Эквипотенциальные поверхности и поверхности равного давления реферат

Обновлено: 05.07.2024

Графическое изображение полей, может быть составлено как с линиями напряженности, так и при помощи разности потенциалов.

Если точки с равными потенциалами будут соединены в электрическом поле, то сформируются поверхности равного потенциала или же эквипотенциальные поверхности.

В месте пересечения с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изобразив соответствующие разным значениям потенциала эквипотенциальные линии, мы получаем наглядную картину, отражающую изменение потенциала конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда не требует выполнения работы, по той причине, что все точки поля на такой поверхности обладают эквивалентными потенциалами, а сила, которая воздействует на заряд, в любой момент времени ортогональна перемещению. Соответственно, линии напряженности всегда направлены под прямым углом поверхностям с одинаковыми потенциалами. Максимально наглядное изображение поля будет представлено, если отмечать эквипотенциальные линии с равными изменениями потенциала, к примеру, в 10 В , 20 B , 30 B и так далее. В подобном случае скорость изменения потенциала обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. Что это значит?

Густота эквипотенциальных линий пропорциональна напряженности поля.

С повышением напряженности поля линии изображаются все более тесно. Обладая знанием эквипотенциальных линий, можно построить линии напряженности рассматриваемого поля и наоборот. Таким образом, изображения полей с использованием эквипотенциальных линий и линий напряженности - равноправны.

Нумерация эквипотенциальных линий на чертеже

В большей части случаев изображенные на чертеже эквипотенциальные линии нумеруют. Для того чтобы обозначить разность потенциалов на изображении, одну из линий обозначают цифрой 0 , возле всех оставшихся линий расставляют цифры 1 , 2 , 3 и так далее. Данные цифры в вольтах указывают разность потенциалов избранной эквипотенциальной линии и случайно выбранной нулевой линии. Стоит обратить внимание на то, что в качестве нулевой может выступать любая линия, ведь физический смысл заключается лишь в разности потенциалов двух поверхностей и зависимостью от выбранной линии не обладает.

Поле точечного заряда с положительным зарядом

В качестве примера рассмотрим поле обладающего положительным значением точечного заряда. Линиями поля точечного заряда являются радиальные прямые, соответственно, эквипотенциальные поверхности представляют собой систему концентрических сфер. Линии поля под прямым углом направлены к поверхностям сфер в любой точке поля. Роль же эквипотенциальных линий же играют концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Поле точечного заряда с положительным зарядом

Из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность φ ∞ = 0 , очевидно, что:

φ = 1 4 π ε ε 0 q r .

Совокупность параллельных плоскостей, которые располагаются я на одинаковых расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.

Электрическое поле – особый вид материи, создаваемый электрическими зарядами, основное свойство которого заключается в действии на другие электрические заряды.

Материальность электрического поля удалось доказать только тогда, когда доказали, что заряд q1 при перемещении действует на заряд q2 , находящийся на расстоянии r, не сразу, а спустя некоторое время t=r/c, где c - скорость света в вакууме (≈3*10 8 м/с). Запаздывание изменений взаимодействия электрических зарядов доказывает справедливость теории поля.

Понятие о кулоновской силе

Итак, рассмотрим систему, состоящую из двух электрических зарядов. Электрическое поле, создаваемое одним зарядом, действует на другой заряд. Но с какой силой? Опыты Ш. Кулона, проведенные в 1785 году, показали, что эта сила прямо пропорциональна произведению абсолютных величин зарядов и обратно пропорциональна квадрату расстояния между ними. Из-за того, что такую зависимость установил Кулон, силу взаимодействия зарядов часто называют кулоновской.


Для расчетов ввели коэффициент пропорциональности, равный силе взаимодействия единичных зарядов на расстоянии, равном единице длины (k=9*10 9 H*м 2 /Кл 2 ). Часто вместо коэффициента пропорциональности применяют другой коэффициент, называемый электрической постоянной:


В этом случае закон Кулона будет выглядеть так:


До этого речь шла только о модуле силы, но куда же направлена эта сила? Опять-таки, экспериментальным путем установили, что она действует по прямой, соединяющей центры зарядов. Кулоновская сила подчиняется III закону Ньютона: заряды взаимодействуют друг с другом с силами, равными по модулю, природа этих сил одна и та же, и эти силы приложены к разным телам.

Кулоновские силы в системе зарядов. Принцип суперпозиции.

В предыдущем пункте мы рассмотрели только систему из двух зарядов. А что делать, если зарядов больше чем два? Оказывается результирующая сила, действующая на заряд q со стороны нескольких зарядов q1 q2 …qn равна векторной сумме всех кулоновских сил, создаваемых каждым зарядом. Этот принцип называется принципом суперпозиции электрических полей, его можно записать так:


Справедливость принципа суперпозиции показывает, что электрические поля различных источников существуют в одной точке пространства и действуют на заряды независимо друг от друга.

Напряженность как физическая величина

Рассмотрим систему, состоящую всего лишь из одного электрического заряда. В данной системе кулоновских сил не существует, хотя электрическое поле существует. Значит, для характеристики электрического поля надо ввести какую-то новую физическую величину. Такую величину назвали напряженностью электрического поля.

Напряженность – векторная величина, численно равная отношению кулоновской силы, которая бы действовала на заряд, помещенный в данной точке поля, к абсолютной величине этого заряда. За направление вектора напряженности принимают направление вектора кулоновской силы, если величина заряда больше нуля, и направление, противоположное направлению вектору кулоновской силы, если величина заряда меньше нуля.

В поле одного заряда напряженность измеряется как:


Опыт показывает, что если на точку пространства действуют одновременно электрические поля нескольких источников, то напряженность оказывается равной векторной сумме напряженностей, создаваемых каждым зарядом. То есть


Это вытекает из принципа суперпозиции электрических полей.

Напряженность электрического поля является основной силовой характеристикой электрического поля в данной точке. Несмотря на все преимущества напряженности, эта физическая величина не даёт наглядного, легко воспринимаемого визуально, представления об электрическом поле.

Линии напряженности

Для наглядного изображения электрического поля Майклом Фарадеем были введены линии напряженности.

Линии напряженности – это такие линии, в каждой точке которых вектор напряженности направлен по касательной к этой линии.

Линии напряженности электростатического поля не замкнуты: они начинаются в положительных электрических зарядах (или в бесконечности) и заканчиваются в отрицательных электрических зарядах (или в бесконечности).

Линии напряженности не пересекаются и не имеют общих точек (за исключением точек, где напряженность равна нулю). Докажем это утверждение.

От противного. Пусть какие-либо две линии напряженности пересеклись или коснулись друг друга. Рассмотрим их общую точку. Тогда, по определению, в данной точке можно провести два различных вектора напряженности, т.е. на заряд действует две, различные хотя бы по направлению, кулоновские силы. Противоречие. Однако, такая ситуация может наблюдаться если FК =0 (т.е. FК имеет любое направление). □

Количество линий напряженности, выходящих или входящих в данный заряд прямопропорционально абсолютной величине данного заряда. В пространстве можно провести любое число линий напряженности, причем через данную точку пространства проходит единственная линия напряженности (это следует из того, что линии напряженности не пересекаются).

По графическому изображению линий напряженности можно судить и о величине электрического поля: чем гуще расположены линии напряженности, тем больше напряженность в данной точке поля.

Потенциальная энергия зарядов

Заряды притягивают и отталкивают друг друга, а, следовательно, совершают работу. Из механики известно, что система способная совершать работу благодаря взаимодействию сил друг с другом, обладает потенциальной энергией. Следовательно, система зарядов обладает потенциальной энергией, называемой электростатической.

С точки зрения теории близкодействия, непосредственно на заряд действует электрическое поле, в которое он внесен. При перемещении заряда это поле совершает работу, поэтому можно говорить о том, что заряженное тело (или заряд) в электрическом поле обладает энергией.

Работа кулоновских сил по замкнутому контуру

Из закона сохранения энергии следует, что работа кулоновских сил по любой замкнутой траектории в статическом электрическом поле равна нулю. Докажем это.

В самом деле, пусть пробный заряд q перемещается в электрическом поле из какой-либо точки M в какую-либо точку N по траектории MBN. При этом поле совершает работу A1 . Вернем теперь пробный заряд в начальную точку M по траектории NCM. При этом внешние силы должны совершить работу A’2 , а работа поля будет равна A2 =-A’2 . Суммарная работа поля будет равна AСУММ =A1 +A2 .

Но, после того как заряд q вернулся в первоначальную точку, в системе заряд – электрическое поле никаких изменений не произошло, следовательно, энергетическое состояние системы не изменилось. А это означает, что поле не совершало никакой работы, т.е. AСУММ =0. □

Таким образом, электрическое поле является потенциальным, то есть таким полем, работа сил которого по любой замкнутой траектории равна нулю.

Потенциал как физическая величина

Потенциальная энергия заряда в электростатическом поле пропорциональна величине заряда. Это справедливо как для однородного электрического поля, так и для любого другого. Поэтому отношение потенциальной энергии к заряду есть величина для данной точки поля постоянная и независящая от заряда.

Это позволяет ввести такую характеристику электрического поля как потенциал.

Потенциал в данной точке электрического поля – физическая величина численно равная отношению потенциальной энергии, которой обладает пробный заряд, помещенный в данную точку электрического поля к величине этого заряда. Потенциал – величина скалярная.

Для поля, образованного одним точечным зарядом формула потенциала будет выглядеть следующим образом:


Если электрическое поле задается не одним, а рядом электрических зарядов, то в этом случае потенциал равен алгебраической сумме потенциалов, создаваемыми всеми электрическими зарядами в данной точке, то есть:


Разность потенциалов

Разностью потенциалов называют алгебраическую разность потенциалов двух точек пространства.

Разность потенциалов между двумя точками также называют напряжением.

Работа по перемещению электрического заряда между двумя точками в электрическом поле пропорциональна разности потенциалов между двумя данными точками, а именно: разность потенциалов между двумя точками равна отношению работы поля по перемещению заряда из начальной точки в конечную, к величине этого заряда. Или:


Эквипотенциальные поверхности

Если разность потенциалов между двумя точкам, равна нулю, то эти точки лежат на одной линии, называемой эквипотенциалью на плоскости или эквипотенциальной поверхностью в пространстве.

Итак, эквипотенциальной поверхностью называют такую поверхность, в каждой точке которой потенциалы равны.

При движении электрического заряда по эквипотенциальной поверхности, работа кулоновских сил равна нулю. Вследствие этого эквипотенциальная поверхность в каждой своей точки перпендикулярна вектору напряженности в данной точке. Докажем это.

В самом деле, ΔA=FΔl cosα. Если ΔA=0, при F≠0 и l ≠0, то cosα=0, следовательно, α=π/2. □

Кроме того, вектор напряженности направлен в сторону уменьшения потенциала. Особенно хорошо это видно на примере одиночного заряда.

Подобно силовым линиям, эквипотенциальные поверхности качественно характеризуют распределение поля в пространстве.

В дальнейших пунктах я хочу рассказать о возможностях программы и дать краткие описания алгоритмам, реализованным в программе. Описание алгоритмов носит, в основном, общий, ознакомительный характер, и не содержит углублений в область информатики.

Моделирование силовых линий

Итак, нам известно, что в каждой точке линии напряженности вектор напряженности направлен по касательной к этой линии. То есть, фактически, нам надо знать направление вектора напряженности в данной точке пространства.

Отложив величину h, мы получаем следующую точку, с которой проделываем те же самые операции.

Необходимо также учитывать, что для положительных зарядов направление откладывания величины h и вектора напряженности совпадают, а для отрицательных зарядов эти направления противоположно направлены.

Моделирование эквипотенциальных линий

Поэтому плоскость можно разбить на какую-либо сетку, причем сторону квадрата сетки надо постараться взять как можно наименьшей. Для экрана такая сторона равняется одному пикселю.

Пусть нам дана точка, через которую следует построить эквипотенциальную линию, тогда мы вычисляем потенциал в четырех соседних клетках сетки и переходим в ту точку (клетку), для которой разность потенциалов с данной точкой наименьшая. Теперь и нас есть другая точка, повторяем те же операции, с одним лишь изменением: разность потенциалов должна быть наименьшей не с предыдущей точкой, а с первоначальной.

Таким образом мы продолжаем строить линию до тех пор, пока не вернемся в первоначальную точку.

Возможности программы

Программа может применяться как демонстрация теоретического материала, изложенного на уроке физики. Кроме того, программа позволяет заниматься поверхностной исследовательской деятельностью.

Список возможностей программы (считается, что электрическое поле задано расстановкой зарядов):

  1. По данному электрическому полю рисовать общий план линий напряженности
  2. По данному электрическому полю исследовать линии напряженности (т.е. строить через заданную точку линию напряженности).
  3. По данному электрическому полю исследовать эквипотенциальные линии (т.е. строить через данную точку эквипотенциальную линию).
  4. По данному электрическому полю вычислять напряженность и потенциал в заданной точке поля.
  5. По данному электрическому полю вычислять параметры электрического поля в заданной точке.

Листинг программы

Модуль Main.pas

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Menus, ComCtrls, ExtCtrls, ImgList, Math, StdCtrls;

N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17, N18, N19, N20, N21, N23 : TMenuItem;

procedure FormResize(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormMouseDown(Sender: TObject; Button: TMouseButton;Shift: TShiftState; X, Y: Integer);

procedure FormMouseMove(Sender: TObject; Shift: TShiftState; X,Y: Integer);

procedure FormKeyPress(Sender: TObject; var Key: Char);

procedure N6Click(Sender: TObject);

procedure N2Click(Sender: TObject);

procedure N8Click(Sender: TObject);

procedure N7Click(Sender: TObject);

procedure N12Click(Sender: TObject);

procedure N13Click(Sender: TObject);

procedure Image1MouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

procedure Image1MouseMove(Sender: TObject; Shift: TShiftState; X,Y: Integer);

Поверхности, в каждой точке которых , называют эквипотенциальными. Частным случаем эквипотенциальной поверхности является поверхность равного давления, т.е. поверхность, в каждой точке которой. В этом случаеи (3.4) принимает вид



Но плотность , и, следовательно,


(3.8)

Уравнение (3.8) называют уравнением поверхности равного давления. Если из массовых сил на жидкость действует только сила тяжести, то ;(знак минус, т.к. сила тяжести ориентирована в сторону, противоположную осиz); и, т.е. в покоящейся жидкости любая горизонтальная плоскость есть поверхность равного давления.

3.4. Равновесие однородной несжимаемой жидкости в поле сил тяжести. Закон Паскаля. Гидростатичес­кий закон распределения давления.

Проинтегрируем основное уравнение гидростатики (3.4) в предположении, что (жидкость несжимаема) и считая, что из массовых сил действует только сила тяжести. Как показано выше, в этом случае,, т.е., и после интегрирования



(3.9)

где C - произвольная постоянная. Для ее нахождения используем следующее граничное условие (см. рис. 3.1): при . Из (3.9) следует, что


И после подстановки


(3.10)


Как видно из рис. 3.1, разность () - глубина погружения рассматриваемой частицы, которую будем обозначать буквойh, т.е.


(3.11)

Полученное уравнение выражает известный из курса физики закон Паскаля: давление, приложенное к свободной поверхности, передается во все точки без изменения.


Поскольку любое правильное физическое уравнение должно быть размерностно однородным, то ясно, что член должен выражаться в единицах давления, т.е. в паскалях (Па - Н/м 2 ). Эту величину называют избыточным давлением. Она может быть как положительной, так и отрицательной. Такая трактовка приводит нас к понятию абсолютного давления, которое в соответствии с (3.11) может быть представлено как сумма барометрического (атмосферного) давления и избыточного, т.е.


(3.12)

Отрицательное избыточное давление называют вакуумом.


Вернемся вновь к уравнению (3.10). После деления обеих его частей на получаем


(3.13)

В таком виде все его члены выражаются в единицах длины и носят название напоров. Величина z характеризует положение жидкой частицы над произвольно выбираемой горизонтальной плоскостью отсчета, т.е. z - это геометрический напор; - пьезометрический напор. Сумму этих величинназывают гидростатическим напором. Чтобы уяснить физический смысл этих величин, рассмотрим простую схему, показанную на рис. 3.2.


Представим герметично закрытый сосуд, заполненный жидкостью, находящейся под давлением. Выберем в этом сосуде две произвольно рас­положенные точки A и B и, опять-таки произвольно, горизонтальную плоскость O-O, которую назовем плоскостью отсчета.

Координаты частиц, расположенных в точках A и B будут и. В соответствии со сказанным выше, величиныивыражают геометрический напор. Введем теперь через крышку сосуда в точкиA и B сообщенные с атмосферой стеклянные трубки. Эти трубки называют пьезометрами. Поскольку по условию жидкость находится под давлением, то она начнет подниматься по пьезометрам. Не представляет труда и ответ на вопрос о том, когда прекратится подъем. Очевидно, что это произойдет в тот момент, когда высота столба жидкости уравновесит давление в рассматриваемой точке. Это и есть пьезометрическая высота, либо пьезометрический напор.


Соотношение (3.13) справедливо для любых произвольно выбранных частиц покоящейся жидкости, поэтому в общем виде его можно записать как , т.е. для любых точек жидкости гидростатический напор одинаков. Следовательно, уровни в пьезометрах установятся на одной и той же высоте (плоскостьC-C на рис. 3.2). Уравнение (3.13) выражает так называемый гидростатический закон распределения давления.

Изучение и анализ циркуляции вектора напряжённости электрического поля. Характеристика потенциала поля точечного заряда и системы зарядов. Рассмотрение эквипотенциальных поверхностей. Связь между напряжённостью и потенциалом электрического поля.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 24.10.2013
Размер файла 125,9 K

Подобные документы

Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

реферат [56,7 K], добавлен 15.02.2008

Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

презентация [1,1 M], добавлен 23.10.2013

Теорема о циркуляции вектора. Работа сил электростатического поля. Потенциальная энергия. Разность потенциалов, связь между ними и напряженностью. Силовые линии и эквипотенциальные поверхности. Расчет потенциалов простейших электростатических полей.

презентация [2,4 M], добавлен 13.02.2016

Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.

курсовая работа [99,5 K], добавлен 25.04.2010

Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.

Читайте также: