Электрические машины и трансформаторы реферат

Обновлено: 05.07.2024

Цель курсовой работы – проанализировать, выявить проблемы и определить перспективы её развития.

Для достижения указанной цели, в работе поставлены следующие задачи:

изучить исторический аспект изобретения.
дать детальную характеристику электрического аппарата.
выделить основные принципы, которые характерны для трансформатора
проанализировать динамику востребовательности с целью выявления основных тенденций;
оценить перспективы развития;
направления совершенствования
В данной работе используются следующие научные методы: сравнение, анализ и синтез, индукция и дедукция, статистический анализ.

Содержание

1. Трансформаторы, их назначение.…………………………………. 5

1.1 Трансформатор, его история. …………………. 5

1.2. Виды трансформаторов, их значение……………………………7

1.3 Основные части конструкции трансформатора…………………. 10

2.Принцип действия трансформатора……………………………. 16

2.1 Базовые принципы действия трансформатора……………….. 16

2.2 Принцип работы Однофазных и трехфазных трансформаторов специального назначения………………………………………….. 18

3.Примеры использования трансформаторов…………………….. 22

3.1 Применение в электросетях…………………………………… 22

3.2 Применение в источниках электропитания…………………. 23

3.3 Другие применения трансформатора………………………… 25

Список использованной литературы………………………………………..

Работа состоит из 1 файл

Документ Microsoft Office Word.docx

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования

Кафедра ______________________________ ______

КУРСОВАЯ РАБОТА по Физике на тему:

Трансформаторы, их назначение, принцип

действия, примеры использования.

Выполнил студент группы ЭЗ10-1

Алексеев А.Д

обучающийся по специальности

Экономика и управление на предприятии

Принял __________________________

Нижний Новгород

1. Трансформаторы, их назначение. …………………………………. 5

1.1 Трансформатор, его история. …………………. . 5

1.2. Виды трансформаторов, их значение……………………………7

1.3 Основные части конструкции трансформатора …………………. 10

2.Принцип действия трансформатора……………………………. 16

2.1 Базовые принципы действия трансформатора………………. . 16

2.2 Принцип работы Однофазных и трехфазных трансформаторов специального назначения………………… ……………………….. 18

3.Примеры использования трансформаторов…………………….. 22

3.1 Применение в электросетях…………………………………… 22

3.2 Применение в источниках электропитания……… …………. 23

3.3 Другие применения трансформатора………………………… 25

Список использованной литературы……………………………………….. 30

Трансформаторы - наиболее распространенные устройства в современной электротехнике. Трансформаторы большой мощности на напряжение до сотен киловольт составляют основу систем передачи электроэнергии от электростанций в линии электропередачи. Эти трансформаторы повышают напряжение переменного тока до значений, необходимых для экономичной передачи электроэнергии на значительные расстояния. В местах распределения электроэнергии между потребителями применяют трансформаторы, понижающие напряжение до требуемых для потребителя значений. Наряду с этим трансформаторы являются элементами электроприводов, нагревательных и других установок, где они осуществляют преобразование напряжения питающей сети до значений, необходимых для работы электродвигателей, нагревательных печей и других электроустройств.

Трансформатором называют статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством явления электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.

Трансформаторы малой мощности различного назначения используются в устройствах радиотехники, автоматики, сигнализации, связи и т. п., а так же для питания бытовых электроприборов. Назначение силовых трансформаторов -- преобразование электрической энергии в электрических сетях и установках, предназначенных для приема и использования электрической энергии.

Трансформаторы специального назначения предназначены для непосредственного питания потребительской сети или приемников электрической энергии, отличающихся особыми условиями работы, характером нагрузки или режимом работы.

Трансформаторы являются наиболее широко используемыми элементами в различной аппаратуре.

Объектом исследования в курсовой работе выступает Трансформатор. Предметом исследования является принцип действия , проблемы их исполнения и использовании.

Цель курсовой работы – проанализировать, выявить проблемы и определить перспективы её развития.

Для достижения указанной цели, в работе поставлены следующие задачи:

  1. изучить исторический аспект изобретения.
  2. дать детальную характеристику электрического аппарата.
  3. выделить основные принципы, которые характерны для трансформатора
  4. проанализировать динамику востребовательности с целью выявления основных тенденций;
  5. оценить перспективы развития;
  6. направления совершенствования
  7. В данной работе используются следующие научные методы: сравнение, анализ и синтез, индукция и дедукция, статистический анализ.

Теоретической базой курсовой работы выступили труды ведущих отечественных специалистов по физике.

1. Трансформаторы, их назначение.

1.1 Трансформатор, его история.

Трансформа́тор (от лат. transformo — преобразовывать) — электрический аппарат, имеющий две или более индуктивно связанные обмотки и предназначенный для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока (ГОСТ Р52002-2003). Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито- мягкого материала.[1]

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Столетов Александр Григорьевич (профессор МУ)сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).

Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока[2].В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.[3]

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки. Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток. С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока, построил первый трёхфазный асинхронный двигатель и первый трёхфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.[1]

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод ( впоследствии — Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.[5]

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

1.2 Виды трансформаторов, их значение.

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала!

Опыты холостого хода и короткого замыкания трансформатора и их значение. Сущность напряжения короткого замыкания. Средства улучшения коммутации в машинах постоянного тока. Устройство и принцип действия автотрансформатора, его достоинства и недостатки.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 09.10.2010
Размер файла 903,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МЕЖРЕГИОНАЛЬНЫЙ ЗАОЧНЫЙ ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ

(МЗЭТ ГОУ СПО ИЭК)

КОНТРОЛЬНАЯ РАБОТА № 1

Деркач Николай Николаевич шифр Д--2170

3 курса, специальности 140206-01 .

Вопрос № 1 Опыты холостого хода и короткого замыкания трансформатора. Значение опытов. Напряжение короткого замыкания

Электрическая схема замещения позволяет с достаточной точностью исследовать свойства трансформаторов в любом режиме. Использование этой схемы при определении характеристик имеет наибольшее практическое значение для трансформаторов мощностью 50 кВ-А и выше, так как исследование таких трансформаторов методом непосредственной нагрузки связано с некоторыми техническими трудностями: непроизводительным расходом электроэнергии, необходимостью в громоздких и дорогостоящих нагрузочных устройствах.

Определение параметров схемы замещения Z1 = r1+jx1; Zm = rm+jxm', Z2 / =r2 / +jx2 / возможно либо расчетным (в процессе расчета трансформатора), либо опытным путем. Ниже излагается порядок определения параметров схемы замещения трансформатора опытным путем, сущность которого состоит в проведении опыта холостого хода (х. х.) и опыта короткого замыкания (к. з.).

Опыт холостого хода. Холостым ходом называют режим работы трансформатора при разомкнутой вторичной обмотке (zн=бесконечности, I2=0). В этом случае уравнения ЭДС и токов (1.34) принимают вид

Так как полезная мощность при работе трансформатора вхолостую равна нулю, мощность на входе трансформатора в режиме х. х. Pq расходуется на магнитные потери в магнитопроводе Рм (потери на перемагничивание магнитопровода и вихревые токи) и электрические потери в меди I0 2 r1 (потери на нагрев обмотки при прохождении по ней тока) одной лишь первичной обмотки. Однако ввиду небольшого значения тока I0, который обычно не превышает 2--10% I1ном, электрическими потерями I0 2 r1 можно пренебречь и считать, что вся мощность х. х. представляет собой мощность магнитных потерь в стали магнитопровода. Поэтому магнитные потери в трансформаторе принято называть потерями холостого хода.,

Опыт х. х. однофазного трансформатора проводят по схеме, изображенной на рис. 1.29, а. Комплект электроизмерительных приборов, включенных в схему, дает возможность непосредственно измерить напряжение U1, подведенное к первичной обмотке; напряжение U20 на выводах вторичной обмотки; мощность х.х. Р0 и ток Х.Х. Iо.

Напряжение к первичной обмотке трансформатора обычно подводят через регулятор напряжения РН, позволяющий плавно повышать напряжение от 0 до 1,15 U1ном-

При этом через приблизительно одинаковые интервалы тока х.х. снимают показания приборов,- а затем строят характеристики х.х.: зависимость тока х.х. I0," мощности х.х. Pq и коэффициента мощности х.х. соs ф0 от первичного напряжения U1 (рис. 1.30).

Криволинейность этих характеристик обусловлена состоянием магнитного насыщения магнито-провода, которое наступает при некотором значении напряжения U1.

В случае трехфазного трансформатора опыт х.х. проводят по схеме, показанной на рис. 1.29, б. Характеристики х.х. строят по средним фазным значениям тока и напряжения для трех фаз:

где P0 и P0" -- показания однофазных ваттметров; U1 и I0 -- фазные значения напряжения и тока.

По данным опыта х. х. можно определить: коэффициент трансформации

ток х.х. при U 1ном (в процентах от номинального первичного тока)

В трехфазном трансформаторе токи х.х. в фазах неодинаковы и образуют несимметричную систему

поэтому мощность Р0 следует измерять двумя ваттметрами по схеме, изображенной на рис. 1.29, б. Падение напряжения в первичной ветви схемы замещения в режиме х.х. Io(r1+jx1) (рис. 1.31) составляет весьма незначительную величину, поэтому, не допуская заметной ошибки, можно пользоваться следующими выражениями для расчета параметров ветви намагничивания:

Обычно в силовых трансформаторах общего применения средней и большой мощности при номинальном первичном напряжении ток х. х. i0=10/0,6%.

Если же фактические значения тока х. х. Iном и мощности х. х. Р0 ном, соответствующие номинальному значению первичного напряжения U1 ном, заметно превышают величины этих параметров, указанные в каталоге на данный тип трансформатора, то это свидетельствует о неисправности этого трансформатора: наличии корот-козамкнутых витков в обмотках либо замыкании части пластин магнитопровода.

Опыт короткого замыкания. Короткое замыкание трансформатора -- это такой режим, когда вторичная обмотка замкнута накоротко (zH=0), при этом вторичное напряжение U2=0. В условиях эксплуатации, когда к трансформатору подведено номинальное напряжение U1ном, короткое замыкание является аварийным режимом и представляет собой большую опасность для трансформатора.

При опыте к.з. вторичную обмотку однофазного трансформатора замыкают накоротко (рис. 1.32, а), а к первичной обмотке подводят пониженное напряжение, постепенно повышая его регулятором напряжения РН до некоторого значения Uк ном, при котором токи к. з. в обмотках трансформатора становятся равными номинальным токам в первичной (I1к =I1ном) и вторичной (I2к =I2ном) обмотках. При этом снимают показания приборов и строят характеристики к. з., представляющие собой зависимость тока к. з. I1K, мощности к. з. Рк и коэффициента мощности cos срк от напряжения к. з. UK (рис. 1.33).

В случае трехфазного трансформатора опыт проводят по схеме, показанной на рис. 1.32, б, а значения напряжения к.з. и тока к.з. определяют как средние для трех фаз:

В случае трехфазного трансформатора активную мощность измеряют методом двух ваттметров. Тогда мощность к. з.

В (1.52) Рк и Рк" -- показатели однофазных ваттметров, Вт.

Напряжение, при котором токи в обмотках трансформатора при опыте равны номинальным значениям, называют номинальным напряжением короткого замыкания и обычно выражают его в процентах от номинального напряжения:

Вопрос №2 Средства улучшения коммутации в машинах постоянного тока

Таблица 13.1. Степень искрения (класс коммутации) электрических машин постоянного тока

Большое практическое значение * при эксплуатации машин постоянного тока имеют вопросы улучшения коммутации. Основной причиной неудовлетворительной коммутации является возникновение в коммутирующих секциях добавочного тока коммутации

1. Выбор вдетак, С точки зрения обеспечения удовлетворительной коммутации целесообразно применение щеток с большим падением напряжения в переходном контакте и собственно щетке, т.е. щетки с большим сопротивлением rщ, что привело бы к уменьшению тока iд. Однако допустимая плотность тока в щеточном контакте таких щеток невелика, поэтому их применение в машинах со значительным током якоря ведет к необходимости увеличения площади щеточного контакта, что требует увеличения площади коллектора за счет его длины. В связи с этим щетки с большим rш используют преимущественно в машинах с относительно высоким напряжением, а следовательно, с небольшим током якоря.

2. Уменьшение реактивной ЭДС в коммутирующих секциях. Снижению реактивной ЭДС, индуцируемой в коммутирующих секциях, способствует уменьшение коэффициентов взаимной индуктивности М и самоиндукции Lс.. Понижение коэффициента М достигается применением обмоток якоря с укороченным шагом (у1 I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I2=I1+I12. Подставив это выражение в формулу проходной мощности, получим

Здесь Sэ--U2I1 -- мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрас= U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение" обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх"ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность SЭ, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ, передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

т. е. величина мощности Sэ обратно пропорциональна коэффициенту трансформации автотрансформатора kA.

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA=\ вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (Sэ/Sпр=1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для питания цепей НН от сети ВН.

Выберите тип обмотки и рассчитайте её шаги. Обоснуйте свой выбор. Начертите развёрнутую схему и схему параллельных ветвей обмотки якоря машины постоянного топка.

Число пар полюсов Р = 1

Число элементарных пазов Zэ = 15

Число секций S = 15

Число коллекторных пластин. К = 15

Ток в якоре Ia = 600А

Ток параллельной ветви должен ограничивается значением. ia = ( 300 - 350) А

2a - число параллельных ветвей обмотки якоря

ia - ток одной параллельной ветви

2а = 2Р ia = Ia/2a = 600/2*1 = 300A

Выбираем простую петлевую обмотку.

Задача № 2

Генератор постоянного тока с параллельным возбуждением работает в номинальном режиме с мощностью Р ном при напряжении Uном и токе Iном. Ток в обмотке возбуждения -- Iв, в обмотке якоря - Iа. Сопротивление обмотки возбуждения при tхол = 20 °С - RВ 20°С, а обмотки якоря - Ra 20°С. ЭДС генератора- Е. КПД генератора - rном, а суммарные потери мощности в генераторе ? р.

По заданным в таблице 2 значениям величин определить все остальные, отмеченные в таблице прочерками. Начертите схему такого генератора и поясните назначение каждого элемента схемы.

ЗАДАЧА 3

Трехфазный трансформатор имеет номинальную мощность SHQM. номинальные (линейные) напряжения обмоток U1ном и U2ном - номинальные токи I 1ном и I 2ном и коэффициент трансформации k. В сердечнике трансформатора сечением Q создается магнитная индукция Втах при частоте тока = 50 Гц. Обе обмотки соединены в-звезду. Числа виткоз первичной и вторичной обмоток - w1 и w2. ЭДС в обмотках (фазные величины) составляют Е1ф и Е2ф. По заданным в таблице 3 значениям величин определить все остальные, отмеченные в таблице прочерками.

Подобные документы

Проект трансформатора, электрические параметры: мощность фазы, значение тока и напряжения; основные размеры. Расчет обмоток; характеристики короткого замыкания; расчет стержня, ярма, веса стали, потерь, тока холостого хода; определение КПД трансформатора.

учебное пособие [576,7 K], добавлен 21.11.2012

Устройство и принцип действия трансформатора. Частное напряжений второй и первой обмоток. Проведение опытов холостого хода, короткого замыкания и с нагрузкой. Построение зависимости КПД трансформатора от нагрузки. Электрические потери в трансформаторе.

лабораторная работа [42,3 K], добавлен 07.03.2013

Исследование трансформатора методом холостого хода и короткого замыкания. Расчет тока холостого хода в процентах от номинального первичного, коэффициента мощности в режиме холостого хода. Порядок построения характеристики холостого хода трансформатора.

лабораторная работа [19,0 K], добавлен 12.01.2010

Исследование назначения машин переменного тока, их места в системе энергоснабжения. Анализ принципа действия трансформатора. Характеристика его работы в режиме холостого хода и короткого замыкания. Оценка качества работы магнитной системы трансформатора.

презентация [254,5 K], добавлен 21.10.2013

Расчет обмоточного трансформатора с медными обмотками на чашечном магнитопроводе. Нахождение тока холостого хода и короткого замыкания. Определение показателей трансформатора, выполненного на торроидальном магнитопроводе. Обзор напряжения питающей сети.

контрольная работа [1,3 M], добавлен 11.09.2009

Устройство, назначение и принцип действия трансформаторов. Расчет электрических величин трансформатора и автотрансформатора. Определение основных размеров, расчет обмоток НН и ВН, параметров и напряжения короткого замыкания. Расчет системы охлаждения.

реферат [1,6 M], добавлен 10.09.2012

Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

Электрическая схема замещения позволяет с достаточной точностью исследовать свойства трансформаторов в любом режиме. Использование этой схемы при определении характеристик имеет наибольшее практическое значение для трансформаторов мощностью 50 кВ-А и выше, так как исследование таких трансформаторов методом непосредственной нагрузки связано с некоторыми техническими трудностями: непроизводительным расходом электроэнергии, необходимостью в громоздких и дорогостоящих нагрузочных устройствах.

Определение параметров схемы замещения Z1 = r1+jx1; Zm = rm +jxm ', Z2 / =r2 / +jx2 / возможно либо расчетным (в процессе расчета трансформатора), либо опытным путем. Ниже излагается порядок определения параметров схемы замещения трансформатора опытным путем, сущность которого состоит в проведении опыта холостого хода (х. х.) и опыта короткого замыкания (к. з.).

Опыт холостого хода. Холостым ходом называют режим работы трансформатора при разомкнутой вторичной обмотке (zн =бесконечности, I2 =0). В этом случае уравнения ЭДС и токов (1.34) принимают вид


Так как полезная мощность при работе трансформатора вхолостую равна нулю, мощность на входе трансформатора в режиме х. х. Pqрасходуется на магнитные потери в магнитопроводе Рм (потери на перемагничивание магнитопровода и вихревые токи) и электрические потери в меди I0 2 r1 (потери на нагрев обмотки при прохождении по ней тока) одной лишь первичной обмотки. Однако ввиду небольшого значения тока I0 , который обычно не превышает 2—10% I1ном, электрическими потерями I0 2 r1 можно пренебречь и считать, что вся мощность х. х. представляет собой мощность магнитных потерь в стали магнитопровода. Поэтому магнитные потери в трансформаторе принято называть потерями холостого хода.,

Опыт х. х. однофазного трансформатора проводят по схеме, изображенной на рис. 1.29, а. Комплект электроизмерительных приборов, включенных в схему, дает возможность непосредственно измерить напряжение U1 , подведенное к первичной обмотке; напряжение U20 на выводах вторичной обмотки; мощность х.х. Р0 и ток Х.Х. Iо.


Напряжение к первичной обмотке трансформатора обычно подводят через регулятор напряжения РН, позволяющий плавно повышать напряжение от 0 до 1,15 U1ном-

При этом через приблизительно одинаковые интервалы тока х.х. снимают показания приборов,- а затем строят характеристики х.х.: зависимость тока х.х. I0 ," мощности х.х. Pqи коэффициента мощности х.х. соs ф0 от первичного напряжения U1 (рис. 1.30).

Криволинейность этих характеристик обусловлена состоянием магнитного насыщения магнито-провода, которое наступает при некотором значении напряжения U1.


В случае трехфазного трансформатора опыт х.х. проводят по схеме, показанной на рис. 1.29, б. Характеристики х.х. строят по средним фазным значениям тока и напряжения для трех фаз:


где P0 и P0" — показания однофазных ваттметров; U1 и I0 — фазные значения напряжения и тока.

По данным опыта х. х. можно определить: коэффициент трансформации


ток х.х. при U 1ном (в процентах от номинального первичного тока)


(1.45)

В трехфазном трансформаторе токи х.х. в фазах неодинаковы и образуют несимметричную систему

поэтому мощность Р0 следует измерять двумя ваттметрами по схеме, изображенной на рис. 1.29, б. Падение напряжения в первичной ветви схемы замещения в режиме х.х. Io(r1+jx1) (рис. 1.31) составляет весьма незначительную величину, поэтому, не допуская заметной ошибки, можно пользоваться следующими выражениями для расчета параметров ветви намагничивания:


Обычно в силовых трансформаторах общего применения средней и большой мощности при номинальном первичном напряжении ток х. х. i0=10/0,6%.

Если же фактические значения тока х. х. Iном и мощности х. х. Р0 ном, соответствующие номинальному значению первичного напряжения U1 ном, заметно превышают величины этих параметров, указанные в каталоге на данный тип трансформатора, то это свидетельствует о неисправности этого трансформатора: наличии корот-козамкнутых витков в обмотках либо замыкании части пластин магнитопровода.


Опыт короткого замыкания. Короткое замыкание трансформатора — это такой режим, когда вторичная обмотка замкнута накоротко (zH =0), при этом вторичное напряжение U2 =0. В условиях эксплуатации, когда к трансформатору подведено номинальное напряжение U1ном, короткое замыкание является аварийным режимом и представляет собой большую опасность для трансформатора.

При опыте к.з. вторичную обмотку однофазного трансформатора замыкают накоротко (рис. 1.32, а), а к первичной обмотке подводят пониженное напряжение, постепенно повышая его регулятором напряжения РН до некоторого значения Uк ном, при котором токи к. з. в обмотках трансформатора становятся равными номинальным токам в первичной (I1к =I1ном) и вторичной (I2к =I2ном) обмотках. При этом снимают показания приборов и строят характеристики к. з., представляющие собой зависимость тока к. з. I1K , мощности к. з. Рк и коэффициента мощности cos срк от напряжения к. з. UK (рис. 1.33).

В случае трехфазного трансформатора опыт проводят по схеме, показанной на рис. 1.32, б, а значения напряжения к.з. и тока к.з. определяют как средние для трех фаз:


В случае трехфазного трансформатора активную мощность измеряют методом двух ваттметров. Тогда мощность к. з.


В (1.52) Рк и Рк " — показатели однофазных ваттметров, Вт.

Напряжение, при котором токи в обмотках трансформатора при опыте равны номинальным значениям, называют номинальным напряжением короткого замыкания и обычно выражают его в процентах от номинального напряжения:


Вопрос №2 Средства улучшения коммутации в машинах постоянного тока

Таблица 13.1. Степень искрения (класс коммутации) электрических машин постоянного тока


Большое практическое значение * при эксплуатации машин постоянного тока имеют вопросы улучшения коммутации. Основной причиной неудовлетворительной коммутации является возникновение в коммутирующих секциях добавочного тока коммутации

1. Выбор вдетак, С точки зрения обеспечения удовлетворительной коммутации целесообразно применение щеток с большим падением напряжения в переходном контакте и собственно щетке, т.е. щетки с большим сопротивлением rщ , что привело бы к уменьшению тока iд . Однако допустимая плотность тока в щеточном контакте таких щеток невелика, поэтому их применение в машинах со значительным током якоря ведет к необходимости увеличения площади щеточного контакта, что требует увеличения площади коллектора за счет его длины. В связи с этим щетки с большим rш используют преимущественно в машинах с относительно высоким напряжением, а следовательно, с небольшим током якоря.

2. Уменьшение реактивной ЭДС в коммутирующих секциях. Снижению реактивной ЭДС, индуцируемой в коммутирующих секциях, способствует уменьшение коэффициентов взаимной индуктивности М и самоиндукции Lс.. Понижение коэффициента М достигается применением обмоток якоря с укороченным шагом (у1 I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I2 =I1+I12 . Подставив это выражение в формулу проходной мощности, получим

Здесь S э — U 2 I 1 — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрас = U2 I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение" обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх"ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность SЭ , а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ , передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

т. е. величина мощности Sэ обратно пропорциональна коэффициенту трансформации автотрансформатора kA .

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA =\ вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (Sэ /Sпр=1).


Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X(см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

3. При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для питания цепей НН от сети ВН.

Выберите тип обмотки и рассчитайте её шаги. Обоснуйте свой выбор. Начертите развёрнутую схему и схему параллельных ветвей обмотки якоря машины постоянного топка.

Число пар полюсов Р = 1

Число элементарных пазов Zэ = 15

Число секций S = 15

Число коллекторных пластин. К = 15

Ток в якоре Ia = 600А

Ток параллельной ветви должен ограничивается значением. ia= ( 300 – 350) А

2a – число параллельных ветвей обмотки якоря

ia – ток одной параллельной ветви

2а = 2Р ia = Ia/2a = 600/2*1 = 300A

Выбираем простую петлевую обмотку.

Генератор постоянного тока с параллельным возбуждением работает в номинальном режиме с мощностью Рном при напряжении Uном и токе Iном. Ток в обмотке возбуждения -- Iв , в обмотке якоря - Iа . Сопротивление обмотки возбуждения при tхол = 20 °С - RВ 20°С, а обмотки якоря – Ra 20°С. ЭДС генератора- Е. КПД генератора - rном, а суммарные потери мощности в генераторе ∑ р.

По заданным в таблице 2 значениям величин определить все остальные, отмеченные в таблице прочерками. Начертите схему такого генератора и поясните назначение каждого элемента схемы.


Трехфазный трансформатор имеет номинальную мощность SHQM . номинальные (линейные) напряжения обмоток U1ном и U2ном - номинальные токи I1ном и I2ном и коэффициент трансформации k. В сердечнике трансформатора сечением Qсоздается магнитная индукция Втах при частоте тока = 50 Гц. Обе обмотки соединены в-звезду. Числа виткоз первичной и вторичной обмоток – w1 и w2 . ЭДС в обмотках (фазные величины) составляют Е1ф и Е2ф. По заданным в таблице 3 значениям величин определить все остальные, отмеченные в таблице прочерками.

Электрификация — это широкое внедрение в промышленность, сельское хозяйство, транспорт и быт электрической энергии, вырабатываемой на мощных электростанциях, объединенных высоковольтными электрическими сетями в энергетические системы.

Электрификация осуществляется посредством электротехнических изделий, производством которых занимается электротехническая промышленность. Основной отраслью этой промышленности является электромашиностроение,занимающееся разработкой и производством электрических машин и трансформаторов.

Электрическая машина представляет собой электромеханическое устройство, осуществляющее взаимное преобразование механической и электрической энергии. Электрическая энергия вырабатывается на электростанциях электрическими машинами — генераторами, преобразующими механическую энергию в электрическую. Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях, где при сжигании химического топлива (уголь, торф, газ) нагревается вода и переводится в пар высокого давления. Последний подается в турбину, где, расширяясь, приводит ротор турбины во вращение (тепловая энергия в турбине преобразуется в механическую). Вращение ротора турбины передается на вал генератора (турбогенератора). В результате электромагнитных процессов, происходящих в генераторе, механическая энергия преобразуется в электрическую.

Процесс производства электроэнергии на атомных электростанциях аналогичен тепловым, с той лишь разницей, что вместо химического топлива используется ядерное.

Процесс выработки электроэнергии на гидравлических электростанциях состоит в следующем: вода, поднятая плотиной на определенный уровень, сбрасывается на рабочее колесо гидротурбины; получаемая при этом механическая энергия путем вращения колеса турбины передается на вал электрического генератора, в котором механическая энергия преобразуется в электрическую.

В процессе потребления электрической энергии происходит ее преобразование в другие виды энергий (тепловую, механическую, химическую). Около 70 % электроэнергии используется для приведения в движение станков, механизмов, транспортных средств, т. е. для преобразования ее в механическую энергию. Это преобразование осуществляется электрическими машинами — электродвигателями.

Электродвигатель — основной элемент электропривода рабочих машин. Хорошая управляемость электрической энергии, простота ее распределения позволили широко применить в промышленности многодвигательный электропривод рабочих машин, когда отдельные звенья рабочей машины приводятся в движение самостоятельными двигателями. Многодвигательный привод значительно упрощает механизм рабочей машины (уменьшается число механических передач, связывающих отдельные звенья машины) и создает большие возможности в автоматизации различных технологических процессов. Электродвигатели широко применяют на транспорте в качестве тяговых двигателей, приводящих во вращение колесные пары электровозов, электропоездов, троллейбусов и др.

За последнее время значительно возросло применение электрических машин малой мощности — микромашин мощностью от долей до нескольких сотен ватт. Такие электрические машины используют в устройствах автоматики и вычислительной техники.

Особый класс электрических машин составляют двигатели для бытовых электрических устройств — пылесосов, холодильников, вентиляторов и др. Мощность этих двигателей невелика (от единиц до сотен ватт), конструкция проста и надежна, и изготовляют их в больших количествах.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места ее потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Ее необходимо распределить среди множества разнообразных потребителей — промышленных предприятий, транспорта, жилых зданий и т. д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500 кВ и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи. Поэтому в процессе передачи и распределения электрической энергии приходится неоднократно повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, так как его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Кроме того, трансформатор — это статическое устройство, и в нем нет никаких движущихся частей. Однако электромагнитные процессы, протекающие в трансформаторах, аналогичны процессам, происходящим при работе электрических машин. Более того, электрическим машинам и трансформаторам свойственна единая природа электромагнитных и энергетических процессов, возникающих при взаимодействии магнитного поля и проводника с током. По этим причинам трансформаторы составляют неотъемлемую часть курса электрических машин.

Отрасль науки и техники, занимающаяся развитием и производством электрических машин и трансформаторов, называется электромашиностроением. Теоретические основы электромашиностроения были заложены в 1821 г. М. Фарадеем, установившим возможность преобразования электрической энергии в механическую и создавшим первую модель электродвигателя. Важную роль в развитии электромашиностроения имели работы ученых Д. Максвелла и Э. X. Ленца. Дальнейшее развитие идея взаимного преобразования электрической и механической энергий получила в работах выдающихся русских ученых Б. С. Якоби и М. О. Доливо-Добровольского, которыми были разработаны и созданы конструкции электродвигателей, пригодные для практического использования. Большие заслуги в создании трансформаторов и их прак­тическом применении принадлежат замечательному русскому изобретателю П.Н. Яблочкову. В начале XX столетия были созданы все основные виды электрических машин и трансформаторов и разработаны основы их теории.

В настоящее время отечественное электромашиностроение достигло значительных успехов. Если в начале текущего столетия в России фактически не было электромашиностроения, как самостоятельной отрасли промышленности, то за последние 50—70 лет была создана отрасль электротехнической промышленности — электромашиностроение, способная удовлетворять потребности нашего развивающегося народного хозяйства в электрических машинах и трансформаторах. Были подготовлены кадры квалифицированных электромашиностроителей — ученых, инженеров, техников.

Дальнейший технический прогресс определяет в качестве основной задачи закрепление успехов электромашиностроения путем практического внедрения последних достижений электротехники в реальные разработки устройств электропривода для промышленных устройств и изделий бытовой техники. Осуществление этого требует перевода производства на преимущественно интенсивный путь развития. Главная задача состоит в повышении темпов и эффективности развития экономики на базе ускорения научно-технического прогресса, технического перевооружения и реконструкции производства, интенсивного использования созданного производственного потенциала. Значительная роль в решении этой задачи отводится электрификации народного хозяйства.

При этом необходимо учитывать возрастающие экологические требования к источникам электроэнергии и наряду с традиционными способами развивать экологически чистые (альтернативные) способы производства электроэнергии с использованием энергии солнца, ветра, морских приливов, термальных источников. Широко внедряются автоматизированные системы в различные сферы народного хозяйства. Основным элементом этих систем является автоматизированный электропривод, поэтому требуется опережающими темпами наращивать выпуск автоматизированных электроприводов.

В условиях научно-технического развития большое значение приобретают работы, связанные с повышением качества выпускаемых электрических машин и трансформаторов. Решение этой задачи является важным средством развития международного экономического сотрудничества. Соответствующие научные учреждения и промышленные предприятия России ведут работы по созданию новых видов электрических машин и трансформаторов, удовлетворяющих современным требованиям к качеству и технико-экономическим показателям выпускаемой продукции.

Опыты холостого хода и короткого замыкания трансформатора и их значение. Сущность напряжения короткого замыкания. Средства улучшения коммутации в машинах постоянного тока. Устройство и принцип действия автотрансформатора, его достоинства и недостатки.

МЕЖРЕГИОНАЛЬНЫЙ ЗАОЧНЫЙ ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ

(МЗЭТ ГОУ СПО ИЭК)

КОНТРОЛЬНАЯ РАБОТА № 1

Деркач Николай Николаевич шифр Д--2170

3 курса, специальности 140206-01 .

Вопрос № 1 Опыты холостого хода и короткого замыкания трансформатора. Значение опытов. Напряжение короткого замыкания

Электрическая схема замещения позволяет с достаточной точностью исследовать свойства трансформаторов в любом режиме. Использование этой схемы при определении характеристик имеет наибольшее практическое значение для трансформаторов мощностью 50 кВ-А и выше, так как исследование таких трансформаторов методом непосредственной нагрузки связано с некоторыми техническими трудностями: непроизводительным расходом электроэнергии, необходимостью в громоздких и дорогостоящих нагрузочных устройствах.

Определение параметров схемы замещения Z1 = r1+jx1; Zm = rm+jxm', Z2 / =r2 / +jx2 / возможно либо расчетным (в процессе расчета трансформатора), либо опытным путем. Ниже излагается порядок определения параметров схемы замещения трансформатора опытным путем, сущность которого состоит в проведении опыта холостого хода (х. х.) и опыта короткого замыкания (к. з.).

Опыт холостого хода. Холостым ходом называют режим работы трансформатора при разомкнутой вторичной обмотке (zн=бесконечности, I2=0). В этом случае уравнения ЭДС и токов (1.34) принимают вид

Так как полезная мощность при работе трансформатора вхолостую равна нулю, мощность на входе трансформатора в режиме х. х. Pq расходуется на магнитные потери в магнитопроводе Рм (потери на перемагничивание магнитопровода и вихревые токи) и электрические потери в меди I0 2 r1 (потери на нагрев обмотки при прохождении по ней тока) одной лишь первичной обмотки. При этом ввиду небольшого значения тока I0, который обычно не превышает 2--10% I1ном, электрическими потерями I0 2 r1 можно пренебречь и считать, что вся мощность х. х. представляет собой мощность магнитных потерь в стали магнитопровода. Поэтому магнитные потери в трансформаторе принято называть потерями холостого хода.,

Опыт х. х. однофазного трансформатора проводят по схеме, изображенной на рис. 1.29, а. Комплект электроизмерительных приборов, включенных в схему, дает возможность непосредственно измерить напряжение U1, подведенное к первичной обмотке; напряжение U20 на выводах вторичной обмотки; мощность х.х. Р0 и ток Х.Х. Iо.

Напряжение к первичной обмотке трансформатора обычно подводят через регулятор напряжения РН, позволяющий плавно повышать напряжение от 0 до 1,15 U1ном-

При этом через приблизительно одинаковые интервалы тока х.х. снимают показания приборов,- а затем строят характеристики х.х.: зависимость тока х.х. I0," мощности х.х. Pq и коэффициента мощности х.х. соs ф0 от первичного напряжения U1 (рис. 1.30).

Криволинейность этих характеристик обусловлена состоянием магнитного насыщения магнито-провода, которое наступает при некотором значении напряжения U1.

В случае трехфазного трансформатора опыт х.х. проводят по схеме, показанной на рис. 1.29, б. Характеристики х.х. строят по средним фазным значениям тока и напряжения для трех фаз:

где P0 и P0" -- показания однофазных ваттметров; U1 и I0 -- фазные значения напряжения и тока.

По данным опыта х. х. можно определить: коэффициент трансформации

ток х.х. при U 1ном (в процентах от номинального первичного тока)

В трехфазном трансформаторе токи х.х. в фазах неодинаковы и образуют несимметричную систему

поэтому мощность Р0 следует измерять двумя ваттметрами по схеме, изображенной на рис. 1.29, б. Падение напряжения в первичной ветви схемы замещения в режиме х.х. Io(r1+jx1) (рис. 1.31) составляет весьма незначительную величину, поэтому, не допуская заметной ошибки, можно пользоваться следующими выражениями для расчета параметров ветви намагничивания:

Обычно в силовых трансформаторах общего применения средней и большой мощности при номинальном первичном напряжении ток х. х. i0=10/0,6%.

Если же фактические значения тока х. х. Iном и мощности х. х. Р0 ном, соответствующие номинальному значению первичного напряжения U1 ном, заметно превышают величины этих параметров, указанные в каталоге на данный тип трансформатора, то это свидетельствует о неисправности этого трансформатора: наличии корот-козамкнутых витков в обмотках либо замыкании части пластин магнитопровода.

Опыт короткого замыкания. Короткое замыкание трансформатора -- это такой режим, когда вторичная обмотка замкнута накоротко (zH=0), при всём этом вторичное напряжение U2=0. В условиях эксплуатации, когда к трансформатору подведено номинальное напряжение U1ном, короткое замыкание является аварийным режимом и представляет собой большую опасность для трансформатора.

При опыте к.з. вторичную обмотку однофазного трансформатора замыкают накоротко (рис. 1.32, а), а к первичной обмотке подводят пониженное напряжение, постепенно повышая его регулятором напряжения РН до некоторого значения Uк ном, при котором токи к. з. в обмотках трансформатора становятся равными номинальным токам в первичной (I1к =I1ном) и вторичной (I2к =I2ном) обмотках. При этом снимают показания приборов и строят характеристики к. з., представляющие собой зависимость тока к. з. I1K, мощности к. з. Рк и коэффициента мощности cos срк от напряжения к. з. UK (рис. 1.33).

В случае трехфазного трансформатора опыт проводят по схеме, показанной на рис. 1.32, б, а значения напряжения к.з. и тока к.з. определяют как средние для трех фаз:

В случае трехфазного трансформатора активную мощность измеряют методом двух ваттметров. Тогда мощность к. з.

В (1.52) Рк и Рк" -- показатели однофазных ваттметров, Вт.

Напряжение, при котором токи в обмотках трансформатора при опыте равны номинальным значениям, называют номинальным напряжением короткого замыкания и обычно выражают его в процентах от номинального напряжения:

Вопрос №2 Средства улучшения коммутации в машинах постоянного тока

Таблица 13.1. Степень искрения (класс коммутации) электрических машин постоянного тока

Большое практическое значение * при эксплуатации машин постоянного тока имеют вопросы улучшения коммутации. Основной причиной неудовлетворительной коммутации является возникновение в коммутирующих секциях добавочного тока коммутации

1. Выбор вдетак, С точки зрения обеспечения удовлетворительной коммутации целесообразно применение щеток с большим падением напряжения в переходном контакте и собственно щетке, т.е. щетки с большим сопротивлением rщ, что привело бы к уменьшению тока iд. При этом допустимая плотность тока в щеточном контакте таких щеток невелика, поэтому их применение в машинах со значительным током якоря ведет к необходимости увеличения площади щеточного контакта, что требует увеличения площади коллектора за счет его длины. В связи с этим щетки с большим rш используют преимущественно в машинах с относительно высоким напряжением, а следовательно, с небольшим током якоря.

2. Уменьшение реактивной ЭДС в коммутирующих секциях. Снижению реактивной ЭДС, индуцируемой в коммутирующих секциях, способствует уменьшение коэффициентов взаимной индуктивности М и самоиндукции Lс.. Понижение коэффициента М достигается применением обмоток якоря с укороченным шагом (у1 I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I2=I1+I12. Подставив это выражение в формулу проходной мощности, получим

Здесь Sэ--U2I1 -- мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрас= U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение" обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх"ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность SЭ, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ, передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

т. е. величина мощности Sэ обратно пропорциональна коэффициенту трансформации автотрансформатора kA.

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA=\ вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (Sэ/Sпр=1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для питания цепей НН от сети ВН.

Выберите тип обмотки и рассчитайте её шаги. Обоснуйте свой выбор. Начертите развёрнутую схему и схему параллельных ветвей обмотки якоря машины постоянного топка.

Число пар полюсов Р = 1

Число элементарных пазов Zэ = 15

Число секций S = 15

Число коллекторных пластин. К = 15

Ток в якоре Ia = 600А

Ток параллельной ветви должен ограничивается значением. ia = ( 300 - 350) А

2a - число параллельных ветвей обмотки якоря

ia - ток одной параллельной ветви

2а = 2Р ia = Ia/2a = 600/2*1 = 300A

Выбираем простую петлевую обмотку.

Задача № 2

Генератор постоянного тока с параллельным возбуждением работает в номинальном режиме с мощностью Р ном при напряжении Uном и токе Iном. Ток в обмотке возбуждения -- Iв, в обмотке якоря - Iа. Сопротивление обмотки возбуждения при tхол = 20 °С - RВ 20°С, а обмотки якоря - Ra 20°С. ЭДС генератора- Е. КПД генератора - rном, а суммарные потери мощности в генераторе ? р.

По заданным в таблице 2 значениям величин определить все остальные, отмеченные в таблице прочерками. Начертите схему такого генератора и поясните назначение каждого элемента схемы.

ЗАДАЧА 3

Трехфазный трансформатор имеет номинальную мощность SHQM. номинальные (линейные) напряжения обмоток U1ном и U2ном - номинальные токи I 1ном и I 2ном и коэффициент трансформации k. В сердечнике трансформатора сечением Q создается магнитная индукция Втах при частоте тока = 50 Гц. Обе обмотки соединены в-звезду. Числа виткоз первичной и вторичной обмоток - w1 и w2. ЭДС в обмотках (фазные величины) составляют Е1ф и Е2ф. По заданным в таблице 3 значениям величин определить все остальные, отмеченные в таблице прочерками.

Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

>>>>> Перейти к скачиванию файла с работой
Кстати! В нашей группе ВКонтакте мы бесплатно помогаем с поиском рефератов, курсовых и информации для их написания. Не спешите выходить из группы после загрузки работы, мы ещё можем Вам пригодиться ;)

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.

Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.


Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.


Похожие работы:
Электрические машины

Характеристика и технические параметры тиристора, его разновидности, принцип работы, условное обозначение и применение. Устройство автотрансформатора, принцип его работы. Обслуживание и ремонт электрических двигателей. Чертежи жгутов, кабелей и проводов.

Принципы деления электромашин. Особенности электрических машин малой мощности. Виды ЭМММ, их функциональное назначение и основные области применения. Классификация и функциональное назначение и режимы работы шаговых двигателей, области их применения.

Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

Монтаж внутренних электрических сетей, прокладка кабельных линий в земле, внутри зданий, в каналах, туннелях и коллекторах. Электрооборудование трансформаторных подстанций, электрические машины аппаратов управления. Эксплуатация электрических сетей.


Перейти в список рефератов, курсовых, контрольных и дипломов по
дисциплине Физика и энергетика

Читайте также: