средств визуального моделирования объектов позволяет в некоторых случаях освободить программиста от выполнения данного этапа.

Третий этап алгоритмизация задачи. На основе математического описания необходимо разработать алгоритм решения.

Алгоритм – система точных и понятных предписаний о содержании и последовательности выполнения конечного числа действий, необходимых для решения любой задачи данного типа (класса).

Задача составления алгоритма не имеет смысла, если не известны или не учитываются возможности его исполнителя (ребёнок может прочесть, но не может решить сложную задачу).

Исполнителем может быть не только человек, но и автомат. Компьютер – лишь частный, но наиболее впечатляющий пример исполнителя, чьё поведение основано на реализации алгоритма. Более того, создание персонального компьютера оказало воздействие на развитие теории алгоритмов, одной из областей дискретной математики.

Эффективный метод построения алгоритма – метод пошаговой детализации (последовательного построения). При этом сложная задача разбивается на ряд более простых. Для каждой подзадачи разрабатывается свой алгоритм. Универсальный эффективный метод построения алгоритма является основой структурного программирования (см. п. 6.16).

Если алгоритм разработан, то его можно вручить разным людям (пусть и не знакомым с сутью решаемой задачи), и они, следуя системе правил, будут действовать одинаково и получат (при безошибочных действиях) одинаковый результат.

Используются различные способы записи алгоритмов:

– словесный (запись рецептов в кулинарной книге, инструкции по использованию технических устройств);

– графический – в виде блок-схемы;

– структурно-стилизованный (для записи используется язык псевдокода).

При составлении и записи алгоритма необходимо обеспечить, чтобы он обладал рядом свойств:

Однозначность алгоритма – единственность толкования исполнителем правил выполнения действий и порядка их выполнения. Чтобы алгоритм обладал этим свойством, он должен быть записан командами из системы команд исполнителя.

Конечность алгоритма – обязательность завершения каждого из действий, составляющих алгоритм, и завершимость алгоритма в целом.

Результативность алгоритма – предполагает, что выполнение алгоритма должно завершиться получением определённых результатов.

Массовость – возможность применения данного алгоритма для решения целого класса задач, отвечающих общей постановке задачи.

Правильность алгоритма – способность алгоритма давать правильные результаты решения поставленных задач.

Четвёртый этап программирование. Программой называется план действий, подлежащих выполнению некоторым исполнителем, в качестве которого может выступать компьютер. Программа позволяет реализовать разработанный алгоритм.

Пятый этап ввод программы и исходных данных в ЭВМ с клавиатуры с помощью редактора текстов. Для постоянного хранения осуществляется их запись на гибкий или жёсткий диск.

Шестой этап тестирование и отладка программы. Исполнение алгоритма с помощью ЭВМ, поиск и исключение ошибок. При этом программисту приходится выполнять рутинную работу по проверке работы программы, поиску и исключению ошибок, и поэтому для сложных программ этот этап часто требует гораздо больше времени и сил, чем написание первоначального текста программы.

Отладка программы – сложный и нестандартный процесс, который заключается в том, чтобы протестировать программу на контрольных примерах.

Сложные программы отлаживают отдельными фрагментами.

Седьмой этап – исполнение отлаженной программы и анализ результатов.На этом этапе программист запускает программу и задаёт исходные данные, требуемые по условию задачи.

Полученные результаты анализируются постановщиком задачи, и на основании этого анализа вырабатываются соответствующие решения, рекомендации, выводы.

Языки программирования

Чтобы компьютер выполнил решение какой-либо задачи, ему необходимо получить от человека инструкции, как её решать. Набор таких инструкций для компьютера, направленный на решение конкретной задачи, называется компьютерной программой.

Современные компьютеры не настолько совершенны, чтобы понимать программы, написанные на каком-либо употребляемом человеком языке.

Команды, предназначенные для ЭВМ, необходимо записывать в понятной компьютеру форме. С этой целью применяют языки программирования – искусственные языки, алфавит, словарный запас и структура которых удобны и понятны компьютеру.

В самом общем смысле языком программирования называется фиксированная система обозначений и правил для описания алгоритмов и структур данных. Языки программирования должны быть понятны и человеку, и ЭВМ. Они делятся на языки низкого и высокого уровня.

Язык низкого уровня – средство записи программы простыми приказами – командами на аппаратном уровне. Такой язык отражает структуру данного класса ЭВМ, и поэтому иногда называется машинно-ориентированным языком. Пользуясь системой команд, понятной ПК, можно описать алгоритм любой сложности, но такая запись для сложных задач будет очень громоздкой и мало приспособленной для использования человеком.

Существенной особенностью языков низкого уровня является жесткая ориентация на определённый тип аппаратуры (систему команд процессора).

Чтобы приспособить язык программирования низкого уровня к человеку, был разработан язык символического кодирования – язык Ассемблер. Структура команд Ассемблера определяется форматами команд и данных машинного языка. Программа на Ассемблере ближе человеку, потому что операторы этого языка – те же коды, но они имеют мнемонические названия; используются не конкретные адреса, а их символьные имена.

Многочисленную группу составляют языки программирования высокого уровня. Средства таких языков допускают описание задачи в наглядном, легко воспринимаемом виде. Отличительной особенностью этих языков является ориентация не на систему команд той или иной ЭВМ, а на систему операторов, характерных для записи определённого класса алгоритмов.

К языкам программирования этого типа относятся Бейсик, Фортран, Паскаль, Си и другие. Программа на языках высокого уровня записывается системой обозначений, понятной человеку (например, фиксированным набором слов английского языка).

Все вышеперечисленные языки – вычислительные. Более молодые – декларативные (непроцедурные) языки. Отличительная черта их – задание связей и отношений между объектами и величинами и отсутствие определенной последовательности действий (один из первых – Пролог, затем C++, Delphi, Visual Basic). Эти языки дали толчок к разработке специальных языков искусственного интеллекта и языков представления знаний.

Трансляторы

Текст программы, записанный, например, на Паскале, не может быть воспринят ЭВМ непосредственно, требуется перевести его на машинный язык. Перевод программы с языка программирования на язык машинных кодов называется трансляцией (translation – перевод), а выполняется специальными программами – трансляторами. Существует три вида трансляторов: интерпретаторы, компиляторы, ассемблеры.

Интерпретатором называется транслятор, производящий покомандную обработку и выполнение исходной программы. Компилятор преобразует (транслирует) всю программу в модуль на машинном языке, после этого программа записывается в память ПК и лишь потом выполняется. Ассемблеры переводят программу, записанную на языке автокода, в программу на машинном языке.

Любой транслятор решает следующие основные задачи:

– анализирует транслируемую программу, в частности, проверяет, содержит ли она синтаксические ошибки;

– генерирует выходную программу (её часто называют объектной или рабочей) на языке команд ЭВМ;

– распределяет память выходной программы, в простейшем случае назначает каждому фрагменту программы: переменным, константам и другим объектам свои адреса в памяти.

В качестве средства для хранения, переработки передачи информации научно-технический прогресс предложил обществу компьютер (электронно-вычислительную машину – ЭВМ). Первостепенное их предназначение – решение вычислительных, математических задач. Вторым серьезным применением стало хранение информации в виде баз данных. А третье и самое масштабное – ЭВМ стало средством коммутации общества благодаря появлению компьютерных сетей. Все три возможности позволили ЭВМ вплотную влиться в жизнь цивилизованного общества. Вычислительные способности ЭВМ вышли на высокий уровень и сейчас самые важные открытия в области математики, физики, биологии, медицины не обходятся без участия ЭВМ.

ЭВМ собрало вокруг себя особое сообщество, состоящее из технических инженеров. Их основная задача – раскрыть все возможности ЭВМ и использовать эти знания для блага всего человечества. Эта наука ставит перед собой первостепенную задачу – выработать эффективные методы решения задач на ЭВМ.

Впервые идея программно управляемой счетной машины, имеющей арифметическое устройство, устройства управления, ввода и печати была выдвинута в 1822 г. английским математиком Ч. Бэббиджем. В ходе естественного развития эта идея имела два технологических прорыва. Из двух, один очевиден – это колоссальный прогресс в области технологии разработки и производства микросхем, которые становятся меньше, быстрее и экономичнее с каждым годом. Второй столь же важный прорыв – это разработка эффективных алгоритмов. Роль алгоритмов в жизни человека весьма многогранна и не сводится только к обработке информации. Однако в процессе обработки информации алгоритмы играют первостепенную роль.

Главной целью данного реферата автор считает познакомить читателей с основными этапами решения задач на ЭВМ и базовое знакомство с компьютерными алгоритмами.

  1. ЭТАПЫ РЕШЕНИЯ ЗАДАЧ НА ЭВМ
  1. Основные этапы решения задач на ЭВМ

Работа по решению прикладной задачи на компьютере проходит через следующие этапы:

  • постановка задачи;
  • математическая форматизация;
  • построение алгоритма;
  • составление программы на языке программирования;
  • отладка и тестирование программы;
  • анализ полученных результатов.

Технологическая цепочка решения задачи на ЭВМ предусматривает возможность возвратов на предыдущие этапы после анализа полученных результатов (см. рисунок 2.1.1).

Рис. 2.1.1. Технологическая цепочка решения задачи на ЭВМ.

Рассмотрим каждый из этапов.

Постановка задачи. Этап постановки задачи включает:

  • формулировку условия задачи;
  • определение конечных целей решения задачи;
  • описание исходных данных (их типов, диапазонов возможных значений, структуры и т. п.);
  • определение формы выдачи результатов.

На этом этапе необходимо четко определить, что именно известно и что требуется получить в результате.

Математическая формализация. Построение математической модели заключается в форматизации способа получения результата из исходных данных, опирается на анализ существующих аналогов и анализ технических и программных средств и включает следующую последовательность шагов:

  • разработки математической модели — формального выражения связи между исходными данными и результатом;
  • разработки структур данных, поддерживающих преобразование исходных данных в результат.

Компьютер как формальное вычислительное устройство решает задачу, выполняя команды, выраженные на языке программирования. Это становится возможным, если все необходимые для решения задачи действия формализованы, т. е. представлены как последовательность операций (математических, логических, сравнения) над определенными переменными.

Содержание работы

Введение 3
1. Этапы решения задач на ЭВМ 4
Приложение 1 7

Файлы: 1 файл

РЕФЕРАТ.docx

Автономная некоммерческая организация

высшего профессионального образования

ПЕРМСКИЙ ИНСТИТУТ ЭКОНОМИКИ И ФИНАНСОВ

Тема: ЭТАПЫ ПОДГОТОВКИ РЕШЕНИЯ ЗАДАЧ НА ЭВМ

Тимохова Наталья Анатольевна

1. Этапы решения задач на ЭВМ 4

Компьютер — многозначный термин, наиболее часто употребляется в качестве обозначения программно управляемого электронного устройства обработки информации.

Компьютер предназначен для решения разнообразных задач: научно-технических, инженерных, разработки системного программного обеспечения, обучения, управления производственными процессами и т.д.

К информационным задачам относятся все задачи управления, а также задачи, связанные с проведением математических вычислений, представлением информации в виде данных и обратные задачи воспроизведения данных, а также связанные с ними задачи отбора, сортировки, фильтрации, преобразования, хранения и транспортировки данных.

Человечество решало различные информационные задачи задолго до появления компьютеров. Наука и техника выработали для этой цели множество приемов. Основные выработанные принципы применимы и при решении задач с помощью компьютера — компьютер лишь позволил сделать решение более эффективным за счет автоматизации.

В процессе подготовки и решения на компьютере задач можно выделить следующие этапы:

1. Постановка задачи — формулируется цель решения задачи, подробно описывается ее содержание; проводится анализ условий, при которых решается поставленная задача, выявляется область определения входных параметров задачи. Анализируется условие задачи, определяются исходные данные и результаты, устанавливается зависимость между величинами, рассматриваемыми в задаче. Некоторые задачи имеют множество способов решения, поэтому необходимо выбрать способ решения (сделать постановку задачи, составить модель задачи). Для этого необходимо определить математические соотношения между исходными данными и результатом. Выполнив перевод задачи на язык математики, получают математическую модель.

2. Формальное построение модели задачи — предполагает построение модели с характеристиками, адекватными оригиналу, на основе какого-либо его физического или информационного принципа; анализируется характер и сущность величин, используемых в задаче.

3. Построение математической модели задачи — характеризуется математической формализацией задачи, при которой существующие взаимосвязи между величинами выражаются с помощью математических соотношений. Как правило, математическая модель строится с определенной точностью, допущениями и ограничениями.

4. Выбор и обоснование метода решения — модель решения задачи реализуется на основе конкретных приемов и методов решения. В большинстве случаев математическое описание задачи трудно перевести на машинный язык. Выбор и использование метода решения позволяет свести решение задачи к конкретному набору машинных команд. При обосновании метода решения рассматриваются вопросы влияния различных факторов и условий на конечный результат, в том числе на точность вычислений, время решения задачи на компьютере, требуемый объем памяти и др.

5. Построение алгоритма — на данном этапе составляется алгоритм решения задачи, в соответствии с выбранным методом решения. Процесс обработки данных разбивается на отдельные относительно самостоятельные блоки, определяется последовательность выполнения этих блоков.

6. Составление программы — алгоритм решения переводится на конкретный язык программирования.

8. Решение задачи на компьютере и анализ результатов. Теперь программу можно использовать для решения поставленной задачи. Первоначально выполняется многократное решение задачи на компьютере для различных наборов исходных данных. Получаемые результаты анализируются специалистом, поставившим задачу. Разработанная программа поставляется заказчику в виде готовой к исполнению машинной программы. К ней прилагается документация, включающая инструкцию по эксплуатации.

В задачах другого типа некоторые этапы могут отсутствовать. Например, проектирование программного обеспечения не требует построения математической модели.

Все приведенные этапы тесно связаны между собой. Например, анализ результатов может привести к необходимости внесения изменений в программу, алгоритм, метод решения или даже в постановку задачи. 1

Общая схема решения задач с помощью ЭВМ

1. Информатика : учебник/Б.В. Соболь [и др.].-Изд. 3-е, дополн. и перераб. - Ростов н/Д: Феникс, 2007. - 446 с.

Читайте также: