Энергосберегающие технологии в компьютерной технике реферат

Обновлено: 16.05.2024

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

В современном мире сложилось состояние сохранения и развития цивилизации на Земле для обеспечения человечества достаточным количеством топлива и энергии. Ограниченные запасы традиционных топливно-энергетических ресурсов заставили обратиться к энергосбережению как к одному из основных элементов современной концепции мирового энергетического развития.

Невозобновляемые источники энергии: Торф, уголь, нефть, природный газ.

Возобновляемые источники энергии: Твердая биомасса и продукты животного происхождения, промышленные отходы, гидроэнергетика, геотермальная энергия, солнечная энергия, энергия ветра, океанские волны и приливы.

Экономия энергии

Энергосбережение означает эффективное использование энергии на всех этапах преобразования энергии — от добычи первичных источников энергии до потребления всех видов энергии конечными потребителями.

Меры по энергосбережению могут быть разными. Одним из наиболее эффективных способов повышения эффективности использования энергии является использование современных энергосберегающих технологий.

Энергосберегающие технологии не только значительно снижают затраты на энергию, но и имеют очевидные экологические преимущества.

Основные направления эффективного энергопотребления

Энергосбережение в компании: Технологии и новые возможности.

К сожалению, энергосбережение в компаниях, как правило, оставляет желать лучшего. Большинство заводов и фабрик имеют высокопроизводительные двигатели, которые потребляют до 60% больше энергии, чем необходимо. Для оптимизации процессов используются электрические приводы со встроенными энергосберегающими функциями. Гибко варьируя скорость в зависимости от нагрузки, можно достичь экономии энергии в 30-50%.

Сокращение теплопотерь и энергосбережение в зданиях различного назначения.

Более 30% всех энергоресурсов используется для отопления жилых, офисных и промышленных зданий. Поэтому энергосберегающие технологии в зданиях неэффективны для различных целей без снижения непроизводительных потерь тепла.

Важнейшей мерой по экономии энергии в зданиях будет также установка отопительных батарей с автоматическим управлением. Использование вентиляционных систем с функцией рекуперации тепла позволит сэкономить еще больше энергии.

Экономия энергии в школе: долгосрочный вклад в будущее.

Успех мер по энергосбережению невозможен без массового распространения информации об энергосбережении среди населения. В настоящее время в нашей стране начинаются кампании по внедрению энергосберегающих технологий в зданиях различного назначения: не только на предприятиях, но и, например, в школах. Энергосбережение в школах имеет огромный потенциал. С детства, привыкнув к бережному использованию электричества, сегодняшние школьники в будущем смогут добиться прорыва в энергосбережении по всей стране. В современных школах активно внедряются экологические программы, издаются учебники, проводятся тренинги, внеклассные мероприятия, конкурсы на лучшие проекты по энергосбережению и др. Все эти меры позволяют нам с уверенностью смотреть в будущее процветания нашей планеты.

Большинство современных энергосберегающих технологий

Ротационные пульсационные установки для отопления и горячего водоснабжения.

Такие генераторы позволяют нагревать воду, инициируя физические и химические процессы в этой воде за счет высокой частоты вращения ротора (5 000 об/мин), сопровождающиеся высоким выбросом тепловой энергии. Ротор машины приводится в действие электродвигателем. Эти теплогенераторы отличаются высокой эффективностью и коэффициентом преобразования энергии, составляющим около 100%. Чем выше мощность агрегата, тем выше его КПД за счет увеличения удельной поверхности ротора-статора.

Минимальная мощность теплогенератора — 5 кВт.

Макс — ограничивается только доступной мощностью двигателя и назначенной мощностью потребителя.

Такие теплогенераторы используются для горячего водоснабжения, автономного отопления зданий и сооружений.

Преимущества вращающегося, пульсирующего нагревателя:

Относительно дешево по сравнению с котельными.

Небольшие монтажные размеры и простота установки в существующую отопительную систему.

Автоматическая система управления позволяет эксплуатировать систему без присутствия персонала.

Специальная обработка воды не требуется.

По сравнению с газовым котлом предельные значения по газу не требуются.

Отсутствуют выбросы продуктов сгорания, т.е. генератор является экологически чистым.

Значительная экономия затрат и быстрая окупаемость в случае замены центрального отопления (от отопительных систем) и горячего водоснабжения гидротермальным генератором

Принцип работы датчика.

Принцип работы роторного пульсационного генератора заключается в перекачивании жидкости через роторно-статорную систему, где линейная скорость потока жидкости достигает 50-100 м/с и, благодаря высоким растягивающим напряжениям, приводит к образованию кавитационных процессов в жидкости, обеспечивая ее нагрев.

Заключение

Суть процессов заключается в образовании и распаде пузырьков пара или газа при адиабатическом нагревании до 10000 С. Тепло вырабатывается самой жидкостью, без поверхностей теплообмена обеспечивает очень эффективный процесс нагрева. КПД гидротермального генератора (отношение полученной тепловой энергии к потребленной электроэнергии) близок к единице.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Минск 2012
СОДЕРЖАНИЕ
Введение3
Современныеинформационные технологии и энергосбережение4
Энергосберегающие технологии строительства в Беларуси 8
Пассивные дома в Европе 11
Заключение 13
Список использованных источников14

ВВЕДЕНИЕ
Проблема энергосбережения, повышенное внимание к которой характерно для последнего десятилетия, как во всем мире, так и в нашей стране, имеет много аспектов. В отличие от часто обсуждаемых технических итехнологических вопросов энергосбережения, нам хотелось бы остановиться на том аспекте проблемы, который условно можно назвать "информационным".
Информационные технологии, связанные, прежде всего с использованием современной компьютерной техники и средств сбора и передачи данных, открывают новые возможности при решении вопросов энергосбережения. Если компьютеризация решения задач оптимизации технологическихпроцессов (например, наладка тепловой сети), минимизации потерь и т.п. очевидно связана с экономией энергетических ресурсов, то связь с энергосбережением других задач, решаемых в процессе компьютеризации предприятий энергоснабжения, не столь очевидна.
Опыт разработки и внедрения программ и программных комплексов для тепло- и электроснабжения предприятий показывает, что значительнымэнергосберегающим эффектом обладает компьютеризация расчетов с потребителями энергии. В значительной степени это связано с дисциплинирующим фактором, сопровождающим взаимоотношения поставщика и потребителя, возникающим в процессе компьютеризации учета. Использование компьютеров освобождает сотрудников энергоснабжающих предприятий от значительной доли рутинного труда, связанного с проведением расчетов оплаты отпущеннойэнергии, подготовки платежных документов, учета проведенных оплат, должников и т.п.; они могут большее внимание уделять вопросам контроля потребителей. Компьютеризация расчетов с потребителями открывает практическую возможность перехода на новые, современные формы расчетов, такие как использование предварительной оплаты, проведение гибкой тарифной политики и т.д.
Важно, что компьютеризация, аособенно офисная компьютеризация, среди всех направлений энергосбережения имеет наилучшее соотношение "результат/цена". В отличие от других направлений, компьютеризация не требует значительных материальных вложений, а имеющиеся в настоящий момент невысокие цены на средства вычислительной техники и соответствующее программное обеспечение (ПО) позволяют развивать это направление практически всемэнергоснабжающим предприятиям. Немаловажным фактором является и то, что использование современных информационных технологий существенно меняет характер труда работников абонентских отделов и бухгалтерий предприятий, делает его более привлекательным, что в свою очередь обеспечивает приход в эту сферу деятельности более квалифицированных кадров.

СОВРЕМЕННЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ЭНЕРГОСБЕРЕЖЕНИЕ
Любыеэнергосберегающие системы в наше время разрабатываются на основе передовых решений в информационных технологиях. Применение современной теплоизоляции на трубопроводах различного назначения, внедрение энергосберегающих технологий на трубопроводном транспорте является актуальной экономической задачей развития экономики нашей страны на ближайшие десятилетия. Особенно актуальным вопросами являются применения на трубопроводахсовременных теплоизоляционных материалов, запорной арматуры, технологий хранения и перекачки носителей по трубопроводным системам. Частным случаем применения энергосберегающих технологий на трубопроводах – использование в качестве теплоизоляционного материала пенополиуретана (ППУ).
Эффективное использование энергетических ресурсов, энергии и.

Ресурсо- и энергосберегающие технологии использования вычислительной техники

Амортизация и сбои в электрической сети
Амортизация (или износ) в данном случае подразумевает старение компонентов персонального компьютера и, в первую очередь, содержимого системного блока.
Понятно, что ни одна вещь со временем не становится новее: в конце концов, любой материал в природе подвержен разложению – это так называемое естественное старение. Наряду с течением времени амортизации способствуют и другие факторы: наличие в устройстве движущихся частей, высокий температурный режим, неблагоприятная окружающая среда и др.
Высокий температурный режим – важная проблема компьютерной техники. Все внутренние устройства персонального компьютера (процессор, блок питания, печатные платы, приводы, жесткие диски) в процессе работы производят значительное количество тепла. Перегрев различных частей системного блока приводит к сбоям и полному выходу из строя персонального компьютера.

Для качественной сквозной вентиляции в переднюю часть корпуса системного блока можно установить дополнительный вентилятор.
Если вентилятор блока питания закачивает воздух вовнутрь, то передний вентилятор должен выкачивать его наружу и наоборот.
Для обеспечения благоприятного температурного режима и хорошей вентиляции корпуса системного блока ПК важно правильно его расположить: не помещать в места с прямым воздействием солнечных лучей и рядом с отопительными батареями, а также в места, где затруднено сквозное прохождение воздуха через корпус (например, в ниши с глухой задней стенкой).

Закачивая воздух в корпус системного блока ПК, вентилятор засасывает и частицы пыли.
Попадающая на печатные платы пыль может накапливать заряды статического электричества, что негативно сказывается на работе устройств. Попадая внутрь приводов, например, CD-ROM, пыль оседает на читающих головках и затрудняет чтение информации с носителей.

Потенциально опасна для устройств настольных компьютеров и серверов неустойчивость работы сетей переменного тока (отключения, перенапряжения, броски питания и др.).
Отключение напряжения особенно опасно для серверов компьютерных сетей, поскольку они хранят информацию, используемую многими пользователями.
Броски напряжения, или переходные процессы, иногда вызываются грозовыми разрядами и могут приводить к кратковременному повышению номинального напряжения электросети до значений от 400 до 5600 В.
Перенапряжения напряжения представляют собой кратковременные превышения нормального значения напряжения (их длительность больше, чем у бросков, но превышение напряжения меньше).
Проседания сети – это кратковременные снижения входного напряжения, обычно обусловленные изменением нагрузки в электросети (например, при включении кондиционера, пылесоса, микроволновой печи или широкоэкранного телевизора).
Частичные отключения электроснабжения – более длительные снижения входного напряжения. Обычно они происходят во время жарких летних месяцев и там, где электростанции перегружены.
Полное отключение питания вызывается выходом из строя участков электросети.
Для борьбы с перечисленными проблемами обычно устанавливают сетевые фильтры и (или) источники бесперебойного питания.

Сетевой фильтр похож на обычный удлинитель, к которому подключаются устройства, но способен сглаживать импульсные помехи в сети переменного тока.
Как правило, фильтр имеет лампочку, выключатель и встроенный предохранитель, который срабатывает в случае возникновения бросков напряжения или перенапряжений и защищает компьютер и другие, подключённые к фильтру, технические средства.

Внутреннее устройство сетевых фильтров

При полном отключении питания ИБП переходит в режим работы от встроенной батареи и некоторое время может поддерживать работоспособность подключенных к нему устройств. Это время обычно составляет 5-30 минут и определяется исходя из мощности ИБП (емкости батареи), а также мощности и количества защищаемых устройств.
При возникновении проблемы в электросети, ИБП подаёт све-товой сигнал с помощью светодиодов или звуковых сигналов. После чего пользователь может сохранить информацию на жестком диске (или ином носителе) и выключить компьютер.
Кроме того, применяются специальные административные программы мониторинга ИБП. При этом компьютер и ИБП соединяются информационным кабелем. Произошедшее в сети событие фиксируется и сведения о нём могут быть отправлены администратору сети по электронной почтой. Программа мониторинга может самостоятельно закрыть все приложения и выполнить выключение компьютера.

Выделяют интерактивные (line-interactive) и постоянно действующие (online) ИБП.
Интерактивные ИБП фильтруют поступающее на них сетевое напряжение и еще раз фильтруют его при выдаче на подключен-ные устройства. Когда входное напряжение изменяется, ИБП компенсирует (уменьшает) или усиливает (увеличивает) сигнал, обеспечивая необходимое на выходе напряжение.

При полном отказе электросети такой ИБП переключается на режим питания от батарей. При этом время переключения составляет около 8 наносекунд, что не будет замечено компьютером.

Постоянно действующие ИБП для обеспечения питания компьютера стабильным напряжением используют батареи и преобразователи (инверторы) постоянного тока, то есть в отличие от интерактивных ИБП, пони пропускают всю поступающую электроэнергию через свою батарею и ничего не делают, пока напряжение входной электросети не упадет ниже определенного порога. В этот момент ИБП переключается в режим питания от батарей. Поступающая из электросети энергия служит главным образом для зарядки батарей.
Перебои электроснабжения не приводят к перерывам, вызванным переключением режимов, так как ИБП осуществляют питание оборудования от своих батарей. Такие ИБП обычно стоят дороже интерактивных.

Мощность ИБП (УБП) измеряется в вольт-амперах (ВА), а мощность, потребляемая нагрузкой, – в ваттах (Вт).
Для определения мощности УБП, обеспечивающей работу с соответствующей нагрузкой, необходимо его мощность умножить на коэффициент мощности, как правило, равный 0,7.
Целесообразно иметь запас мощность УБП от 25–30% до 50%. Например мощность, потребляемая нагрузкой (источником питания ПК), равна 300 Вт. Для нее может подойти ИБП мощностью 400 ВА (400х0,7 = 320 Вт), но лучше использовать ИБП мощностью 600 ВА (600х0,7= 420 Вт). При этом увеличивается и время автономной работы устройств, подключённых к ИБП от нескольких до десяти и более минут.
Когда требуется поддерживать работоспособность в течение более длительного периода после отключения электропитания, используют ИБП с большей номинальной мощностью, бензиновые и дизельные электрогенераторы (мотор-генераторы) и другие устройства.
Мотор-генераторы бывают с 1-фазным и 3-фазным напряжением. Они делятся на резервные и основные. Резервные станции предназначены для периодической непродолжительной работы (от 3–7 до 15–20 часов). Они характеризуются небольшими габаритами (20–100 кг) и мощностью 0,5–10 КВт.

Основные станции служат для постоянной и продолжительной работы. Обычно они оснащаются мощными дизельными двигателями с принудительным жидкостным охлаждением и имеют мощность от 6 до 300 КВт, а вес около 300 кг.

Любые модели установок резервного питания следует оснащать блоками автоматики, позволяющими автоматически включать и выключать системы в нужный момент времени. Например, при временном отключении централизованного электроснабжения такая система должна автоматически подключиться к потребителям электроэнергии, а при его возобновлении, также автоматически вернуть резервную установку в дежурный режим, оставив потребителей подключёнными к централизованной системе.
Дизельный агрегат экономичнее расходует более дешёвое топливо и имеет почти в два раза больший ресурс работы, но почти в 2,5 раза дороже бензиновых систем. Бензиновые двигатели обычно имеют 4-тактную систему и работают на бензине А-92 (А-95), расход которого примерно в два раза больше, чем дизельного топлива. При нагрузке 50–85% от номинала дизель расходует 0,25 л/КВт в ч, а бензиновый двигатель 0,5 25 л/КВт в ч.

Альтернативой автономным электрогенераторам на базе двигателей внутреннего сгорания, особенно для сред, где требуется строгое соблюдение экологических и строительных норм, электромагнитной совместимости и при ограничении пространства, являются водородные топливные элементы (ВТЭ) – модульные элементы с полимерной электролитической мембраной. Продуктом сгорания в ВТЭ являются тепло и вода. В течение нескольких часов они могут использоваться в качестве автономных резервных источников. ВТЭ обеспечивают повышение надёжности комплекса энергосбережения (в них отсутствуют движущиеся механические части), улучшение показателей готовности и эффективное устранение слабостей конструкции за счёт размещения системы в непосредственной близости от нагрузки, увеличивают срок службы резервных источников до 10 лет или до 5 тысяч включений/выключений.

Экономия электроэнергии имеет большое значение, поэтому в современных персональных компьютерах предусмотрены возможности остановки жестких дисков через заданный период времени их простоя, отключение монитора, спящий режим (минимальное энергопотребление, выход из которого осуществляется по нажатию клавиши или сигналу от устройства, например, сетевой карты).
Настройка этих опций производится в BIOS, или средствами операционной системы.
Для предотвращения старения монитора и ухудшения его изображения во всех операционных системах предусмотрен хранитель экрана – специальная анимированная заставка, появляющаяся через установленный промежуток времени и выход из которой осуществляется по нажатию любой клавиши.

Эта кнопка открывает окно в зеленый мир.

"По расчетам создателей устройства, в мире сейчас порядка миллиарда компьютеров. Они ежегодно потребляют электроэнергии на многие миллиарды долларов. Чтобы произвести все это электричество, требуется выбросить в атмосферу сотни миллионов тонн углекислого газа. Массовое нажатие на ecobutton позволит значительно отсрочить глобальное потепление."

Еще в 2007 году в США 60% компьютеров оставлялись включенными на ночь. И если корпоративная Америка насчитывала на это время около 100 млн компьютеров, значит 60 млн из них оставались включенными. И если половина из них переводилась в режим сна, то оставалось еще 30 млн бодрствующих ночью ПК. Это привело к потере около $2 млрд за год. Выход был найден в реализации программного обеспечения, которое позволяло системным администраторам переводить в состояние сна все компьютеры сети. Один из швейцарских банков только таким образом сэкономил за год около $4 млн. По расценкам США, на один ПК это составляет экономию от $25 до $70 в год.

Зелёная кнопка

Это красиво. Но очень дорого!

Несколько работающих примеров энергосберегающих технологий ПК

Фирма Foxconn задействовала три направления в решении энергосбережения, объединенные общим названием 3G (три "зеленые" технологии): GoD (Green on Demand), GPS (Green Power Saving) и GSM (Green System Mode). Технология Green on Demand обеспечивает экономию 20,5% электроэнергии по сравнению со стандартными системами за счет отключения ненужных в данный момент линий питания процессора в периоды его простоя или сниженной нагрузки. Технология Green Power Saving снижает энергопотребление в дежурном режиме до 99,4% (с 8,1 до 0,05 Вт). GSM является инструментом автоматизированной настройки системы на сниженное энергопотребление. Foxconn иллюстрирует эффективность своих технологий следующим примером: ПК с поддержкой технологий энергосбережения 3G, находящийся 20 часов в дежурном режиме, два часа работающий под высокой нагрузкой и два часа простаивающий, экономит 85% энергии. По данным Foxconn, в среднем компьютеры находятся 15 часов в дежурном режиме и шесть часов в режиме простоя. Если бы все эти компьютеры были оснащены средствами энергосбережения Foxconn, то мировая экономия электроэнергии составила бы около 130 млрд кВт/ч.

Энергосберегающие функции сетевого фильтра GreenPower MDP 900 от Monster Cable позволяют экономить существенное количество энергии, когда подключенные приборы уходят в режим standby. Наиболее полезно это устройство в сочетании с настольным компьютером. Когда компьютер переключается в спящий режим, MDP 900 автоматически отключает от сети все периферийные устройства, такие как принтер или монитор, а когда компьютер выходит из спящего режима, подключает их обратно. По мнению создателей, устройство может снизить затраты на электроэнергию (США) на $130 в год, то есть на цену самого сетевого фильтра.

Мощная современная видеокарта под полной нагрузкой требует столько же энергии, сколько остальные комплектующие ПК вместе взятые: от 110 до 270 Вт. Поэтому производители приступили к выпуску интеллектуальных видеокарт с управлением потребления электроэнергии в зависимости от нагрузки.

Несколько фактов о технологиях стоящих уже на пороге

На основе принципов, открытых физиками Массачусетского технологического института, исследователи Intel разрабатывают технологию беспроводного электропитания Wireless Resonant Energy Link (WREL).

Весьма перспективным направлением развития электронных дисплеев могут стать устройства, позволяющие при помощи лазерного луча малой мощности проецировать изображение непосредственно на сетчатку глаза.

Особо интенсивный поиск "наследника кремния" ведется среди наноструктур на основе углерода: фуллерены, углеродные нанотрубки, наноспирали, нанопровода и прочие. Так, электроны в графене, например, перемещаются гораздо быстрее, чем в кремнии и благодаря этому можно свести токи утечки к минимуму, которые и ограничивают уменьшение энергозатрат процессорами.

Среди традиционных подходов можно назвать создание китайским ученым Вэйсяо Хуан (Weixiao Huang) первого в мире транзистора на основе нитрида галлия GaN. По своим характеристикам транзистор значительно превосходит используемые сегодня кремниевые аналоги и может работать в самых экстремальных условиях. Разработанная Хуаном технология позволяет интегрировать на один чип несколько функций, что невозможно осуществить, используя кремний. Поэтому, переход с кремниевых транзисторов на GaN-транзисторы мог бы позволить значительно упростить электронные схемы. Кроме того, замена кремниевых транзисторов на аналогичные, но выполненные на основе нитрида галлия, позволит существенно уменьшить энергопотребление.

Одними из самых перспективных являются оптические технологии. Наряду с множеством преимуществ, благодаря тому, что в качестве носителей информации используются фотоны, а не электроны, информация, которая закодирована оптическим лучом, может передаваться с микроскопическими затратами энергии.

Оптические технологии в вычислительной технике пока еще применяются, в основном, в двух сферах - в сетевой, где для создания магистральных каналов используются волоконно-оптические линии связи, а также в соединительных узлах суперкомпьютеров, где необходима сверхбыстрая передача очень больших объемов данных.

Еще в 2003 году компания Lenslet (Израиль) создала первый в мире оптический процессор. Процессор назывался EnLight256, его производительность составляет 8 тераоп (триллионов арифметических операций в секунду). Высокая производительность достигнута за счет манипуляции потоков света, а не электронов. Оптические технологии пока еще ориентированы на промышленное производство, военную технику – там, где нужно в реальном времени обрабатывать большие потоки информации, где промедление в несколько сотых секунд может закончиться непоправимыми последствиями. Куда продвинулась данная компания можно только догадываться.

Появился прогресс и в создании гибридных оптических чипов. Исследователи компании Intel представили кремниевый чип, преобразовывающий электрические сигналы в оптические с рекордной скоростью 200 Гбит/секунду. Технический директор Intel Джастин Раттнер недавно сообщил, что, по его прогнозам, первые оптические чипы от Intel появятся на рынке уже через 2 года. При этом, в планах компании - использовать оптику не только в серверах и вычислительных центрах, но и на компьютерах обычных пользователей.

К 2012 году компания IBM намерена производить оптические процессоры, которые будут умещаться в ноутбуках, но по производительности будут сравнимы с современными многопроцессорными серверами. Новые процессоры будут экономичны и не будут подвержены перегреву.

И, в заключении, несколько слов о будущем. Сегодня физики разных стран разрабатывают квантовые вычислительные системы, которые по своей вычислительной мощности в миллионы раз превзойдут современные компьютеры. Энергозатраты у квантовых компьютеров на единицу обработанной информации ожидаются быть мизерными. Сроки появления коммерческих квантовых компьютеров оценены в 40-50 лет.

Читайте также: