Электронно лучевой переплав реферат

Обновлено: 02.07.2024


1.Техника и технология электронно-лучевой плавки
Впервые возможность плавить металл электронным лучом была доказана еще в конце прошлого века. Первые слитки чистого тантала и других металлов, выплавленные с помощью электронно-лучевого нагрева, были получены в начале XX века. Однако только в 50-х годах бурное развитие аэрокосмической и атомной техники, для которых требовались качественно новые конструкционные материалы, привело к разработке и промышленному использованию электронно-лучевых технологий (плавка, сварка, нанесение покрытий и т. п.). С тех пор объемы выплавляемого методом ЭЛП металла непрерывно возрастают. Возрастающее использование технологии ЭЛП обусловлено исключительно высоким качеством металла, часто не достигаемом другими методами плавки.
Классической схемой электронно-лучевой плавки является прямой переплав расходуемой заготовки непосредственно в медный водоохлаждаемый кристаллизатор, где происходит затвердевание металла (рис. 1).

Рисунок 1- Принципиальная схема электронно-лучевой установки: 1 —вакуумная камера с водоохлаждаемым кожухом; 2 — электронные пушки; 3 — источник высокого напряжения и система управления разверток лучей; 4 — система загрузки сплавляемой заготовки; 5 — вакуумная система; 6 — технологическая оснастка; 7 — механизм вытягивания слитка; 8 — поддон; 9 — слиток

Рисунок 2- Технологические схемы электронно-лучевой плавки непосредственно в кристаллизатор: а — ЭЛП с вертикальной подачей расходуемой заготовки; б — ЭЛП с горизонтальной подачей расходуемой заготовки
В настоящее время существует большое количество технологических схем электронно-лучевой плавки как непосредствен но в кристаллизатор (рис. 2), так и с применением промежуточной емкости (рис. 3).
Использование этих технологических схем позволяет подавать в зону плавки расходуемую заготовку и вертикально, и горизонтально, а также переплавлять нескомпактированную шихту. Особенно перспективными представляются технологические схемы электронно-лучевой плавки с промежуточной емкостью, которые позволяют практически полностью разделить процессы плавления и рафинирования, протекающие в промежуточной емкости, и затвердевания металла в кристаллизаторе. А это, в свою очередь, дает возможность более полно использовать одно из преимуществ процесса ЭЛП — плавное и в широких пределах изменение мощности электронного пучка и конфигурации зон нагрева. Создавая на поверхности слитка или расплава в кристаллизаторе температурные поля специального профиля, можно эффективно влиять на процессы кристаллизации металла.
Различные схемы плавки, кроме конструкционных, имеют и технологические особенности. Так, вертикальная подача расходуемой заготовки снижает потери металла на испарение и улучшает условия рафинирования, а горизонтальная подача расходуемой заготовки расширяет технологические возможности установки, снимая требования к механической прочности электрода, что позволяет использовать даже нескомпактированную шихту.

Рисунок 3- Технологические схемы электронно-лучевой плавки с промежуточной емкостью: а —- ЭЛП с горизонтальной подачей одной расходуемой заготовки; б — ЭЛП с одновременной подачей трех расходуемых заготовок
Кроме переплавных процессов, перспективна также технология электронно-лучевой гарнисажной плавки и литья, при которой накопленный в специальной емкости металл сливается не в проходной кристаллизатор, а в фасонные формы. При этом для увеличения объема сливаемого металла, как правило, используют дополнительный индукционный нагрев и электромагнитное перемешивание жидкого металла. Основная тенденция в развитии оборудования для реализации технологии ЭЛП — создание больших многофункциональных электронно-лучевых установок мегаваттного класса, рассчитанных на выплавку слитков весом 5 тонн и более.
2. Особенности электронного нагрева
Электронно-лучевой нагрев происходит за счет превращения кинетической энергии электронов, разгоняемых в электрическом поле до высоких скоростей, в тепловую энергию при торможении электронов о поверхность твердого тела или жидкого металла. При этом часть электронов отражается, остальная часть поглощается металлом, кинетическая энергия поглощенных электронов преобразуется в тепловую и энергию рентгеновского излучения.
Поток электронов создается специальным устройством -электронной пушкой, в которой имеется катод, являющийся источником электронов. Вылетающие из нагретого вольфрамового катода пушки электроны ускоряются в поле высокого напряжения (20-40 кВ), приложенного между катодом и анодом. Необходимая для нагрева металла плотность потока электронов достигается с помощью фокусирующей электромагнитной системы пушки. Таким образом, в электронной пушке происходит испускание, ускорение и фокусирование электронов в плотный пучок, называемым электронным лучом.

Рисунок 4- Схема явлений, происходящих при электронно-лучевом нагреве металла
При столкновении электронов с поверхностью не вся их энергия передается металлу, т.е. преобразуется в теплоту (рис. 4). Часть электронов отражается, унося с собой часть энергии, потери мощности электронного луча в результате отражения электронов могут достигать 20 % мощности бомбардирующего электронного пучка. Но наиболее заметные потери мощности могут происходить на пути электронного пучка от катода до поверхности металла. Эти потери слагаются из потерь энергии отдельных электронов при столкновении их с частицами газа и потерь, возникающих в результате взаимодействия электронного пучка в целом с ионизированным остаточным газом.
Потери энергии электронного луча происходят как на пути следования его от катода к нагреваемой поверхности, так и непосредственно при бомбардировке металла (рис

Зарегистрируйся, чтобы продолжить изучение работы


1.Техника и технология электронно-лучевой плавки
Впервые возможность плавить металл электронным лучом была доказана еще в конце прошлого века. Первые слитки чистого тантала и других металлов, выплавленные с помощью электронно-лучевого нагрева, были получены в начале XX века. Однако только в 50-х годах бурное развитие аэрокосмической и атомной техники, для которых требовались качественно новые конструкционные материалы, привело к разработке и промышленному использованию электронно-лучевых технологий (плавка, сварка, нанесение покрытий и т. п.). С тех пор объемы выплавляемого методом ЭЛП металла непрерывно возрастают. Возрастающее использование технологии ЭЛП обусловлено исключительно высоким качеством металла, часто не достигаемом другими методами плавки.
Классической схемой электронно-лучевой плавки является прямой переплав расходуемой заготовки непосредственно в медный водоохлаждаемый кристаллизатор, где происходит затвердевание металла (рис. 1).

Рисунок 1- Принципиальная схема электронно-лучевой установки: 1 —вакуумная камера с водоохлаждаемым кожухом; 2 — электронные пушки; 3 — источник высокого напряжения и система управления разверток лучей; 4 — система загрузки сплавляемой заготовки; 5 — вакуумная система; 6 — технологическая оснастка; 7 — механизм вытягивания слитка; 8 — поддон; 9 — слиток

Рисунок 2- Технологические схемы электронно-лучевой плавки непосредственно в кристаллизатор: а — ЭЛП с вертикальной подачей расходуемой заготовки; б — ЭЛП с горизонтальной подачей расходуемой заготовки
В настоящее время существует большое количество технологических схем электронно-лучевой плавки как непосредствен но в кристаллизатор (рис. 2), так и с применением промежуточной емкости (рис. 3).
Использование этих технологических схем позволяет подавать в зону плавки расходуемую заготовку и вертикально, и горизонтально, а также переплавлять нескомпактированную шихту. Особенно перспективными представляются технологические схемы электронно-лучевой плавки с промежуточной емкостью, которые позволяют практически полностью разделить процессы плавления и рафинирования, протекающие в промежуточной емкости, и затвердевания металла в кристаллизаторе. А это, в свою очередь, дает возможность более полно использовать одно из преимуществ процесса ЭЛП — плавное и в широких пределах изменение мощности электронного пучка и конфигурации зон нагрева. Создавая на поверхности слитка или расплава в кристаллизаторе температурные поля специального профиля, можно эффективно влиять на процессы кристаллизации металла.
Различные схемы плавки, кроме конструкционных, имеют и технологические особенности. Так, вертикальная подача расходуемой заготовки снижает потери металла на испарение и улучшает условия рафинирования, а горизонтальная подача расходуемой заготовки расширяет технологические возможности установки, снимая требования к механической прочности электрода, что позволяет использовать даже нескомпактированную шихту.

Рисунок 3- Технологические схемы электронно-лучевой плавки с промежуточной емкостью: а —- ЭЛП с горизонтальной подачей одной расходуемой заготовки; б — ЭЛП с одновременной подачей трех расходуемых заготовок
Кроме переплавных процессов, перспективна также технология электронно-лучевой гарнисажной плавки и литья, при которой накопленный в специальной емкости металл сливается не в проходной кристаллизатор, а в фасонные формы. При этом для увеличения объема сливаемого металла, как правило, используют дополнительный индукционный нагрев и электромагнитное перемешивание жидкого металла. Основная тенденция в развитии оборудования для реализации технологии ЭЛП — создание больших многофункциональных электронно-лучевых установок мегаваттного класса, рассчитанных на выплавку слитков весом 5 тонн и более.
2. Особенности электронного нагрева
Электронно-лучевой нагрев происходит за счет превращения кинетической энергии электронов, разгоняемых в электрическом поле до высоких скоростей, в тепловую энергию при торможении электронов о поверхность твердого тела или жидкого металла. При этом часть электронов отражается, остальная часть поглощается металлом, кинетическая энергия поглощенных электронов преобразуется в тепловую и энергию рентгеновского излучения.
Поток электронов создается специальным устройством -электронной пушкой, в которой имеется катод, являющийся источником электронов. Вылетающие из нагретого вольфрамового катода пушки электроны ускоряются в поле высокого напряжения (20-40 кВ), приложенного между катодом и анодом. Необходимая для нагрева металла плотность потока электронов достигается с помощью фокусирующей электромагнитной системы пушки. Таким образом, в электронной пушке происходит испускание, ускорение и фокусирование электронов в плотный пучок, называемым электронным лучом.

Рисунок 4- Схема явлений, происходящих при электронно-лучевом нагреве металла
При столкновении электронов с поверхностью не вся их энергия передается металлу, т.е. преобразуется в теплоту (рис. 4). Часть электронов отражается, унося с собой часть энергии, потери мощности электронного луча в результате отражения электронов могут достигать 20 % мощности бомбардирующего электронного пучка. Но наиболее заметные потери мощности могут происходить на пути электронного пучка от катода до поверхности металла. Эти потери слагаются из потерь энергии отдельных электронов при столкновении их с частицами газа и потерь, возникающих в результате взаимодействия электронного пучка в целом с ионизированным остаточным газом.
Потери энергии электронного луча происходят как на пути следования его от катода к нагреваемой поверхности, так и непосредственно при бомбардировке металла (рис . 4)
Глубокий вакуум и высокая плотность энергии в электронном луче определяют специфику электронно-лучевой плавки (ЭЛП) как способа получения особо чистых металлов и сплавов. Как известно, в вакууме интенсивно развиваются многие реакции дегазации, раскисления, восстановления и испарения летучих примесей, которые при атмосферном давлении не протекают. Возможность нагрева поверхности ванны до более высоких температур, чем при индукционной и электродуговой плавках, также способствует развитию процессов рафинирования при ЭЛП, благодаря этому ЭЛП позволяет максимально рафинировать расплав и получать металл самого высокого качества
3. Конструкции электроннолучевых плавильных установок (ЭЛУ)
Конструкции электроннолучевых плавильных установок (ЭЛУ) могут быть отнесены к одному из следующих типов:
установки с кольцевым катодом;
установки с радиальной пушкой;
установки с аксиальной пушкой;
установки с плазменным катодом;
установки с магнетронными пушками.
Рассмотрим некоторые установки более подробно их устройство и работу.


3.1 Установки с кольцевым катодом
В установках с кольцевым катодом (рис. 5) источником электронов является кольцевой катод, представляющий собой кольцо из вольфрамовой проволоки 1, через которое для увеличения электронов пропускают переменный ток от накального трансформатора. Между катодом 1 и переплавляемым электродом 2, а также между катодом 1 и жидкой ванной металла 5 в кристаллизаторе 4 прикладывают рабочее напряжение, подключая катод и металл к полюсам высоковольтного выпрямителя. Эмитированные катодом электроны формируются окружающим катод фокусирующим устройством 3 (экраном) в электронный луч6 и направляются на поверхность расплавляемого электрода 2 и жидкой ванны 5 кристаллизующегося слитка 7. Известные в настоящее время ЭЛУ этого вида имеют мощность N = 60 ÷ 225 кВ и рабочее напряжение U раб= 4÷12 кВ, они применяются в основном для выплавки слитков туго-плавких металлов диаметром до 100 мм.

Рисунок 5- Схема ЭЛУ с кольцевым катодом: 1 – кольцевой катод;2 – расходуемый электрод;3 – фокусирующее устройство(экран);4 – кристаллизатор водоохлаждаемый;5 – жидкая ванна;6 – электронный луч;7 – закристаллизовавшийся слиток;8 – плавильная камера
Так как жидкий металл имеет высокую температуру и интенсивно излучает тепло, для защиты от перегрева стенки вакуумной камеры и технологические узлы установки охлаждаются проточной водой
Под влиянием бомбардировки ускоренными электронами осуществляется нагрев и плавление торца расходуемой заготовки, а расплавленный металл стекает при этом в водоохлаждаемый медный кристаллизатор, где создается ванна жидкого металла, подогреваемая электронными лучами. По мере плавления расходуемой заготовки осуществляют вытягивание формируемого слитка со скоростью, обеспечивающей поддержание постоянного уровня жидкой ванны в кристаллизаторе. Важной составной частью электронно-лучевой установки является высокопроизводительная вакуумная система, от которой зависит эффективность работы электронно-лучевых пушек. Вакуумная система включает в себя последовательно соединенные высоковакуумные диффузионные или бустерные паромасляные насосы, а также вакуумные затворы и систему управления.
Преимуществом установок с кольцевым катодом является простота конструкции излучателя электронов. Кроме того, по сравнению с другими установками, такие установки отличаются более высоким КПД (15-40 %),так как расход энергии на плавление в них на 10-15 % меньше. Объясняется это тем, что в установках с кольцевым катодом положительный потенциал приложен непосредственно к нагреваемому металлу, поэтому исключает отражение электронов от поверхности металла. Электрическое поле тормозит отраженные электроны и снова возвращает их к поверхности металла, что предотвращает унос энергии из зоны нагрева. В связи с этим установки такого типа иногда называют установками автоэлектронного нагрева.
3.2 Установки с магнетронной пушкой
Новым направлением в электронно-лучевом нагреве является применение магнетронных пушек, в которых пучок электронов формируется как в однородном, так и неоднородном магнитных полях. Возможность применения как радиальных, так и аксиальных и даже кольцевых катодов с большой рабочей поверхностью позволяет получать высокую проводимость магнетронных пушек (до 20 мкА/В1,5). Это дает возможность создания мощных цилиндрических или трубчатых электронных пушек. Они могут работать с однородным (рис. 6,а) или неоднородным (рис. 6,б ) формирующим магнитным полем.

Рисунок 6- Схема магнетронной пушки с однородным (а) и неоднородным магнитным полем (б) : 1 – вспомогательный катод;2 –фокусирующий электрод;3 – рабочий катод;4 – анод;5 – магнитная катушка формирующей системы;6 – магнитная катушка фокусировки
В этих пушках наложение магнитного поля на поток электронов приводит к их движению по винтовой траектории с переменным шагом, зависящим от разброса кинетической энергии. Подбором напряженностей магнитного и электрического полей можно установить радиус закруткиэ лектронов, исключающий попадание их на анод.
Таким образом, при той же мощности в магнетронной пушке можно снизить ускоряющее напряжение. Магнетронные пушки менее чувствительны к точности юстировки электродов и установки катода. Даже при перекосах и эксцентриситетах электродов электроны следуют за линиями индукции магнитного поля.

4. Классификация электронно-лучевых печей
Электронно-лучевые печи (ЭЛП) по технологическому назначению подразделяются на переплавные, рафинировочные и литейные. В переплавных установках плавка металла производится в кристаллизатор. В установках, предназначенных для фасонного литья в условиях вакуума, плавка металла проводится в тигель с гарнисажем из этого же металла. В рафинировочных установках, которые могут быть с промежуточной емкостью или холодным подом, плавка ведется одновременно в гарнисаж и кристаллизатор. По конструктивному признаку ЭЛП различают с вертикальной и горизонтальной (боковой) подачей переплавляемой заготовки. По виду переплавляемой заготовки ЭЛП делятся на использование сплошной заготовки (электрода) и в виде сыпучей (кусковой) шихты.

Рисунок 7- Схема ЭЛУ с аксиальной пушкой: а – вертикальная подача переплавляемой заготовки; б – горизонтальная подача;1 – плавильная камера;2 – аксиальная пушка;3 – кристал-лизатор;4 – слиток;5 – поддон;6 – шток для вытягивания слитков;7 – вакуумный патрубок;8 – переплавляемый металл;9 – электродо-держатель;10 – рольганг
Наиболее распространены в настоящее время ЭЛП с боковой и вертикальной подачей (рис.7) переплавляемой заготовки. Электронно-лучевая пушка может быть любой из рассмотренных. На рис. 8 приведен общий вид ЭЛП, предназначенной для выплавки стальных слитков в катализатор. В плавильной камере 10 размещаются переплавляемая заготовка 5, электронная пушка6 и кристаллизатор 11. Стенки камеры – двойные водоохлаждаемые. В камеру вварены патрубки 7 для соединения с ваку-умной системой. Установка предназначена для переплавки стали и получения слитка массой до 18 т.

Развитие народного хозяйства нашей страны требует широкого внедрения в промышленность новых эффективных технологических процессов, основанных на достижениях современной науки и техники.
Одним из направлений, существенно расширяющих технологические возможности процесса обработки материалов, является использование концентрированных потоков энергии (струи плазмы, лазерного, электронного, ионного лучей и др.).

Содержание

ВВЕДЕНИЕ____________________________________________
Развитие электронно-лучевой технологии___________________
Технология электронно-лучевой обработки материалов_______
Испарение материалов___________________________________
Электронно-лучевая плавка металлов_______________________
Электронно-лучевая сварка_______________________________
Особенности образования отверстий при электронно-лучевой обработке______________________________________________
Заключение____________________________________________
Список литературы______________________________________

Прикрепленные файлы: 1 файл

4.docx

Развитие электронно-лучевой технологии___________________

Технология электронно-лучевой обработки материалов_______

Испарение материалов____________________ _______________

Электронно-лучевая плавка металлов______________________ _

Электронно-лучевая сварка________________________ _______

Особенности образования отверстий при электронно-лучевой обработке_____________________ _________________________

Список литературы____________________ __________________

Развитие народного хозяйства нашей страны требует широкого внедрения в промышленность новых эффективных технологических процессов, основанных на достижениях современной науки и техники.

Одним из направлений, существенно расширяющих технологические возможности процесса обработки материалов, является использование концентрированных потоков энергии (струи плазмы, лазерного, электронного, ионного лучей и др.).

Электронно-лучевая обработка является одним из разделов этого, успешно развивающегося, перспективного направления.

Широкие возможности автоматизации электронно-лучевой обработки материалов, ведение процесса в вакууме, что обеспечивает высокую чистоту обрабатываемого материала, концентрация энергии в электронном луче до значений, недоступных ранее известным источникам, — все это способствовало внедрению электронно-лучевой обработки как в отрасли, связанные с точным производством (приборостроение, электроника и др.), так и в отрасли, производящие крупногабаритные изделия (например, тяжелое машиностроение).

С помощью электронного луча выполняют такие технологические операции как фрезерование, сверление, термообработка, плавка, сварка, пайка и др.

В разработке теоретических основ процесса воздействия электронного луча на материалы и в практических применениях этого процесса достигнуты значительные успехи.

Установлено, что непрерывное электронно-лучевое воздействие на материал переходит в зоне обработки в прерывистое. Учитывая эти особенности процесса, можно использовать как непрерывные, так и импульсные режимы воздействия, что существенно повышает эффективность обработки и расширяет технологические возможности электронных пучков.

Развитие электронно-лучевой технологии.

После открытия электрона и измерения отношения его заряда к массе началось широкое изучение свойств электронных потоков, их получения и взаимодействия с электрическими и магнитными полями. Электронный микроскоп был создан трудами ряда ученых, в том числе Н. Руска, М. фон Арденна (Германия), В. К. Зворыкина (США) в 20-30-х гг. ХХ в. В нем применялись электронные пушки небольшой мощности с малыми токами и большими разгоняющими напряжениями. Тогда же были разработаны электростатические и магнитные системы управления электронным лучом.

Идея создания установки электронно-лучевого нагрева появилась еще в начале XX в., и в 1905 г. М. фон Пирани получил патент Германии на использование электронного луча как источника нагрева. Однако для технологического использования требовались более мощные электронные пушки, создание которых связано с различными конструктивными трудностями, а также были необходимы исследования взаимодействия электронного луча и материала обрабатываемого изделия.

Первые электронно-лучевые установки (ЭЛУ) для плавки ниобия и тантала были созданы в 1950-х гг. С 1960 г. ЭЛУ стали использоваться для нанесения покрытий, а затем и для обработки поверхности и размерной обработки, с 1970 г. - для нетермической микрообработки и химической обработки полимеров.Принципы создания электронной пушки для плавки или сварки были разработаны только в 1940 г. (Дж. Р. Пирц, США).

В СССР в конце 50-х гг. ХХ в. работы по ЭЛУ начали вести несколько организаций: кафедра ЭТУ МЭИ (М. Я. Смелянский, Л. Г. Ткачев), ВЭИ (В. И. Переводчиков), ВНИИЭТО (В. А. Хотин), Институт электросварки (ИЭС) им. Е. О. Патона АН УССР (Б. А. Мовчан), Всесоюзный институт легких сплавов - ВИЛС (А. Ф. Белов, И. А. Кононов), Государственный институт редких металлов - Гиредмет, Всесоюзный институт авиационных моторов - ВИАМ и др.

В МЭИ в 1959 г. был создан стенд с пушкой мощностью до 60 кВт, а позднее ЭЛУ мощностью 500 кВт. В 1961 г. в ВНИИЭТО изготовлена первая электронно-лучевая печь-стенд мощностью 200 кВт. Плосколучевые пушки мощностью 20-300 кВт при ускоряющем напряжении 15-20 кВ созданы ИЭС. Серию промышленных электронных пушек на мощности 60-500 кВт разработал ВЭИ.

Технология электронно-лучевой обработки конструкционных материалов.

Рис. Х1.11. Блок-схема электроннолучевой обработки:

1 — генератор импульсов; 2 — импульсный трансформатор; 3 — источник напряжения возбуждения и накала; 4 — катод; б — источник высокого напряжения; в — электромагнитная юстировка; 7 — диафрагма; в — корректор изображения;

о — магнитная линза; 10 — источник питания линзы; 11 — контрольный контур; 12 — катодный осциллоскоп; 1д — обрабатываемая деталь; 14 — рабочий стол

Установка для электронно-лучевой обработки (рис. XI.11) состоит из электронной пушки, в которой формируется мощный электронный луч, вакуумной или рабочей камеры (вместе с устройствами для точной установки и перемещения заготовки), вакуумных насосов, создающих вакуум порядка 10-5 см рт. ст. (1,33 -10“2 Па), контрольной системы, управляющей электронным лучом и его траекторией, высоковольтного источника энергии, приборов для контроля и наблюдения за ходом процесса. Для уменьшения энергии, рассеиваемой в материале детали, применяется импульсный режим работы. При стационарном режиме энергия пучка рассеивается практически одинаково во всех направлениях (рис. XI.12, а), а в импульсном режиме эта энергия концентрируется (рис. XI.12, б).

Рис. XI.12. Схема распространения тепловых потоков при стационарном (а) и импульсном (б) режимах электронно-лучевой обработки

Для уменьшения энергии, рассеиваемой в материале детали, применяется импульсный режим работы. При стационарном режиме энергия пучка рассеивается практически одинаково во всех направлениях (рис. XI.12, а), а в импульсном режиме эта энергия концентрируется (рис. XI.12, б). Паузы между импульсами выбирают такими, чтобы потери энергии на рассеивание были небольшими. Импульсный режим позволяет регулировать энергию нагрева и управлять скоростью съема металла. В существующих установках длительность импульса изменяется от 1СГ2 до 10~6 с, а частота повторения — от 50 до 5000 Гц. Электронно-лучевым методом можно обрабатывать как электропроводящие, так и не электропроводящие материалы с любыми механическими свойствами. Однако предпочтительнее обработка деталей из электропроводящих материалов или деталей с токопроводящими покрытиями. В этом случае статический заряд отводится путем заземления обрабатываемой детали. Наличие статического заряда оказывает дефокусирующее действие на поток электронов. Электронно-лучевая обработка успешно применена для вырезания микродиодов, изготовления тонких пленок и сеток из медной фольги, фильер (рис. XI.13), а также для изготовления алмазных волок.

Рис. XI. 13. Фильеры из нержавеющей стали (толщиной 0,5 мм; для изготовления синтетического волокна

Обычно диаметр получаемого отверстия (или ширина канавки) на 10% больше диаметра электронного пучка. Обработанные отверстия имеют небольшую конусность. Необходимая плотность энергии зависит от свойств обрабатываемых материалов и требуемой площади обработки.

Преимущества электронно-лучевой обработки: отсутствие химического взаимодействия между пучком электронов и обрабатываемым материалом, возможность обработки очень малых отверстий и узких прорезей (до 0,01 мм), легкость автоматизации обработки небольших контуров (размером 6x6 мм) путем программирования, возможность обработки труднодоступных мест.

Недостатки электронно-лучевой обработки: необходимость создания вакуума (на это требуется 15—20 мин), сложность, громоздкость и высокая стоимость оборудования, склонность к другому образованию при возникновении встречного потока ионов при испарении обрабатываемого материала ,необходимость защиты обслуживающего персонала от жесткого рентгеновского излучения.

Испарение (точнее, испарительное осаждение) в вакууме является важным способом получения тонких пленок.

Использование электронных пучков в процессах, связанных с испарением материалов, обусловлено особенностями распределения потоков энергии при нагреве этого материала. При электронно-лучевом испарении испаряемая поверхность непосредственно нагревается бомбардирующими ее электронами. Такой способ подвода энергии дает электронно-лучевому испарению ряд преимуществ по сравнению с традиционными.

Другим стимулом внедрения электронно-лучевого испарения является возможность, управляя электронным пучком во времени и пространстве, управлять тем самым и потоком энергии в испаряемое вещество и воздействовать на скорость испарения и распределение плотности потоков пара.

Испарительное осаждение - это процесс вакуумного нанесения покрытий, при котором между испарителем и подложкой создается направленный поток пара.

Принцип электронно-лучевого испарения пояснен на рис. 2.1.

Рис. 2.1 - Принцип электронно-лучевого испарения материалов: 1 - электронная пушка; 2 - электронный пучок; 3 - поверхность, бомбардируемая пучком; 4 - кожух технологической камеры; 5 - водоохлаждаемый тигель; 6 - испаряемый материал; 7 - расплавленная часть материала; 8 - поверхность испарения; 9 - откачка вакуума; 10 - диафрагма испарителя; 11 -поток пара; 12 - напыляемый слой; 13 - подложка; 14 - подогреватель подложки

В основных чертах установка для электронно-лучевого испарения состоит из технологической камеры с системой откачки, тигля с испаряемым материалом, электронной пушки, заслонки для пара и подложки с приспособлениями для её крепления, а иногда – нагрева.

Для того чтобы электронный пучок в поток пара распространялись в технологической камере беспрепятственно, давление в ней должно поддерживаться достаточно малым.

Нанесение покрытий из сплавов требует обеспечение одинакового соотношения компонентов сплава как по всей поверхности подложки, так и по толщине слоя. Слои из сплавов напыляют двумя методами: многотигельного испарения или однотигельного испарения.

При многотигельном испарении компоненты испаряются порознь, каждый из своего тигля, а конденсируются на подложке совместно. При однотигельном испарении поток пара создается и конденсируется, имея тот состав, который требуется для покрытия. Вариантом однотигельного испарения является процесс, аналогичный фракционной возгонке, когда из тигля с большим количеством расплавленного вещества его испаряют покомпонентно, изменяя мощность подогрева по определенному графику.

Испарение соединений сопровождается частичной или полной их диссоциацией, и получить из таких соединений простым испарением тонкие пленки заданного состава невозможно. Однако для ряда соединений. таких, как хлориды, сульфиды, селениды, теллуриды, а также полимеры, благодаря малой степени диссоциации или вследствие рекомбинации компонентов при конденсации, возможность теоретического напыления все же существует.

Промышленное применение электронно-лучевого испарения, благодаря его преимуществам, существенно потеснило традиционные способы испарения и открыло новые возможности.

Электронно-лучевая плавка металлов

Рис. 2.2 - Принцип электронно-лучевого переплава: 1 - электронная пушка; 2 - электронный пучок, направляемый на расплавляемый штабик 5 и ванну расплавленного металла 7; 3 - откачка вакуума; 4 - плавильная камера; 6 - капли переплавляемого металла; 8 - выплавляемый слиток; 9 - водоохлахдаемый кристаллизатор; 10 - устройство вытяжки слитка; 11 - смотровые окна

Электронно-лучевая плавка является весьма удобным способом получения слитков тугоплавких и химически высокоактивных металлов. Здесь используются такие особенности электронно-лучевой плавки, как высокая удельная поверхностная мощность в рабочем пятне пучка и наличие вакуума, препятствующего поглощению газов в ходе плавки. Областью применения электронно-лучевого переплава является производство особо чистых сталей и выплавка слитков и фасонных отливок из химически активных и тугоплавких металлов.

Процесс плавки изображен на рис. 2.2, где показано взаимное расположение электронной пушки, переплавляемой заготовки и кристаллизатора. Часть модности пучка расходуется для нагрева переплавляемого металла на торце заготовки до температуры плавления. Расплавляясь, материал в виде капель перетекает в ванну расплава в кристаллизаторе. Скорость плавки пропорциональна мощности пучка, приходящейся на расплавляемую заготовку. Другая часть мощности пучка подводятся в кристаллизатор. Она должна быть достаточной для того, чтобы материал в ванне находился в расплавленном состоянии вплоть до стенки кристаллизатора. Это дает возможность получать слитки с гладкой боковой поверхностью. Если кроме формирования такого слитка требуется проводить еще и рафинирование расплава, то мощность, подводимую в кристаллизатор, следует увеличить.

Электронно-лучевая плавка может сочетаться с литьем. Для этого необходимым элементом является литейный тигель, в котором материал расплавляют и поддерживают жидким в достаточном количестве. Литейный тигель может быть футерованным или медным водоохлаждаемым. Керамическая футеровка тиглей и изложниц допустима только тогда, когда реакции материала футеровки с расплавом не происходят или когда они не наносят вреда качеству продукта.

Перспективы развития электронно-лучевой плавки обусловлены потребностями ядерной, аэрокосмической техники, электроники и химической технологии в особо чистых материалах, сохраняющих прочностные свойства при высоких температурах или обладающих высокой химической стойкостью.

В настоящее время в мире насчитывается несколько сотен электронно-лучевых плавильных установок, работающих в промышленности.

Электронно-лучевая плавка занимает прочные позиции в производстве слитков из ниобия и тантала. В металлургии титана и других высокоактивных и тугоплавких металлов, а также кремния, повышается значение электронно-лучевой плавки как способа переработки возвратных отходов производства.

Сущность электронно-лучевой плавки заключается в переплаве металлических заготовок в электронно-лучевой печи в результате их нагрева и плавления энергией электронного луча, капельном переносе электродного металла и последовательном затвердевании металла в водоохлаждаемом кристаллизаторе. В отличие от ВДП и ЭШП жесткая связь источника нагрева с переплавляемой заготовкой отсутствует. Переплавляемая заготовка не участвует в электрической цепи источника нагрева и, следовательно, не является расходуемым электродом. Отсутствие связи источника нагрева с переплавляемым электродом обеспечивает широчайшие возможности для управления скоростью переплава и в конечном итоге - кристаллизацией слитка. Это позволяет управлять временем пребывания металла в жидком состоянии и соответственно продолжительностью обработки его вакуумом, заметно перегревать металл выше температуры плавления. Кроме того, ЭЛП осуществляют в глубоком вакууме, что увеличивает возможности рафинирования металла по сравнению с ВДП.

Электронно-лучевая плавка обладает рядом преимуществ, а именно:

1) регулирование в широких пределах скорости наплавления, определяющей благоприятную для последующей обработки макроструктуру слитка;

2) возможность высокого перегрева металлов, позволяющего в сочетании с глубоким вакуумом удалить вредные примеси (например, цветные металлы);

3) глубокая дегазация металла в вакууме;

4) отсутствие контакта жидкого металла с загрязняющей его футеровкой;

5) переплав практически любой шихты и возобновление процесса плавки после случайного перерыва без ухудшения качества слитка. При получении слитков большой массы (нескольких десятков т) важное достоинство процесса – возможность переплава сравнительно небольших заготовок, попеременно подаваемых в зону плавления. Жидкий металл поступает в кристаллизатор либо непосредственное переплавляемой заготовки, либо из промежуточной ёмкости, где он дополнительно рафинируется. В результате Электроннолучевая плавка в 2–4 раза снижается содержание газовых примесей и неметаллических включений, повышаются плотность металла, изотропность его свойств.

1) низкая производительность и, как следствие, низкий к.п.д. Если сравнивать ВДП и ЭЛП при одинаковой мощности (150 - 200 кВт), то скорость плавления на ВДП-10 кг/мин, а на ЭЛП - 0,4 - 0,5 кг/мин. При этом полный к.п.д. электронной плавки составляет около 10%.

2) сложность и высокая стоимость оборудования;

3) высокие капитальные затраты;

4) невозможность переплава сталей и сплавов, легированных
азотом, марганцем большие и часто неуправляемые потери легирующих элементов с высокой упругостью пара, таких как, например, хром. Поскольку хром входит в подавляющее большинство легированных сталей и сплавов, это обстоятельство существенно ограничивает область применения ЭЛП;

Электронно-лучевой переплав (ЭЛП) используют для получения ультрачистых металлов и сплавов. Способ заключается в том, что пучок электронов высокой мощности бомбардирует шихту, расплавляет ее и нагревает до высоких температур в медном водоохлаждаемом кристаллизаторе при глубоком вакууме, т. е. при остаточном давлении 66,6 мПа (5-10-4 мм рт.ст.).

Процесс ЭЛП обеспечивает:

  • переплав литых и деформированных заготовок (электродов) и шихты любого вида;
  • получение в водоохлаждаемом кристаллизаторе слитков и фасонных отливок;
  • выдержку жидкого металла при низком давлении длительное время при любой температуре, при этом достигается высокая степень дегазации и рафинирования металла.

В ЭЛП источником свободных электронов служит накаленная спираль или пластина, т. е. катод, с которого излучается поток электронов (термоэлектродная эмиссия). Скорость электронов в электромагнитном поле между катодом и анодом определяется формулой: V = 593√U, где U — разность потенциалов в ускоряющем поле. Электронный поток за анодом сжимают электромагнитным полем в луч и направляют на металлический электрод или шихту и жидкую ванну. При столкновении луча с металлом выделяется большое количество энергии, под действием которой металл нагревается и плавится. В качестве катодов ЭЛП используют вольфрам и молибден.

В отличие от ВДП, в электронных плавильных установках имеется возможность:

  • регулировать распределение мощности между переплавляемой заготовкой и жидкой ванной;
  • концентрировать электронный луч на поверхности жидкой ванны;
  • нагревать металл до любой температуры;
  • выдерживать ванну в течение любого времени при значительных низких давлениях.

Слитки ЭЛП отличаются от слитков ВДП более ярко выраженной осевой кристаллизацией и большей степенью рафинирования металла от примесей.

Электронные плавильные установки имеют разные конструкции излучающих устройств. Известны ЭЛП с кольцевым катодом, с радиальной пушкой и с аксиальной пушкой. В ЭЛП с кольцевым катодом (рис. 1, а) излучателем электронов является кольцо из вольфрамовой проволоки, через которое пропускают переменный ток от накального трансформатора.

К катоду, расходуемому электроду и ванне металла в кристаллизаторе подводят ток от полюсов высоковольтного выпрямителя (положительный потенциал к металлу). Излучаемый поток электронов формируют окружающим катод фокусирующим устройством в электронный луч, который направляют на поверхность расходуемого электрода и жидкой ванны в кристаллизаторе. Установки с кольцевым катодом просты в изготовлении, имеют меньший (на 10—15%) удельный расход электроэнергии и более высокий к.п.д. Однако распространения они не получили ввиду близкого расположения катода к поверхности нагреваемого металла и большей вероятности (из-за повышенного газовыделения) перехода электронного разряда в дуговой, выводящий катод из строя, а также попадания на катод паров жидкого металла, снижающих его эмиссионную способность.

Более широкое распространение получили ЭЛП с радиальными пушками (устройствами для формирования электронного луча). Отличие их заключается в том, что катод изготовляют не в виде отдельного кольца, а расчлененным на несколько участков, работающих параллельно, и положительный потенциал прикладывают не к нагреваемому металлу, а к специальному ускоряющему электроду – аноду, в котором имеется узкая щель для прохождения электронного луча.

Определение катода от плавильного пространства узкой щелью анода препятствует попаданию выделяющихся из металла газов и паров в объем формирования электронного луча, что повышает надежность и срок службы катода. Еще большая независимость электронной пушки от плавильного объема ЭЛП достигнута в печах с аксиальными пушками, в которых, в отличие от установок с кольцевыми катодами и с радиальной пушкой, электронный луч формируется не плоским, а конусообразным (рис. 1, б).

Рабочую поверхность основного катода таких печей выполняют в виде вогнутой линзы, благодаря чему формируют сходящийся электронный луч. На выходе из лучевода располагают систему электро-магнитного отклонения, обеспечивающую поворот луча в нужном направлении. В промышленных печах с аксиальными пушками длина электронного луча достигает 1—2 м.

Это, а также собственная вакуумная система пушек, обеспечивающая остаточное давление в зоне формирования луча в пределах 0,666—1,333 мПа, исключают попадание в эту зону паров металла. Срок службы катодов в аксиальных пушках составляет сотни часов. Для промышленных печей используют аксиальные пушки разного типа, мощностью от 100 до 7500 кВт. ЭЛП получили распространение в металлургии тугоплавких металлов и для рафинирующего переплава различных марок стали и сплавов.

Электронно-лучевую плавку применяют для получения очень чистых по кислороду, азоту и неметаллическим включениям сплавов, шарикоподшипниковой стали для скоростных подшипников, а также жаропрочных, коррозионностойких и прецизионных сплавов.

Работы по совершенствованию конструкций электронно-лучевых печей и технологического процесса осуществляют в направлении увеличения производительности, повышения к.п.д. и снижения стоимости передела. В этой связи весьма перспективными представляются установки с, так называемым, холодным подом. Установки могут работать в непрерывном цикле с подачей металлического полупродукта и поддержанием оптимальных условий рафинирования расплава электронными пушками в отдельных зонах.

Читайте также: