Есть ли пределы развития и миниатюризации компьютеров реферат

Обновлено: 05.07.2024

Дисциплина: Программирование
Тип работы: Реферат
Тема: Есть ли пределы развития и миниатюризации компьютеров?

Министерство образования Российской Федерации

Факультет экономики и управления

Кафедра анализа систем и принятия решений

“Прикладная информатика в экономике

По курсу концепций современного естествознания

Есть ли пределы

развития и миниатюризации

доцент, кандидат техн. наук

История развития и перспективы

Существующие научные разработки

Есть ли у молекулярных компьютеров

Квантовые компьютеры – миф

или грядущая реальность

История развития теории квантовых

трудности и перспективы.

Предел первый быстродействие

Перспективы развития квантовых ЭВМ

Научный прогресс движется

Прогноз - дело неблагодарное. Эта набившая оскомину прописная истина со временем не становится менее актуальной. Наоборот - с течением времени она подтверждается

многократно. Да, прогноз - дело неблагодарное, но очень любопытное. Всегда интересно хоть краешком глаза заглянуть на несколько лет вперед и посмотреть, какое оно, будущее. Всевозможные

предсказатели существовали на всем протяжении человеческой цивилизации. Кто-то предсказывал будущее по снам, кто-то - по картам таро, кто-то - по звездам. Наиболее известный из оракулов

- Нострадамус - облекал свои предсказания в стихотворные формы, известные нам как \"Центурии\".

Прогнозы делаются и сейчас. В основном политические, реже - экономические. И уж совсем редко - технологические.

Информационные технологии за последнее десятилетие в своем развитии сделали такой гигантский скачок вперед, что предсказать, каким будет, например, персональный компьютер лет

через пять, мало кто решится.

прогресс в развитии компьютерной техники за последние десятилетия невольно заставляет задуматься о будущем компьютеров

. Останутся ли они прежними или изменятся до неузнаваемости

? Сегодня много говорят о том

, что традиционные полупроводниковые ЭВМ скоро себя исчерпают

, что уже через 5–10 лет их вытеснят более мощные молекулярные

, квантовые, биологические и другие весьма экзотические вычислительные устройства

До каких пор будут уменьшаться размеры вычислительных устройств и возрастать их быстродействие

? Уже более тридцати лет развитие компьютеров подчиняется эмпирическому закону

, сформулированному Гордоном Муром в 1965 году

, согласно которому плотность транзисторов на микросхеме будет ежегодно удваиваться

. Правда со временем практика микроэлектронного устройства внесла в него небольшую поправку

, что удвоение числа транзисторов происходит каждые 18

. С каждым годом следовать

” становится все труднее

, поэтому его близкий конец предсказывался уже неоднократно

. Однако человеческий гений и изобретательность находят все новые оригинальные выходы из технологических и производственных сложностей

Информационные технологии за последнее десятилетие в своем развитии сделали такой гигантский скачок вперед, что предсказать, каким будет, например, персональный компьютер лет через пять, мало кто решится.

Содержание

Введение. с.3
Глава 1 . История развития и перспективы молекулярной электроники
1.1 “Прошлое” молекулярной схемотехники. с.5
1.2 Существующие научные разработки молекулярных компьютеров. c.6
3. Абстракционное “конструирование” молекулярного компьютера. с.7
1.4 Есть ли у молекулярных компьютеров будущее. с.10
Глава 2 . Квантовые компьютеры – миф или грядущая реальность ?
2.1 История развития теории квантовых вычислительных устройств. с.12
2. Производство квантовых компьютеров:технологические трудности и перспективы. с.14 a. a) Предел первый быстродействие. с.15 b) Предел второй : память. с.16 b. c) Перспективы развития квантовых
ЭВМ. с.17
Заключение. с.19
Библиография. с.21

Работа состоит из 1 файл

про компьютеры.docx

Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Ряд крупнейших технических достижений 20 в. основан на специфических законах квантовой механики, которая, в частности, создала фундамент для такой бурно развивающейся области физики как квантовая электроника и заложила основы для формирования теории квантовых вычислений.

В 1960-е годы американский физик Р.Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления – это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют [2].

К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли в выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (CH4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация : зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной (!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданный потенциал и начальное состояние. На это, в частности, обратил внимание русский математик

Ю.И.Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств.[1] В 1980-е годы эту же проблему изучал американский физик П.Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый

Д.Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог. [1]

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р.Фейнман. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.

В 1996 году коллега Шора по работе в Lucent Technologies

Л.Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных – телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх.

Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума. Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема – ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических. Пути решения этой проблемы наметил в 1995 году П.Шор, разработав схему кодирования квантовых состояний и коррекций в них ошибок.

2.2 Производство квантовых компьютеров : технологические трудности и перспективы

Прототипы квантовых компьютеров существуют уже сегодня. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом (IBM), объявила о сборке

5-битового квантового компьютера. [4] Несомненно, это большой успех. К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности.

К таким трудностям (мы будем называть их пределами) можно отнести следующие :

a) Предел первый : быстродействие

Все логические операции, осуществляемые компьютером, основаны на переключении битов между условными значениями “0” и “1”, которым отвечают два устойчивых физических состояния. Во всех случаях скорость переключения битов и, следовательно, быстродействие вычислительного устройства определяются тем, насколько быстро протекает соответствующий физический процесс. Например, время переключения транзистора тем меньше, чем больше подвижность электронов в полупроводнике, скорость перехода молекулы из одной формы в другую определяется вероятностью этого события и т.д. Времена процессов переключения, как правило, очень малы (от 1 до 10-15 секунды). И все же они конечны.

С точки зрения квантовой механики, утверждает физик из

Массачусетского технологического института (США) Сет Ллойд, скорость вычисления ограничена полной доступной энергией [7]. В 1998 году это положение было теоретически доказано математиками из Массачусетского технологического университета (США) Норманом Марголусом и Львом

Левитиным. Им удалось показать, что минимальное время преключения бита равно одной четверти постоянной Планка, деленной на полную энергию:

Таким образом, чем больше энергия компьютера, используемая им для вычислений, тем быстрее он считает. По мнению Ллойда, “предельный” компьютер – это такой компьютер, вся энергия которого будет расходоваться только на вычислительный процесс.

Исходя из приведенного соотношения, оценим, к примеру, быстродействие некоторого гипотетического компьютера массой 1 килограмм, состоящего всего из одного бита. Как известно, полная энергия тела задается фундаментальным соотношением E=mc2, где m- масса объекта, с – скорость света в вакууме. Итого имеем 1017 Дж. Если бы всю эту энергию , “погребенную” в массе нашего компьютера, можно было бы использовать в вычислительном процессе, время переключения бита достигло бы фантастически малых величин порядка 10-51 секунды!

Полученное значение существенно больше “планковского промежутка времени”, (10-44 секунды) – минимального временного интервала, который, с точки зрения квантовой гравитации, требуется для протекания любого физического события.

Однако мы рассмотрели однобитный компьютер, в то время как на практике любой ЭВМ требуется не один, а множество битов. Если энергию нашего гипотетического компьютера распределить между миллиардами битов, время переключения уже каждого из них будет уже меньше планковского. Важно, что при этом общее число переключений всех битов за секунду останется прежним – 1051.

По сравнению с предельным компьютером Ллойда нынешние ЭВМ – просто черепахи : при тактовой частоте порядка 500 мегагерц типичный современный компьютер выполняет лишь 1012 операций в секунду.

Предельный компьютер работает в 1039 раз быстрее!. А если он будет весить не килограмм, а тонну, быстродействие возрастет еще в 1000 раз.

В чем причина медлительности современных ЭВМ? Все дело в том, считает Ллойд, что полезную работу в них совершают лишь электроны, перемещающиеся внутри транзисторов. Что касается основной массы компьютера, то она не только не используется как источник энергии, но, напротив, препятствует свободному движению носителей зарядов.

Единственная ее функция – поддерживать ЭВМ в стабильном состоянии.

Как избавиться от бесполезной массы? Надо превратить ее в кванты электромагнитного излучения - фотоны, которые, как известно, не имеют массы покоя (считается, что она равна 0). Тогда вся энергия, запасенная в массе, перейдет в энергию излучения, и компьютер из неподвижного серого ящика превратится в светящийся огненный шар! Как ни странно,но именно так может выглядеть предельный компьютер,считает

Ллойд. Его вычислительная мощность будет огромна: менее чем за одну наносекунду он сможет решать задачи, на которые у современных ЭВМ ушло бы время, равное жизни вселенной!

Однако, остается еще проблема ввода-вывода информации. Как бы мы не совершенствовали процесс ввода-вывода, описанная модель

“предельного” компьютера имеет один принципиальный недочет. Допустим, максимальный размер (например,диаметр) нашего компьютера равен 10 сантиметрам. Поскольку фотоны движутся со скоростью света, то все 1031 битов информации, хранящейся в нашем компьютере, не могут быть

“скачаны” из него быстрее, чем за время, требующееся свету для прохождения расстояния в 10 сантиметров – то есть за 3-10 секунды.Значит, максимальная скорость обмена информацией компьютера с внешним миром равна 1041 бит в секунду. А предельная скорость обработки информации, как мы уже выяснили раньше, составляет 1051 бит в секунду, что в десять миллиардов раз быстрее. Таким образом, необходимость связи компьютера с внешним миром, а также отдельных его частей друг с другом может приводить к существенным потерям в скорости вычислений. “Отчасти решить эту проблему можно, заставив куски копьютера работать независимо друг от друга, в параллели”,-отмечает

Есть ли способ повысить скорость ввода-вывода? ”Да,-говорит

Ллойд,-надо уменьшать размера компьютера.” Тогда обмен информацией будет происходить быстрее, а объем памяти станет меньше. При этом доля последовательных операций в компьютере может возрасти, а доля параллельных – уменьшиться.

Заметим, что до сих пор все наши рассуждения касались только быстродействия предельного компьютера, но мы забыли о такой важной его характеристике, как память. Существует ли предел запоминающей способности вычислительных систем?

b) Предел второй : память

Память компьютера ограничена его энтропией, утверждает Сет

Ллойд, то есть степенью беспорядка, случайности в системе. [5] В теории информации понятие энтропии – аналог понятия количества информации. Чем более однородна и упорядочена система, тем меньше информации она в себе содержит.

Величина энтропии S пропорциональна натуральному логарифму числа различимых состояний системы (W): S =k*ln(W), где k – постоянная Больцмана. Смысл этого соотношения очевиден: чем больший объем информации вы хотите сохранить, тем больше различимых состояний вам потребуется. Например, для записи одного бита информации необходимо два состояния: включено и выключено. Чтобы записать два бита, потребуется уже 4 различных состояния, 3 бита - 8, n битов –

Таким образом, чем больше различных состояний в системе, тем выше ее запоминающая способность.

Чему равна энтропия “предельного” квантового компьютера?

Во-первых, она зависит от объема компьютера: чем он больше, тем большее число возможных положений в пространстве могут занимать его частицы. Во-вторых, необходимо знать распределение частиц по энергиям.

Для этого можно воспользоваться готовым расчетом, выполненным еще сто лет назад Максом Планком при решении задачи о так называемом черном теле. Что же мы получим? Оказывается, литр квантов света может хранить около 1031 битов информации – это в 1020 раз больше, чем можно записать на современный 10-гигабайтный жесткий диск! Откуда такая огромная разница? По мнению Ллойда ,все дело в том, что способ, которым в современных компьютерах записывается и хранится информация, чрезвычайно неэкономен и избыточен. За хранение одного бита отвечает целый “магнитный домен” – а ведь это миллионы атомов . Таким образом, вновь встает вопрос об уменьшении размеров ЭВМ.

Прогноз - дело неблагодарное. Эта набившая оскомину прописная истина со временем не становится менее актуальной. Наоборот - с течением времени она подтверждается многократно. Да, прогноз - дело неблагодарное, но очень любопытное. Всегда интересно хоть краешком глаза заглянуть на несколько лет вперед и посмотреть, какое оно, будущее. Всевозможные предсказатели существовали на всем протяжении человеческой цивилизации. Кто-то предсказывал будущее по снам, кто-то - по картам таро, кто-то - по звездам. Наиболее известный из оракулов - Нострадамус - облекал свои предсказания в стихотворные формы, известные нам как "Центурии".
Прогнозы делаются и сейчас. В основном политические, реже - экономические. И уж совсем редко - технологические.
Информационные технологии за последнее десятилетие в своем развитии сделали такой гигантский скачок вперед, что предсказать, каким будет, например, персональный компьютер лет через пять, мало кто решится.

Стремительный прогресс в развитии компьютерной техники за последние десятилетия невольно заставляет задуматься о будущем компьютеров. Останутся ли они прежними или изменятся до неузнаваемости? Сегодня много говорят о том, что традиционные полупроводниковые ЭВМ скоро себя исчерпают. Ожидается, что уже через 5–10 лет их вытеснят более мощные молекулярные, квантовые, биологические и другие весьма экзотические вычислительные устройства.

До каких пор будут уменьшаться размеры вычислительных устройств и возрастать их быстродействие? Уже более тридцати лет развитие компьютеров подчиняется эмпирическому закону, сформулированному Гордоном Муром в 1965 году, согласно которому плотность транзисторов на микросхеме будет ежегодно удваиваться. Правда со временем практика микроэлектронного устройства внесла в него небольшую поправку : сегодня считается, что удвоение числа транзисторов происходит каждые 18 месяцев. С каждым годом следовать “закону Мура” становится все труднее, поэтому его близкий конец предсказывался уже неоднократно. Однако человеческий гений и изобретательность находят все новые оригинальные выходы из технологических и производственных сложностей, встающих на пути безудержной “компьютерной гонки”.И все же прогресс вычислительной техники не может продолжаться вечно, рано или поздно мы наткнемся на предел, обусловленный как законами природы, так и экономическими законами.

Вот почему сегодня специалисты в разных областях науки и техники ищут альтернативные пути дальнейшего развития микроэлектроники.

Каков же будет самый последний, самый мощный, ”предельный” компьютер? Вряд ли сегодня можно со стопроцентной уверенностью сказать, как именно он будет устроен, поэтому неудивительно то, что вопрос о будущем электронных вычислительных устройств и , в частности, компьютеров до сих пор остается открытым.

Поэтому целью данной работы является выяснение вопроса о дальнейших возможностях и путях развития ЭВМ .

В соответствии с поставленной целью, задачами данной работы являются :

1) Анализ ведущих из существующих на сегодняшний день теорий (концепций) вычислительных устройств (компьютеров в частности) в совокупности с кратким экскурсом в историю их развитию, что, на наш взгляд, необходимо для составления детальных представлений о задачах, проблемах и методах их решений в данной теории и тесно связано с возможными вариантами прогресса компьютерной техники на базе данной теории .

2) Прогноз возможных путей развития ЭВМ на основе рассмотренных теорий.

Актуальность вышеобозначенной темы бесспорна : войдя в жизнь человеческого общества, компьютеры взяли на себя огромный круг задач – начиная от простейших алгебраических вычислений и кончая организацией процессов биржевой деятельности, международных телеконференций, моделированием сложных физических, химических, технологических процессов, мультимедийными и виртуальными развлечениями, наконец. Именно благодаря ЭВМ человечество вышло в космос, открыв себе дорогу к освоению огромных космических пространств, сотен планет и миров. Во многом благодаря компьютерной технике стало возможным появление и развитие таких современных наукоемких отраслей как молекулярная биология, генная инженерия, квантовая физика и др., стала возможным обширная интеграция накопленных научных знаний. И это, бесспорно, не предел. Вопрос лишь в том, какие еще функции сможет взять на себя ЭВМ и как скоро это произойдет. В рамках данной работы мы и попытаемся ответить на данный вопрос, рассмотрев перпективы развития ЭВМ в рамках двух ведущих научных концепций – квантовой механики и молекулярной электроники (молетроники).

История развития и перспективы молекулярной электроники

1.1 “Прошлое” молекулярной схемотехники

Впервые теория использования органической молекулы в качестве элементной базы микроэлектроники возникла в 1974 году, когда ведущие инженеры фирмы IBM А.Авирам и М.Ратнер предложили модель выпрямителя (диода), состоящего из одной органической молекулы. Две половинки этой молекулы обладают противоположными свойствами по отношению к электрону : одна может только отдавать электрон (донор), а другая – только принимать (акцептор). Если поместить такую ассиметричную молекулу между двумя металлическими электродами, то вся система будет проводить ток только в одном направлении .

Предложения Авирама и Ратнера о создании молекулярных систем с направленной электронной проводимостью инициировали экспериментальные работы по синтезу и изучению свойств таких молекул. Выдвигались также идеи создания на их основе аналога полупроводникового транзистора за счет внедрения между донорной и акцепторной частями молекулы дополнительной управляющей молекулярной группировки (затвора), свойства которого могут быть изменены каким-либо воздействием (подачей напряжения, освещением и т.п.). Если соединить два таких транзистора, получится аналог полупроводникового триггера (или вентиля) – устройства, которое может переключаться между двумя устойчивыми состояниями, выполняющими роль логического “0” и “1”.А это, по сути, базовый элемент любого компьютера, работающего по принципу бинарной (двоичной) логики.

Следующим важным шагом в развитии молекулярной схемотехники стал отказ от простого копирования полупроводниковых схем с заменой в них обычных транзисторов на молекулярные. Дело в том, что существует множество как природных, так и синтезированных человеком молекул, которые сами по себе могут служить логическими элементами. Их разделяют на два типа. К первому относятся молекулы, обладающие двумя устойчивыми состояниями, которым можно приписать значения “0” и “1”. Научившись переключать их из одного состояния в другое с помощью внешних воздействий, мы фактически получим уже готовый вентиль. Молекулы второго типа содержат фрагменты, способные выполнять роль упомянутых выше управляющих группировок. Одна такая молекула может работать как логически активный элемент НЕ-И,НЕ-ИЛИ и т.д. На основе уникальных свойств органических молекул уже сегодня разработано множество вариантов схем для гипотетического молекулярного компьютера.

Раздел: Информатика, программирование
Количество знаков с пробелами: 42295
Количество таблиц: 0
Количество изображений: 0


За последние четыре десятилетия компьютерные микросхемы нашли свое применение практически во всех электронных устройствах в мире. За это время они стали меньше, дешевле и мощнее, но для ряда исследователей все еще есть много возможностей для того, чтобы раздвинуть границы миниатюризации.

Ключевые слова : КМОП-микросхема, транзистор, полупроводники.

Первое поколение КМОП-микросхем (комплементарные металлооксидные полупроводники) было основано на процессе проектирования с литографическими элементами, определяющими области внутри транзисторов размером 10 микрометров и более. Чипы в большинстве используемых сегодня продуктов имеют характеристики более чем в сто раз меньше — всего 65 нанометров или 90 нм, что примерно в 1000 раз меньше ширины человеческого волоса. Это может быть мало, но в конкурентной полупроводниковой промышленности, где размер имеет большое значение, он недостаточно мал. [3]

Уменьшение минимального размера элемента означает больше транзисторов на чип, больше транзисторов означает большую вычислительную мощность, а большая мощность означает, что электронные системы — мобильные телефоны, ПК, спутники, транспортные средства и т. д. — улучшат функциональность и производительность. [1] И поскольку обработанные кремниевые пластины, из которых изготавливаются микросхемы, дороги (создание завода по их производству стоит 3 миллиарда евро), использование меньшего количества пластин, чтобы делать больше, означает, что тенденция к снижению стоимости таких устройств может продолжиться. [4]

За последние три с половиной года STMicroelectronics координировала два крупных проекта, финансируемых ЕС, чтобы раздвинуть границы миниатюризации в полупроводниковой промышленности. Инициатива NanoCMOS, завершившаяся в июне 2006 года, позволила разработать технологию создания 45-нанометрового поколения (или технологического узла) микросхем.

При таком миниатюрном размере производство полупроводников продолжает проверять закон Мура — предположение, высказанное соучредителем Intel Гордоном Э. Муром в 1965 году, согласно которому количество транзисторов, которые можно рентабельно разместить на кристалле, будет удваиваться примерно каждые два года. [2]

В частности, в масштабе 32 нм квантово-механические эффекты играют большую роль. Одной из основных проблем, решенных исследователями Pullnano, является уменьшение утечки тока на логическом вентиле с помощью изолятора на основе соединения гафния с более высокой диэлектрической прочностью, чем традиционный диоксид кремния. [1]

Но по мере того, как узлы становятся все меньше, неизбежно будет достигнут момент, когда будет просто невозможно продолжать уменьшать минимальный размер элемента, чтобы освободить место для большего количества транзисторов. Исследователи говорят, что для полупроводниковой промышленности он, вероятно, будет около 16 или 11 нм. [5]

Даже в этом случае до достижения этой точки еще есть время. Должен начаться отбор образцов 45-нанометровых узловых полупроводников, разработанных в рамках проекта NanoCMOS.

Потребители получат наибольшую выгоду от продолжения этой тенденции к миниатюризации. Экономия на масштабе, созданная в полупроводниковой промышленности стоимостью 260 миллиардов долларов (+/- 183 миллиарда евро), сделала электронику доступной для масс, поскольку стоимость транзистора упала в 2500 раз за последние 35 лет. Это произошло благодаря уменьшению размеров элементов и увеличению производственных мощностей транзисторов примерно в 30 000 раз. [4]

Однако миниатюризация не может продолжаться бесконечно. Уже в 2021 году ожидается появление процессоров, сделанных по 3-нанометровому технологическому процессу, т. е. минимальный размер элемента составляет 3 нанометра. Для сравнения размер атома кремния, повсеместно используемого при изготовлении процессоров, составляет 0.21 нанометра. Очень скоро мы упрёмся в ограничения, связанные с атомарной структурой вещества.

  1. Н. Л. Прохоров, К. В. Песелев. Перспективы развития вычислительной техники. Книга 5: Малые ЭВМ. М.,Наука.2009.
  2. Л.Федичкин. “Квантовые компьютеры”(c. 24–29). Наука и жизнь. Москва .,издательство “Пресса”.2011.№ 1.
  3. Р.Фейнман. Моделирование физики на компьютерах // Квантовый компьютер и квантовые вычисления: Сб. в 2-х т. — Ижевск: РХД, 2010. Т2, с96–123.
  4. А.Шишлова.“Последний из компьютеров” (c. 68–72). Наука и жизнь. М., издательство “Пресса”.2011.№ 2.
  5. А.Шишлова.”Молетроника. Системы исчисления. Органические материалы в современной микроэлектронике”(c. 64–70).Наука и жизнь. Москва, издательство “Пресса”.2013.№ 1.

Основные термины (генерируются автоматически): полупроводниковая промышленность, минимальный размер элемента, CMOS, вычислительная мощность, граница миниатюризации, транзистор.

Читайте также: