Энергетический обмен в клетке реферат

Обновлено: 02.07.2024

Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями.

Первый этапподготовительный. В желудочно‑кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

Второй этапбескислородный(гликолиз). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением.

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

Третий этапкислородный, состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилированиеили клеточное дыханиепроисходит, на внутренних мембранах митохондрий, в которые встроены молекулы‑переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы‑переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Реферат: Обмен веществ и превращение энергии в клетке

Все живые организмы на Земле представляют собой открытые системы, способные активно организовывать поступление энергии и вещества извне. Энергия необходима для осуществления жизненно важных процессов, но прежде всего для химического синтеза веществ, используемых для построения и восстановления структур клетки и организма. Живые существа способны использовать только два вида энергии: световую (энергию солнечного излучения) и химическую (энергию связей химических соединении) - по этому признаку организмы делятся на две группы - фототрофы и хемотрофы.
[sms]Главным источником структурных молекул является углерод. В зависимости от источников углерода живые организмы делят на две группы: автотрофы, использующие не органический источник углерода (диоксид углерода), и гетеротрофы, использующие органические источники углерода.

Процесс потребления энергии и вещества называется питанием. Известны два способа питания: голозойный - посредством захвата частиц пищи внутрь тела и голофитный - без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма.

Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения в организме. Реакции синтеза, осуществляющиеся с потреблением энергии, составляют основу анаболизма (пластического обмена или ассимиляции).

Реакции расщепления, сопровождающиеся высвобождением энергии, составляют основу катаболизма (энергического обмена или диссимиляции).

1. Значение АТФ в обмене веществ.

Энергия, высвобождающая при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).

2. Энергетический обмен в клетке. Синтез АТФ.

Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

У большинства живых организмов - аэробов, живущих в кислородной среде, - в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

Первый этап - подготовительный - заключается в ферментативном расщеплении сложных органических соединении на более простые (белков на аминокислоты; полисахаридов на моносахариды; нуклеиновых кислот на нуклеотиды). Внутриклеточное расщепление органических веществ происходит под действием гидролитических ферментов лизосом. Высвобождающаяся при этом энергия рассеивается в виде теплоты, а образующиеся малые органические молекулы могут подвергнутся дальнейшему расщеплению и использоваться клеткой как "строительный материал" для синтеза собственных органических соединений.

Второй этап - неполное окисление - осуществляется непосредственно в цитоплазме клетки, в присутствии кислорода не нуждается и заключается в дальнейшем расщеплении органических субстратов. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное расщепление глюкозы, называют гликолизом.

Третий этап - полное окисление - протекает при обязательном участие кислорода. В его результате молекула глюкозы расщепляется до неорганического диоксида углерода, а высвободившаяся при этом энергия частично расходуется на синтез АТФ.

3. Пластический обмен.

Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул.

Органические вещества пищи (белки, жиры, углеводы) --пищеварение-- > Простые органические молекулы ( аминокислоты, жирные кислоты, моносахара)---биологические синтезы--> Макромолекулы тела (белки, жиры, углеводы)

Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:

Неорганические вещества (углекислый газ, вода) ---фотосинтез, хемосинтез-->Простые органические молекулы (аминокислоты, жирные кислоты, моносахара)---биологические синтезы--> Макромолекулы тела (белки, жиры, углеводы)

Фотосинтез - синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством - улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белково-подобных веществ. Главным и наиболее важным в энергетическом плане является пигмент хлорофилл а, встречающиеся у всех фототрофов, кроме бактерии-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении - аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее - хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

Хемосинтез также представляет собой процесс синтеза органических соединении из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.

Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы. [/sms]

Главным условием жизни как отдельной клетки, так и организма в целом является обмен веществ и энергией с окружающей средой. Энергия необходима для осуществления множества различных жизненно важных процессов.
В клетке непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью ферментов образуются сложные высокомолекулярные соединения: из аминокислот синтезируются белки, из моносахаридов — сложные углеводы, из азотистых оснований — нуклеотиды, а из них — нуклеиновые кислоты.

Содержание работы

Введение
1. Молекулярный транспорт через биологическую мембрану
2. Энергетический обмен
Заключение
Список литературы
ВВЕДЕНИЕ

Файлы: 1 файл

Обмен веществ и превращение энергии в клетке.docx

Обмен веществ и превращение энергии в клетке — основа всех проявлений ее жизнедеятельности

1. Молекулярный транспорт через биологическую мембрану

2. Энергетический обмен

Главным условием жизни как отдельной клетки, так и организма в целом является обмен веществ и энергией с окружающей средой. Энергия необходима для осуществления множества различных жизненно важных процессов.

В клетке непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью ферментов образуются сложные высокомолекулярные соединения: из аминокислот синтезируются белки, из моносахаридов — сложные углеводы, из азотистых оснований — нуклеотиды, а из них — нуклеиновые кислоты.

Разнообразные жиры и масла возникают путем химических превращений сравнительно простых веществ, источником которых служит остаток уксусной кислоты — ацетат. При этом биосинтетические реакции отличаются видовой и индивидуальной специфичностью. Например, клетки наружных покровов членистоногих синтезируют хитин — сложный полисахарид, а у наземных позвоночных — рептилий, птиц, млекопитающих — роговое вещество, основой которого является белок кератин. В конечном счете, структура синтезируемых крупных органических молекул определяется последовательностью нуклеотидов в ДНК, т. е. генотипом. Синтезируемые вещества используются в процессе роста для построения клеток и их органоидов и для замены израсходованных или разрушенных молекул. Все реакции синтеза идут с поглощением энергии.

Большое количество энергии необходимо для построения органелл клетки и создания новых клеток при делении; активного транспорта веществ в клетку и из клетки; энергетической передачи нервных импульсов; сокращения мышц; поддержания постоянной температуры тела у птиц и млекопитающих и т. д. При этом живым организмам необходим постоянный приток энергии как для осуществления этих процессов, так и для восполнения неизбежных потерь энергии в виде тепла. Источником энергии в этих случаях служит расщепление органических веществ. Совокупность реакций расщепления высокомолекулярных соединений, сопровождающихся выделением энергии, называется энергетическим обменом, или диссимиляцией.

Запас органических веществ, расходуемых в процессе диссимиляции, должен непрерывно пополняться либо за счет пищи (животные), либо путем синтеза из неорганических веществ при использовании света (зеленые растения). Совокупность всех процессов биосинтеза называется пластическим обменом, или ассимиляцией. Пластический обмен всегда сопровождается поглощением энергии.

Реакции пластического и энергетического обменов находятся в неразрывной связи и дополняют друг друга, составляя в совокупности обмен веществ и энергии в клетке.

Совокупность реакций синтеза (анаболические реакции) и распада (катаболические реакции), протекающих в клетке в любой данный момент, составляют ее обмен веществ (метаболизм).

Анаболизм + катаболизм = метаболизм. Обмен веществ может осуществляться, если организм получает нужные ему вещества из внешней среды и выводит в окружающую среду продукты обмена, т. е. обмен веществ как форма существования живого возможен лишь при условии неразрывной связи организма со средой.

Связь организма с окружающей средой, с физико-химической точки зрения, представляет собой открытую систему, т. е. систему, где биохимические процессы идут постоянно. Исходные вещества поступают из окружающей среды, а вещества, образующиеся также непрерывно, выносятся вовне. Равновесие между скоростью и концентрацией продуктов разнонаправленных реакций в организме является условным, мнимым, т. к. поступление и вынос веществ не прекращаются. Непрерывная связь с окружающей средой и позволяет рассматривать живой организм как открытую систему.

1. МОЛЕКУЛЯРНЫЙ ТРАНСПОРТ ЧЕРЕЗ БИОЛОГИЧЕСКУЮ МЕМБРАНУ

Одна из главных задач любого живого существа, будь то одиночная клетка или многоклеточный организм, — получение необходимых для жизни веществ, т. е. пищи, воды и кислорода. Одновременно организм должен избавиться от различных отходов жизнедеятельности (например, от двуокиси углерода). Обмен веществами со средой идет через клеточную мембрану (ее называют также плазматической мембраной) — тонкую пленку, покрывающую всю клетку. Существует четыре основных механизма поступления веществ в клетку или выхода из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз.

Молекулы любого вещества находятся в непрерывном беспорядочном движении. При этом они стремятся переходить из области с более высокой их концентрацией в область более низкой концентрации, так что реальное их перемещение происходит по градиенту концентрации. Такое движение носит название диффузии.

Многие вещества способны диффундировать в клетки или из клеток по градиентам концентрации. Предоставленные самим себе, такие вещества вскоре равномерно распределились бы между клеткой и средой, т. е. их концентрации в клетке и среде сравнялись бы. Однако чтобы клетка оставалась живой, ее химический состав должен быть относительно постоянным, что сопряжено с большими трудностями, т. к. клетке приходится непрерывно поглощать новые молекулы — питательные вещества и кислород — и непрерывно удалять отходы. Клетка должна, следовательно, поддерживать оживленный, но строго регулируемый обмен со средой! Регулирование этого обмена осуществляет клеточная мембрана.

Клеточная мембрана настолько тонка, что она не видна в световом микроскопе, но о ее существовании исследователи узнали задолго до того, как она была выявлена в трансмиссионном электронном микроскопе. В начале ХХ в. обнаружили, что скорость проникновения многих веществ в эритроциты прямо пропорциональна их растворимости в липидах. Исходя из этого предположили, что клеточная мембрана содержит большое количество липидов; вещества растворяются в ней, проходят сквозь нее и оказываются по другую сторону мембраны.

Однако растворимость в липидах не объясняет всех характеристик проницаемости клеточной мембраны. Вода и ряд водорастворимых (полярных) веществ проникают в клетки гораздо быстрее, чем следовало бы ожидать, исходя из их растворимости в липидах.

В 1925 г. на основании проведенных опытов пришли к выводу, что клеточная мембрана состоит из двойного слоя липидных молекул (биомолекулярного слоя, бислоя). Изучение поверхностного натяжения и гибкости пограничного слоя клетки позволило заключить, что в клеточной мембране содержится и белок.

Клеточная мембрана обладает избирательной проницаемостью, т. е. одни вещества проходят через нее легче, чем другие. Как уже отмечалось выше, вещества, способные растворяться в липидах, могут проходить через мембрану, просто-напросто растворяясь в ней. Однако перемещение ионов и больших органических мономеров, вроде глюкозы и аминокислот, происходит гораздо быстрее, чем можно было бы ожидать от полярных молекул, растворяющихся в тонком слое липида. Имеются неоспоримые доказательства, что эти вещества вводятся в клетки (или выводятся из них) специальными переносчиками, содержащимися в клеточной мембране.

Переносчиками являются мембранные транспортные белки. Каждый конкретный белок предназначен для транспорта строго определенного химического соединения. Такие белки-переносчики способны соединяться с молекулой или ионом и без затраты энергии, т. е. пассивно транспортировать их через мембрану по градиенту концентрации. Этот процесс, получивший название облегченной диффузии, является главным механизмом избирательной проницаемости мембраны.

При облегченной диффузии переносчик, функционирующий в клеточной мембране, на одной стороне мембраны соединяется с молекулой или ионом, а на другой — отдает их, пройдя с ними вместе короткий путь через мембрану. Клетка не расходует на это никакой энергии, если не считать энергию, затраченную на самообразование переносчика. Переносчик, в сущности, только делает мембрану более проницаемой для того вещества, которое он переносит в клетку полярных молекул, таких, как ионы, сахара, аминокислоты, нуклеотиды и многие другие метаболиты.

Интересно отметить, что вода легко диффундирует через липидный слой, несмотря на то, что молекулы воды относительно нерастворимы в жирах. Большая скорость диффузии воды отчасти объясняется тем, что ее молекулы малы и не заряжены. Напротив, для всех заряженных молекул (ионов), независимо от их размера, липидные слои плазматической мембраны служат серьезным препятствием для проникновения в клетку.

В отличие от облегченной диффузии, активный транспорт — это перемещение веществ против их градиентов концентрации. Вещества переходят при этом из той области, где их концентрация ниже, туда, где она и без того уже выше. Поскольку такое перемещение происходит в направлении, противоположном нормальной диффузии, клетка должна затрачивать на это энергию. Источником этой энергии служит АТФ. Благодаря затрате энергии, необходимый растению катион, например калия, может проникнуть в клетки корня даже в том случае, если его концентрация в почвенном растворе в 100 раз ниже, чем в клеточном соке. Наоборот, менее нужный растению катион Na+ они удаляют в окружающую среду даже при более высокой концентрации в ней этого элемента.

Механизмы активного поглощения существуют только для ионов питательных веществ; следовательно, клетка обладает определенной избирательной способностью по отношению к различным ионам. Остальные ионы проникают в клетку в соответствии с градиентом их электрохимического потенциала и проницаемостью мембран.

Вода совершенно необходима живой клетке, однако клетка, как известно, не располагает никакой специальной системой ни для ее поглощения, ни для выведения наружу. Вода проходит сквозь клеточную мембрану совершенно свободным путем осмоса. Осмос — это диффузия воды через проницаемую мембрану, вызванная разностью концентраций. Если клетку поместить в воду (гипотонический раствор), то создается градиент водного потенциала: снаружи концентрация воды будет значительно выше, чем внутри. В силу этого вода поступает внутрь клетки по градиенту своей концентрации, причем мембрана избирательно пропускает только молекулы воды.

Осмотическое движение воды зависит от двух главных факторов:

1) от общей концентрации всех растворенных в воде частиц по обе стороны мембраны;

2) от давления, создаваемого каждым раствором.

При прочих равных условиях вода стремится переходить через избирательно проницаемую мембрану от менее концентрированного раствора к раствору с более высокой концентрацией всех растворенных частиц. Однако при этом в какой-то момент вода, поступившая в более концентрированный раствор, может развить такое давление, что оно будет вытеснять ее наружу с такой же скоростью, с какой она поступает внутрь.

Не обладая способностью насасывать или откачивать воду непосредственно, клетки регулируют приток и отток воды, изменяя концентрацию находящихся в них растворенных веществ. Чтобы поглотить больше воды, клетка поглощает больше ионов различных солей, молекул глюкозы или других растворимых соединений. В результате в клетке повышается концентрация растворенных частиц. Вода, по законам осмоса, начинает поступать в клетку, стремясь к выравниванию своей собственной концентрации по обе стороны мембраны.

Так работает эта система до тех пор, пока концентрация растворенных веществ вне клетки и в клетке примерно одинакова. Если же в среде концентрация растворенных веществ выше, чем в самой клетке, или если средой для клетки служит практически сухой воздух, то клетка теряет воду и сморщивается. С оттоком воды содержимое клетки сжимается и отходит от клеточных стенок, растение увядает. Если же увядшие растения поместить в воду, то вода вновь поступает в клетки. Они становятся тургесцентными, т. е. набухают от воды и снова прижимаются к клеточным стенкам, подчиняясь тургурному давлению, направленному изнутри наружу. Клеточные стенки способны растягиваться лишь до известного предела, после которого они начинают оказывать противодавление, вытесняющее воду из клеток с такой же скоростью, с какой она в них поступает.

Таким способом клеточные стенки защищают клетки, не дают им лопнуть под напором избытка воды.

По мере поступления воды осмотическое давление Р клеточного сока и сосущая сила S уменьшаются, а тургурное давление возрастает до тех пор, пока они не уравновесят друг друга. После этого поглощение воды прекращается. Эта зависимость выражается следующим уравнением:

При полном плазмолизе тургор равен нулю, а сосущая сила клетки — величине ее осмотического давления. В случае полного насыщения клетки водой тургурное давление равно осмотическому (Р = Т), вследствие чего сосущая сила будет равна нулю, и поступление воды в клетку прекратится.

Введение
1. Пластический обмен (ассимиляция)
2. Фотосинтез
3. Биосинтез белков
4. Авторегуляция химической активности клетки
5. Энергетический обмен (диссимиляция)
6. Этапы энергетического обмена
Заключение
Список литературы

Введение

В клетках непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью ферментов из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения: из аминокислот синтезируются белки, из моносахаридов - сложные углеводы, из азотистых оснований - нуклеотиды, а из них нуклеиновые кислоты.
Разнообразные жиры и масла возникают путем химических превращений сравнительно простых веществ, источником которых служит остаток уксусной кислоты - ацетат. При этом биосинтетические реакции отличаются видовой и индивидуальной специфичностью. Например, клетки наружных покровов членистоногих синтезируют хитин - сложный полисахарид, а у наземных позвоночных - рептилий, птиц, млекопитающих - роговое вещество, основой которого является белок каротин. В конечном счете, структура синтезирующих крупных органических молекул определяется последовательностью нуклеидов в ДНК, т. е. генотипом. Синтезированные вещества используются в процессе роста для построения клеток и их органоидов и для замены израсходованных или разрушенных молекул. Все реакции синтеза идут с поглощением энергии.
В многообразии реакций обмена, происходящих в клетке, различают пластический и энергетический обмен.
Пластический обмен (анаболизм, или конструктивный обмен) - совокупность всех процессов синтеза сложных органических веществ. Эти вещества идут на построение органалия клетки, на создание новых клеток при делении.
Пластический обмен всегда сопровождается поглощением энергии.
Энергетический обмен (катаболизм) - совокупность реакций расщепления (переход веществ, энергетически более богатых, в вещества, бедные энергией). Энергия освобождается в реакциях разложения, когда сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные.
Освободившаяся энергия используется затем в ходе пластического обмена.
Для реакций обмена характерна высокая организованность и упорядоченность. Каждая из них осуществляется с помощью специального фермента в определенном органе клетки. Ферменты в большинстве случаев располагаются мономолекулярными слоями на мембранах, выстилая их в том порядке, в котором они работают. Пространственная упорядоченность ферментов обеспечивает необходимую последовательность реакций. Таким образом создается громадная активная поверхность, своего рода ферментный конвейер, где с быстротой и эффективностью, невозможной в иных условиях, последовательно протекают химические реакции.
Реакции пластического и энергетического обмена необходимо дополняют друг друга и в своем противоречивом единстве составляют обмен веществ и энергии в каждой клетке и в организме в целом. Совокупность реакций синтеза (анаболические реакции) и распада (катаболические реакции), протекающих в клетке в любой данный момент, составляет ее обмен веществ (метаболизм).

- Анаболизм + катаболизм = метаболизм

Обмен может осуществляться, если организм получает нужные ему вещества из внешней среды и выводит в окружающую среду продукты обмена, т. е. обмен веществ как форма существования живого возможен лишь при условиях неразрывной связи организма со средой.
Связь организма с окружающей средой, с физико-химической точки зрения, представляет собой открытую систему, т. е. систему, где биохимические процессы идут постоянно. Исходные вещества поступают из окружающей среды, а вещества образовавшиеся - настолько же непрерывно выносятся вовне. Равновесие, устанавливающееся между скоростью и концентрацией продуктов разнонаправленных реакций в организме, является условным, мнимым, т. к. поступление и вынос веществ не прекращаются. Непрерывная связь с окружающей средой и позволяет рассматривать живой организм как открытую систему.

1. Пластический обмен (ассимиляция)

По типу ассимиляции все клетки делятся на две группы - автотрофные и гетеротрофные.
Автотрофные клетки способны к самостоятельному синтезу необходимых для них органических соединений за счет СО2, Н2O и энергии света (фотосинтез) или энергии, выделившейся при окислении неорганических соединений (хемосинтез). К автотрофным принадлежат зеленые растения, цианобактерии и некоторые бактерии.
Гетеротрофные клетки не могут синтезировать органические вещества из неорганических, поэтому для процессов ассимиляции им необходимы органические вещества, поступающие извне в виде пищи, в которой содержатся готовые углеводы, жиры, белки. Гетеротрофами являются все животные, большая часть бактерий, грибы, некоторые высшие растения - сапрофиты и паразиты, а также клетки растений, не содержащих хлорофилла.

2. Фотосинтез

Фотосинтез - процесс преобразования энергии света в химическую энергию органических соединений, синтезируемых в земном растении из диоксида углерода и воды:

- АТФ - АДФ + Фн + энергия

1. Накопление энергии.
2. Использование этой энергии для синтеза АТФ.

Высвобождающиеся при этом протоны Н+ используются в реакциях восстановления сложного органического соединения - никотинамидадениндинуклеотид фосфата (НАДФ).
Таким образом, световые реакции фотосинтеза, помимо молекулярного кислорода, дают два богатых энергией соединения: АТФ и НАДФ.Н, а энергия квантов света превращается в химическую энергию макроэргитических связей АТФ, НАДФ.Н2 и освобождает кислород. Свободный кислород частично используется для внутриклеточного дыхания, но значительно большая его часть выходит в атмосферу.
Теневая фаза осуществляется в строме хлоропластов без непосредственного поглощения света. Цепь реакций, приводящих к восстановлению СО2 до уровня органических веществ, на этой фазе идет за счет использования энергии АТФ и НАДФ.Н, синтезированных в световую фазу.
Восстановление молекул СО2 начинается с их фиксации через устьица листа молекулами-акцепторами - пятиуглеродного сахара рибулозодифосфата. При взаимодействии рибулозодифосфата и СО2 образуется сначала промежуточное нестойкое шестиуглеродное соединение, которое затем распадается на две молекулы фосероглицериновой кислоты (ФГК). Дальнейшее превращение ФГК требует участия продуктов световой фазы фотосинтеза АТФ и НАДФ.Н. В конечном итоге, через ряд промежуточных четырех-, пяти-, шести-, семиуглеродных соединений образуются прежде всего углеводы (моно, ди- и полисахариды), а также другие органические вещества (амино- и органические кислоты, белки, липиды, нуклеиновые кислоты и др.).
Уникальность и общебиологическое значение фотосинтеза определяется тем, что ему своим существованием обязано все живое на нашей планете. Этот процесс является основным источником образования органических соединений, а также единственным источником свободного кислорода на Земле. Из кислорода образовался озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.
Процесс фотосинтеза у зеленых и пурпурных бактерий в общих чертах протекает так, как и у зеленых растений. Но у растений источником водорода, который используется для восстановления соответствующих соединений, является вода, а у бактерий - сероводород (изредка карбоновые кислоты). Поэтому бактериальный фотосинтез протекает без выделения кислорода:

3. Биосинтез белков

4. Авторегуляция химической активности клетки

5. Энергетический обмен (диссимиляция)

Процессом, противоположным синтезу, является диссимиляция - совокупность реакций расщепления. При расщеплении выскомолекулярных соединений выделяется энергия, необходимая для реакции биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки.
Химическая реакция питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений, поэтому она не может быть непосредственно использована клеткой для осуществления всех жизненно важных процессов. Для этого потенциальной энергии органических молекул необходимо придать более активную, мобильную форму. Это достигается путем расщепления богатых энергией соединений - углеводов, липидов, белков и других - с последующим запасением выделившейся при этом энергии в молекулах специфических химических веществ, выполняющих роль аккумуляторов энергии (например, АТФ).
Распад органических веществ происходит в процессе их окисления и осуществляется в митохондриях. Распад без доступа кислорода называется брожением, при участии кислорода (аэробный процесс) - дыханием. В результате процессов брожения органический материал распадается на более простые, богатые энергией органические продукты (молочная кислота, этиловый спирт и др.). При дыхании происходит полное расщепление органических веществ на бедные энергией конечные продукты (СО2 и Н2O) с высвобождением значительного количества энергии. Выделившаяся в обоих процессах энергия запасается в форме макроэргитических связей АТФ и может быть легко мобилизована клеткой.
Запасенная в молекулах АТФ энергия переносится вместе с отщепляющейся фосфорной кислотой на другие соединения. Это происходит, например, при разрыве такой химической связи, как пептидная, когда освобождается около 12 кДж на 1 моль. В глюкозе количество потенциальной энергии, заключенной в связях между атомами С, Н и О, составляет 2800 кДж на 1 моль (т. е. 180 г глюкозы). При расщеплении глюкозы энергия выделяется поэтапно, при участии ряда ферментов, согласно итоговому уравнению:

Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос вещества через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.
Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты.
Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоемка.
Отщепление концевого фосфата АТФ сопровождается выделением 40 кДж вместо 12 кДж, выделяемых при разрыве обычных химических связей. Благодаря богатым энергией связям в молекулах АТФ, клетка может накапливать большое количество энергии в очень маленьком пространстве и расходовать ее по мере необходимости. Синтез АТФ осуществляется в митохондриях, отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.

6. Этапы энергетического обмена

Энергетический обмен делится на три этапа.
Первый этап - подготовительный. На этом этапе молекулы ди- и полисахаридов, жиров, белков распадаются на мелкие молекулы - глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот - на нуклеотиды. На этом этапе выделяется небольшое количество энергии, которое рассеивается в виде теплоты.
Второй этап - бескислородный, или неполный. Он называется также анаэробным дыханием, или брожением. Образовавшиеся на подготовительном этапе вещества подвергаются дальнейшему ферментативному расщеплению без участия кислорода. Примером может служить гликоз - многоступенчатый процесс расщепления глюкозы в анаэробных условиях до пировиноградной кислоты (ПВК), а затем до молочной, уксусной, масляной кислот или этилового спирта, происходящий в цитоплазме клетки. Переносчиком электронов в этих окислительно-восстановительных реакциях служит никотинамидадениндинуклеотид (НАД) и его восстановленная форма НАД.Н.
Если гликолиз осуществляется в клетках животных, шестиуглеродная молекула глюкозы распадается на две молекулы молочной кислоты. Процесс этот многоступенчатый. Его последовательно осуществляют 13 ферментов. При спиртовом брожении из молекулы глюкозы образуются две молекулы этанола СО2. Гликолиз - фаза, общая для анаэробного и аэробного дыхания, две остальные (окислительное декарбоксилирование, цикл Кребса, иначе - цикл лимонной кислоты и окислительное фосфорилирование - дыхательная цепь) осуществляются лишь в аэробных условиях.
Процесс бескислородного окисления, при котором выделяется и используется лишь часть энергии метаболитов, для анаэробных организмов является конечным. В присутствии же кислорода пировиноградная кислота переходит в митохондрии, где в результате целого ряда последовательных реакций она полностью окисляется аэробным путем до Н2O и СО2 с одновременным фосфорилированием АДФ и АТФ. При этом две молекулы АТФ дает гликолиз, две - цикл Кребса, 34 - дыхательная цепь. Чистый выход при полном окислении одной молекулы глюкозы до Н2O и СО2 составляет 38 молекул АТФ. Таким образом, у аэробных организмов окончательный распад органических веществ осуществляется путем окисления их кислородом воздуха до простых неорганических: СО2 и Н2O.
Процесс этот протекает на кристаллах митохондрий. Это третий этап энергетического обмена - стадия кислородного расщепления, или дыхания. При этом выделяется максимальное количество свободной энергии, значительная часть которой резервируется в молекулах АТФ. Легко видеть, что аэробное окисление в наибольшей степени обеспечивает клетку свободной энергией (около 2600 кДж), больше половины которой (1440 кДж) расходуется на синтез 36 молекул АТФ.
В результате катаболизма в клетке накапливаются богатые энергией молекулы АТФ, а во внешнюю среду выделяется СО2 и избыточное количество воды. Расщепление в клетке одной молекулы глюкозы до оксида углерода и воды обеспечивает синтез 38 молекул АТФ. Из них в кислородную стадию - 36.
Кислородный процесс, как видим, в 18 раз более эффективен, чем бескислородный. Следовательно, основную роль в обеспечении клетки энергией играет дыхание.

Заключение

В ходе жизнедеятельности клетки белки, жиры, углеводы и другие вещества, из которых она состоит, непрерывно расщепляются и синтезируются. Относительное постоянство состава достигается благодаря равновесию этих процессов.
В многообразии реакций обмена, происходящих в клетке, различают пластический и энергетический обмены.
Совокупность реакций биологического синтеза называется пластической ассимиляцией. Название этого вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества, подобные веществам в клетке. Одна из важнейших форм пластического обмена - биосинтез белков - процесс чрезвычайно сложный, связанный с участием ферментов и затратой большого количества энергии, значительно превышающей количество энергии образующихся пептидных связей. Поразительная сложность системы биосинтеза и высокая энергоемкость обеспечивают высокую точность и упорядоченность синтеза полипептидов. Это гетеротрофный тип ассимиляции. Он происходит у животных, большей части бактерий, грибов, некоторых высших растений, а также в клетках растений, не содержащих хлорофилла.
У растений, содержащих хлорофилл, процессы синтеза происходят благодаря процессу фотосинтеза, т. е. идет преобразование энергии света в химическую энергию органических соединений, синтезируемых в зеленом растении из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, где происходит восстановление диоксида углерода до уровня углеводов и окисление воды до кислорода.
Процессом, противоположным синтезу, является диссимиляция - совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки. Энергетический обмен - совокупность реакций расщепления, переход веществ, энергетически более богатых, в вещества, бедные энергией. Освободившаяся при этом энергия используется затем в ходе пластического обмена, который всегда сопровождается поглощением энергии.
У аэробных организмов окончательный распад органических веществ осуществляется путем окисления СО2 и Н2O. Процесс этот протекает на кристаллах митохондрий. При этом выделяется максимальное количество энергии, значительная часть которой резервируется в молекулах АТФ. Аэробное окисление в наибольшей степени обеспечивает клетку свободной энергией. В результате катаболизма в клетке накапливаются богатые энергией молекулы АТФ, а во внешнюю среду выводятся СО2 и избыточное количество воды.

Литература

1. Грин Н., Стаут У., Тейлор Д. Биология. М., 1990.
2. Де Дюв Кристиан. Путешествие в мир живой клетки. М., 1987.
3. Кемп П., Армс К. Введение в биологию: Пер. с англ. М.: Мир, 1988, 671 с.
4. Николаев А. Я. Биологическая химия. М., 1989.
5. Пименов А. В. Биология человека. Саратов, 1987.
6. Соколова Н. П. Биология, М., 1994.

Читайте также: