Экологические аспекты атомных электрических станций реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

2.1 Что такое радиация и как её обнаружить? ………………. 4 стр

2.2 Радиация в медицине. ………. 4 стр

2.3 Атомная энергетика ………………………………………………. 5 стр

2.4 Влияние атомной энергетики на жителей планеты Земля………..6 стр

2.5 Радиация: добро или зло……………………………………….……7 стр

2.6 Крупные катастрофы на АЭС……………………………………. 7 стр

2.7 Авария на Чернобыльской АЭС…………………………………….9 стр

В настоящее время энергетические потребности обеспечиваются за счёт трёх энергоресурсов: органического топлива, воды и атомного ядра. Ядерная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и с щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 тонн каменного угля. И в своей работе я хочу выяснить следующие моменты:

Цели проекта:

2. Узнать, как определить наличие радиации;

3. Изучить историю возникновения атомной энергетики;

4. Узнать больше о влиянии атомной энергетики на жителей планеты Земля;

5. Выяснить какую пользу или вред может принести радиация;

6. Узнать про крупные катастрофы, связанные с атомными электростанциями;

7. Узнать подробности трагедии на Чернобыльской АЭС

2.1 Что такое радиация и как её обнаружить?

Ионизирующее излучение (неточный синоним с более широким значением — радиа́ция) — потоки фотонов , элементарных частиц или атомных ядер , способные ионизировать вещество. О существовании ионизирующего излучения стало известно в результате открытия в 1860-х годах катодных лучей (потоков электронов, ускоряемых в вакуумной трубке высоким напряжением).

В качестве датчиков ионизирующего излучения в быту и промышленности наибольшее распространение получили дозиметры на базе счётчиков Гейгера . Счётчик Гейгера — газоразрядный прибор, в котором ионизация газа излучением превращается в электрический ток между электродами. Как правило, такие приборы корректно регистрируют только гамма-излучение.

В Международной системе единиц (СИ) единицей поглощённой дозы является грэй, численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества.


Для разных органов используются разные изотопы. Более того, при различных патологиях также можно применять разные радионуклиды: воспаленные участки миокарда определяют при помощи галлия-67, а костный мозг можно рассмотреть при помощи технеция-99m, что используется при острых лейкозах, лимфогранулематозе и др. Щитовидная железа традиционно обследуется при помощи йода-131 или того же технеция, и т. д.

Наконец, следует сказать о позитронно-эмиссионной томографии (ПЭТ) — одном из самых современных методов диагностики. Суть метода — та же: вводится радиофармпрепарат с активными изотопами, чей период полураспада измеряется минутами, и с очень коротким пробегом испускаемых позитронов. При их аннигиляции образуются гамма-кванты — и происходит это, можно сказать, там же, где находился изотоп. С разных сторон пациента специальным образом расположены датчики, которые после регистрации достаточно большого числа моментов аннигиляции позволяют визуализировать исследуемый орган во всех подробностях.

Например, при помощи ПЭТ исследуют работу мозга в режиме реального времени. Чем активнее участки мозга, тем больше глюкозы они потребляют. Ученые цепляют на глюкозу фтор-18, кислород-15, азот-13 или углерод-11 и отправляют ее в мозг. И это позволяет определять, какой участок мозга активен при выполнении, например, разных видов деятельности.

2.3 Атомная энергетика

Ядерная энергетика (Атомная энергетика) — отрасль энергетики , занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235 . Ядра делятся при попадании в них нейтрона , при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией . В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло .

А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками.


В 2010 году ядерная энергия обеспечивала 12,9 % от производства электроэнергии и 5,7 % от всей потребляемой человечеством энергии, по данным Международного энергетического агентства. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов — во Франции, Украине, в Бельгии, Финляндии, Швеции, Болгарии и Швейцарии. Эти страны производят от 20 до 76 % (во Франции) электроэнергии на АЭС.


2.5 Радиация: польза или вред?

1. Получение энергии с помощью АЭС;

2. Применение в радиохимии ;

3. Применение в медицине .

1. Воздействие радиации на человека ;

2. Техногенные катастрофы ;

3. Проблема захоронения ядерных отходов ;

4. Ядерное оружие.

В результате пожара в графитовом реакторе с воздушным охлаждением для производства оружейного плутония произошёл крупный (550-750 T Бк ) выброс радиоактивных веществ. Авария соответствует 5-му уровню по международной шкале ядерных событий (INES) и является крупнейшей в истории ядерной индустрии Великобритании .

4. Стационарный реактор малой мощности номер 1, или SL‑1, находился в пустыне в 65 км от городка Айдахо-Фоллз, штат Айдахо. 3 января 1961 года на реакторе при выполнении работ был по неустановленным причинам извлечен управляющий стержень, началась неуправляемая цепная реакция, топливо разогрелось до 2000 K, что привело к тепловому взрыву, убившему 3 сотрудников, а также к расплавлению реактора и выбросу в атмосферу 3 ТБк радиоактивного йода . По Международной шкале ядерных событий аварии был впоследствии присвоен уровень 5 - Авария с широкими последствиями.

5. Ава́рия на АЭС Фукуси́ма-1 — радиационная авария максимального, 7-го уровня по Международной шкале ядерных событий (INES), начавшаяся в пятницу 11 марта 2011 года в результате сильнейшего в истории Японии землетрясения и последовавшего за ним цунами . Затопление подвальных помещений, где располагались распределительные устройства , резервные генераторы и батареи, привело к полному обесточиванию станции и отказу систем аварийного охлаждения. Произошли расплавление ядерного топлива в реакторах энергоблоков № 1—3, накопление водорода в результате пароциркониевой реакции и взрывы гремучей смеси на энергоблоках № 1, № 3 и № 4. В окружающую среду попали в основном летучие радиоактивные элементы, такие как изотопы йода и цезия , объём выброса которых составил до 20 % от выбросов при Чернобыльской аварии .

С загрязнённых территорий было эвакуировано около 164 тысяч человек. При этом в ходе эвакуации из больниц вследствие недостатка ухода погибло 50 тяжелобольных пациентов. В течение нескольких лет после эвакуации из-за физического и психологического стрессов и плохого медицинского обслуживания, и ухода наступили 2304 преждевременные смерти, в основном среди эвакуированных людей пожилого возраста. В декабре 2013 года АЭС была официально закрыта. На территории станции продолжаются работы по ликвидации последствий аварии.

Фото из зоны отчуждения в Фукусиме | Пикабу

Фото из зоны отчуждения в Фукусиме

Строительство первой очереди Чернобыльской АЭС началось в 1970 году, для обслуживающего персонала рядом был возведен город Припять. 27 сентября 1977 года первый энергоблок станции с реактором РБМК-1000 мощностью в 1 тыс. МВт был подключен к энергосистеме Советского Союза. Позднее вступили в строй еще три энергоблока, ежегодная выработка энергии станции составляла 29 млрд киловатт-часов.

9 сентября 1982 года на ЧАЭС произошла первая авария – во время пробного пуска 1-го энергоблока разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, ликвидация последствий ЧП заняла около трех месяцев.

Безопасно заглушить реактор не удалось. В 1 час 23 минуты на энергоблоке произошел взрыв и пожар. В атмосферу попало радиационное облако в 400 раз больше, чем при бомбардировке Хиросимы. Облако прошло над западной частью Советского Союза, а также затронуло Восточную, Северную и Западную Европу.

Одними из первых, кто принял участие в ликвидации аварии, были работники пожарной охраны. Сигнал о пожаре на АЭС был принят 26 апреля 1986 года в 1 ч. 28 мин. Уже к утру в зоне аварии находилось 240 человек личного состава Киевского областного управления пожарной охраны. Интенсивный пожар продолжался 10 суток, за это время суммарный выброс радиоактивных материалов в окружающую среду составил около 14 эксабеккерелей (порядка 380 млн кюри). После первого, наиболее острого, этапа все усилия по локализации аварии были сосредоточены на создании специального защитного сооружения, называемого саркофагом (объект "Укрытие"). В период с июля по ноябрь 1986 года был сооружен бетонный саркофаг высотой более 50 м и внешними размерами 200 на 200 м, накрывший 4-й энергоблок ЧАЭС, после чего выбросы радиоактивных элементов прекратились.

27 апреля был эвакуирован город Припять (47 тыс. 500 человек), а в последующие дни – население 10-километровой зоны вокруг ЧАЭС. Всего в течение мая 1986 года из 188 населенных пунктов в 30-километровой зоне отчуждения вокруг станции были отселены около 116 тыс. человек.

Радиоактивному загрязнению подверглось более 200 тыс. кв. км, из них 70% – на территории Украины, Белоруссии и России.

Наиболее загрязнены были северные районы Киевской и Житомирской обл. Украинской ССР, Гомельская обл. Белорусской ССР и Брянская обл. РСФСР. Радиоактивные осадки выпали в Ленинградской обл., Мордовии и Чувашии.

В результате аварии произошло замедление развития атомной энергетики в Советском союзе и др. странах.

Всё дальше и дальше отделяет нас время от страшной трагедии 1986 года. Безжалостно стираются в памяти многие детали произошедшего, исчезают события того времени, забываются лица тех, кто ценой своих жизней и здоровья спасал жизни других людей. Ежегодно, 26 апреля с 2016 года отмечается Международный день памяти о чернобыльской катастрофе , учреждённый Генеральной Ассамблеей ООН. Чернобыльская катастрофа вошла в дома миллионов людей всей планеты как предупреждение о смертельной угрозе ядерной стихии. Это общая беда человечества, которую забыть невозможно.

Рванувший в апреле 1986 года атомный реактор Чернобыльской атомной электростанции стал не простой производственной аварией, а самой большой техногенной катастрофой, которая, когда - либо случалась в мире. Её последствия устраняли четыре года с 1986 по 1990 г. Для её ликвидации было привлечено более 800 тысяч человек со всего Советского Союза.

Всё цивилизованное человечество в этот день вспоминает о событиях на Чернобыльской атомной электростанции, о тех, кто не жалея жизни и здоровья, встал на борьбу с радиационной стихией…



В центре г. Чернобыль в 2010—2011 гг. сооружён мемориальный комплекс к 25-летию аварии на Чернобыльской АЭС. Автор проекта — народный художник Украины, заслуженный деятель искусств Анатолий Гайдамака. На открытие комплекса в апреле 2011 года приезжали президенты России и Украины.

3.Заключение

Но влияние на природу отходов ядерного топлива на сегодняшний день доказано тысячами научных трудов и печальными показателями: захоронения отработанного топлива и тепловое загрязнение вод. В процессе деятельности атомная электростанция потребляет огромные массы воды для охлаждения агрегатов. Еще одной экологической проблемой ядерной энергетики является вывод качественных земель под строительство станций, при котором отчуждаются огромные территории.

Но всего за пару десятилетий доля ядерной энергии достигла небывалых показателей в мировой энергетике, что делало ее очень привлекательной для инвестиций и планомерного развития. Некоторые страны полностью перешли на энергию, получаемую из ядерного топлива. Против экологов были заключения экспертов, что стабильно работающая атомная электростанция выбрасывает в атмосферу очень небольшое количество радиационных загрязнений, причем это количество в несколько раз меньше по степени воздействия, чем выбросы тепловой электростанции аналогичной мощности. Атомные электростанции заслужили репутацию безопасных: повышенные меры осторожности гарантировали безаварийную и качественную работу.

Естественно, что после названных выше событий, экологические проблемы ядерной энергетики вновь оказались во главе угла в вопросах развития мирового энергетического комплекса.

Нужно уравновесить решение экологических проблем ядерной энергетики и работу атомных электростанций: как уже было сказано, для многих стран — это единственная возможность получать недорогую энергию и при этом не зависеть от условий и политических предпочтений других государств.

Но нужно помнить: что с момента начала эксплуатации атомных станций в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Т.е. крупная авария происходит примерно раз в 20 лет

4. Пивоваров Ю.П., Михаилов В.П. Радиационная экология: Учебное пособие. М.:Академия, 2004. 240 с.

Особое значение имеет распространение радиоактивных веществ в окружающем пространстве. В комплексе сложных вопросов по защите окружающей среды большую общественную значимость имеют проблемы безопасности атомных станций. Общепризнанно, что АЭС при их нормальной эксплуатации намного - не менее чем в 5-10 раз "чище" в экологическом отношении тепловых электростанций (ТЭС) на угле. Однако при авариях АЭС могут оказывать существенное радиационное воздействие на людей, экосистемы. Поэтому обеспечение безопасности экосферы и защиты окружающей среды от вредных воздействий АЭС – главная проблема и крупная научная и технологическая задача ядерной энергетики, обеспечивающая ее будущее.

Содержание

Выбросы и сбросы вредных веществ при эксплуатации АЭС

Воздействие радиоактивных выбросов на организм человека

АЭС и окружающая среда

Уничтожение опасных отходов

Способы хранения ядерных отходов

Работа содержит 1 файл

реферат.экология.docx

Санкт-Петербургский Государственный Политехнический Университет

Факультет Управления и Информационных Технологий

Преподаватель: Андрианова М.Ю.

Выполнила: Бабкина Майя

Выбросы и сбросы вредных веществ при эксплуатации АЭС

Воздействие радиоактивных выбросов на организм человека

АЭС и окружающая среда

Уничтожение опасных отходов

Способы хранения ядерных отходов

Атомная энергетика базируется на получении энергии при делении атомных ядер. До начала восьмидесятых годов ядерная (атомная) энергетика рассматривалась как экологически чистая замена тепловых электростанций. Однако при этом не учитывались загрязнения и расходы энергии, связанные с добычей, транспортировкой, обогащением и захоронением отходов.

Печальный опыт аварий на АЭС, особенно опыт Чернобыля, а также аварии в Челябинской области, показали, сколь тяжелы могут быть последствия ядерных катастроф.

Производство ядерной энергии оправдывается лишь в том случае, если будут найдены надежные решения всех связанных с ней проблем, в первую очередь средств значительного повышения безопасности существующих объектов ядерной энергетики и проблема захоронения ядерных отходов.

Техногенные воздействия на окружающую среду при строительстве и эксплуатации атомных электростанций многообразны. Обычно говорят, что имеются физические, химические, радиационные и другие факторы техногенного воздействия эксплуатации АЭС на объекты окружающей среды. Наиболее существенные факторы:

  • локальное механическое воздействие на рельеф - при строительстве;
  • повреждение особей в технологических системах - при эксплуатации;
  • сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты;
  • изменение характера землепользования и обменных процессов в непосредственной близости от АЭС;
  • изменение микроклиматических характеристик прилежащих районов.

Возникновение мощных источников тепла в виде градирен, водоемов - охладителей при эксплуатации АЭС обычно заметным образом изменяет микроклиматические характеристики прилежащих районов. Движение воды в системе внешнего теплоотвода, сбросы технологических вод, содержащих разнообразные химические компоненты оказывают травмирующее воздействие на популяции, флору и фауну экосистем.

Особое значение имеет распространение радиоактивных веществ в окружающем пространстве. В комплексе сложных вопросов по защите окружающей среды большую общественную значимость имеют проблемы безопасности атомных станций. Общепризнанно, что АЭС при их нормальной эксплуатации намного - не менее чем в 5-10 раз "чище" в экологическом отношении тепловых электростанций (ТЭС) на угле. Однако при авариях АЭС могут оказывать существенное радиационное воздействие на людей, экосистемы. Поэтому обеспечение безопасности экосферы и защиты окружающей среды от вредных воздействий АЭС – главная проблема и крупная научная и технологическая задача ядерной энергетики, обеспечивающая ее будущее.

Отметим важность не только радиационных факторов возможных вредных воздействий АЭС на экосистемы, но и тепловое и химическое загрязнение окружающей среды, механическое воздействие на обитателей водоемов-охладителей, изменения гидрологических характеристик прилежащих к АЭС районов, т.е. весь комплекс техногенных воздействий, влияющих на экологическое благополучие окружающей среды.

Выбросы и сбросы вредных веществ при эксплуатации АЭС

Исходными событиями, которые, развиваясь во времени, в конечном счете могут привести к вредным воздействиям на человека и окружающую среду, являются выбросы и сбросы радиоактивности и токсических веществ из систем АЭС.

Эти выбросы делят на газовые и аэрозольные, выбрасываемые в атмосферу через трубу, и жидкие сбросы, в которых вредные примеси присутствуют в виде растворов или мелкодисперсных смесей, попадающие в водоемы. Возможны и промежуточные ситуации, как при некоторых авариях, когда горячая вода выбрасывается в атмосферу и разделяется на пар и воду.

Выбросы могут быть как постоянными, находящимися под контролем эксплуатационного персонала, так и аварийными, залповыми. Включаясь в многообразные движения атмосферы, поверхностных и подземных потоков, радиоактивные и токсические вещества распространяются в окружающей среде, попадают в растения, в организмы животных и человека.

Воздействие радиоактивных выбросов на организм человека

Рассмотрим механизм воздействия радиации на организм человека: пути воздействия различных радиоактивных веществ на организм, их распространение в организме, депонирование, воздействие на различные органы и системы организма и последствия этого воздействия. Существует термин "входные ворота радиации", обозначающий пути попадания радиоактивных веществ и излучений изотопов в организм.

Радиоактивные изотопы могут проникать в организм вместе с пищей или водой. Через органы пищеварения они распространяются по всему организму. Радиоактивные частицы из воздуха во время дыхания могут попасть в легкие. Но они облучают не только легкие, а также распространяются по организму. Изотопы, находящиеся в земле или на ее поверхности, испуская гамма-излучение способны – облучить организм снаружи. Эти изотопы также переносятся атмосферными осадками.

АЭС и окружающая среда

При добыче и переработке урановой или ториевой руды отчуждаются значительные земельные площади (под карьеры и для размещения отвалов пустой породы и отходов). На этапах переработки руды и топлива используется большое количество химических реагентов, частично попадающих в окружающую среду.

На АЭС при производстве энергии осуществляется тот же паротурбинный цикл преобразования тепла, что и на ТЭС, поэтому до 70% энергии, выделившейся в реакторе, поступает в окружающее пространство, приводя к тепловому загрязнению биосферы.

Термоядерная реакция идет с выделением тепла – именно это положено в принцип работы АЭС – в качестве передатчика этого тепла, так называемого теплоносителя, используются вода. Элементарные единицы активной зоны реактора – твэлы часто деформируются и продукты деления поступают в теплоноситель. Он конечно проходит очистку прежде чем вернуться в пруд-охладитель, но часть радиоактивности все же остается.

Возникновение мощных источников тепла в виде градирен, водоемов - охладителей при эксплуатации АЭС обычно заметным образом изменяет микроклиматические характеристики прилежащих районов. Движение воды в системе внешнего теплоотвода, сбросы технологических вод, содержащих разнообразные химические компоненты оказывают травмирующее воздействие на популяции, флору и фауну экосистем.

Особое значение имеет распространение радиоактивных веществ в окружающем пространстве. Собственно ядерная реакция происходит в активной зоне реактора. Реакция представляет собой сложные превращения одних атомов в другие. В результате таких превращений образуется спектр радиоактивных изотопов различных химических элементов. Первыми реактор покидают радиоактивные благородные газы. Эти газы задерживаются некоторое время в фильтре- адсорбере, где теряют свою активность и лишь очень небольшая их часть попадает в атмосферу. В атмосферу также выбрасывается небольшое количество трития, йода и аэрозоли, которые составляют некоторые твердые продукты деления и активации.

Уничтожение опасных отходов

Особое внимание следует уделять такому мероприятиям, как накопление, хранение, перевозка и захоронение токсичных и радиоактивных отходов.

Радиоактивные отходы, являются не только продуктом деятельности АС но и отходами применения радионуклидов в медицине, промышленности, сельском хозяйстве и науке. Сбор, хранение, удаление и захоронение отходов, содержащих радиоактивные вещества, регламентируются следующими документами:

В результате своей деятельности ядерная промышленность порождает ядерные отходы. Проблема отходов в том понимании, как она воспринимается, в основном относится к долгоживущим отходам среднего и высокого уровня активности (долгоживущие ILW/HLW), которые в настоящее время содержатся и размещаются во временных хранилищах. Технические решения для сдерживания и удаления долгоживущих отходов были разработаны в целом ряде стран. Они обеспечивают преобразование отходов в стабильную, безопасную форму, которая обеспечивает сдерживание, а затем изоляцию полученной формы отходов от окружающей среды благодаря использованию разнообразных барьеров.

Радиоактивные отходы на атомной станции находятся в твердой, жидкой и газообразной формах. Твердые материалы включают в себя облученное ядерное топливо и низкоактивные отходы, такие как смолы водоочистки или рабочая одежда. Жидкие отходы содержат тритий - охлаждающая реактор вода, в которой радиоактивные элементы либо растворены, либо находятся в виде взвесей. Газообразные продукты в основном содержат радиоактивные инертные газы (криптон, ксенон, иод).

Любые жидкие отходы обычно переводятся в твердое состояние посредством выпаривания жидкой компоненты и смешиванием с матрицей, формирующей сплав.

Твердые отходы в дальнейшем упаковываются в стальные контейнеры для безопасного хранения, транспортировки и изоляции. В тех случаях, когда отходы остаются в виде стержней отработанного топлива, сборки могут герметизироваться в стальных контейнерах, которые иногда обшиваются медью. В обоих случаях контейнерам затем придают форму, которая может размещаться глубоко под землей, в горной выработке.

Отходы низкой активности захораниваются на территории АЭС. Отходы средней и высокой активности захораниваются в централизованных хранилищах на длительное время. Принимаемые меры по очистке и локализации твердых, жидких и газообразных отходов позволяют обеспечить надежную защиту окружающей среды от радиоактивного заражения при эксплуатации АЭС.

Крупномасштабная техногенная деятельность человека оказывает большое влияние на состояние окружающей среды. Это утверждение уже давно доказано не только тысячами исследовательских работ: от школьных рефератов до научных докладов, но и печальным практическим опытом. В последние годы особое внимание обращается на экологические проблемы работы атомных электрических станций, которые требуют оперативного решения.

Влияние автономных электростанций на экологию


На протяжении долгого времени АЭС считались одним из самых перспективных направлений энергетики. Несколько десятков лет атомные электрические станции были условно экологически чистыми способами получения энергии, но постепенно в процессе их функционирования стали выявляться экологических проблемы атомных электростанций. Главное событие в истории ядерной энергетики, послужившее доказательством опасности ядерных электростанций для окружающей среды и здоровья человека — взрыв на Чернобыльской АЭС, негативные последствия от которого до сих пор дают о себе знать. Для лучшего восприятия масштабов проблемы стоит поискать презентации, созданные специалистами и посвященные экологическим проблемам АЭС, например, подробную информацию можно получить материала Антоновой А.М., доцента кафедры атомных и тепловых электростанций Томского политехнического университета.

Основные экологические проблемы атомных электростанций кратко

Современные объекты энергетики строятся с учетом минимизации всех возможных рисков, но, не смотря на все меры предосторожности, экологическую обстановку существенно ухудшают следующие факторы:

  • различные виды радиационного излучения: альфа, бета, гамма; нейроны и рентгеновское излучение;
  • заражение химическими веществами прилегающей к станции территории: особенно опасны радионуклиды и не радиоактивные изотопы;
  • вредные тепловые излучения от систем охлаждения;
  • механические воздействия.

Экологические проблемы работы атомных электростанций

Работа АЭС для человеческого организма наибольшую опасность несет излучением гамма-лучей, способствующих возникновению серьезных генетических нарушений, тяжелых заболеваний, а в особо сложных случаях — смерти.

Самые опасные последствия эксплуатации атомных электростанций

По оценке ученых одним из самых страшных видов негативного воздействия на окружающую среду и здоровье человека является мощная энергия, которую вырабатываю АЭС. Факторы возможной опасности, которые может вызвать деятельность работы станции, требуют адекватной оценки, чтобы не допустить возникновения аварийных ситуаций с тяжелыми последствиями для биосферы и жизни человека.

Захоронение отходов

Безопасного способа захоронения отработанного ядерного топлива, опаснее которого может быть только атомная бомба, учеными не найдено. Единственно относительно приемлемый вариант обращения с ним — длительное хранение.

Экологические проблемы атомных электростанций кратко

Утилизация отработанного ядерного топлива — проблема, стоящая перед всеми государствами, на территории которых эксплуатируются ядерные объекты энергетики. Постоянно увеличивающиеся объемы отходов атомных электростанций представляют собой потенциальную угрозу мировой экологической безопасности.

Неутешительные выводы

Строительство, консервация, и, особенно, эксплуатация ядерной станции сказывается на экологии при любых обстоятельствах исключительно негативно, поэтому в настоящее время ученые пытаются найти пути решения глобальной проблемы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Реферат на тему "Экологические проблемы атомных электростанций", рассматриваются атомные электростанции и экологические проблемы, возникающие при их эксплуатации, производится оценка рисков от АЭС.

Оценить 1543 0

Районная научно-практическая конференция учащихся Меленковского района.

Экологические проблемы атомных электростанций.

2.Экологические проблемы атомных электростанций…………………….

2.1.Атомные электростанции и экологические проблемы, возникающие при их эксплуатации…………………………………………………………

Цель работы:

Проанализировать значение атомной энергетики для хозяйственной деятельности человека и оценить экологическую нагрузку на окружающую среду.

Задачи:

Изучить литературу по данной теме

Сделать анализ значения АЭС в экономике страны.

Изучить последствия аварии на Чернобыльской АЭС в России.

Оценить влияние АЭС на экологическую обстановку прилегающих территорий.

Обзор литературы: Во время работы над рефератом изучила статьи по данной теме, публичные доклады, а также пользовалась материалами сайта Росатома. В статьях [1], [3], [4] 1 нашла материал о значении атомной энергетики в народном хозяйстве страны, об основных рисках эксплуатации АЭС. Из источника [2], [5] отобрала статистические данные исследований влияния АЭС на окружающую среду и здоровье людей.

2. Экологические проблемы атомных электростанций.

2.1.Атомные электростанции и экологические проблемы, возникающие при их эксплуатации.

Сегодня общепризнано, что не существует способов получения электроэнергии, не сопряженных с риском возможного вреда. Вопрос, какая электростанция характеризуется большим удельным выбросом радиоактивных веществ в окружающую среду – атомная или угольная звучит риторически. Известно, что больший удельный выброс на единицу произведенной электроэнергии дает угольная станция. В угле всегда содержатся природные радиоактивные вещества – торий, два долгоживущих изотопа урана, продукты их распада (радий, радон и полоний), а также долгоживущий радиоактивный изотоп калия – калий-40. При сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов угольных ТЭС в 5–10 раз выше, чем на АЭС.

Дальнейшее развитие тепловой энергетики на угле, нефти, газе, сланцах, торфе приведет к глобальным изменениям климата и свойств атмосферы. при этом необходимо проводить сопоставление не просто электростанций на различных видах топлива, но и их топливных циклов, включающих операции по добыче, транспортировке, подготовке, переработке топлива.

Имеющиеся данные в разных странах свидетельствуют: по вредному воздействию на человека атомная промышленность находится на 20 месте – впереди угольная, нефтяная, топливная электроэнергетика и др.

Вклад атомных станций в загрязнение атмосферного воздуха по сравнению со всеми отраслями народного хозяйства остается ничтожно малым.

Объемы выбросов загрязняющих веществ (ЗВ) в атмосферный воздух атомными станциями не превышают допустимых значений и значительно ниже установленных природоохранными органами лимитов. На всех АЭС валовые выбросы загрязняющих веществ в атмосферу не превышали значений установленных нормативов. В 2011 г. было выброшено в атмосферу 1 352 т ЗВ, что на 13% меньше, чем в 2010 г. (1 559 т).

Таблица. Сравнительные данные по выбросам в атмосферу тепловыми станциями и АЭС, на 1 Гвт выработки. 2

Тепловые электростанции, тыс. т

Окислов серы (SOx)

Окислов азота (NOx)

Окиси углерода (CO)

Взвешенных веществ

Углекислого газа (CO2)

Исследования показали, что годовая доза дополнительного для живущих вблизи АЭС излучения (0,01–0,05 мЗв/год) сравнима с дозой однократного рентгеновского снимка зубов, почти в 10 раз меньше дозы облучения телезрителя (0,48 мЗв/год), и в 20 раз меньше среднего естественного фона на поверхности Земли (1 мЗв/год). Для населения риск смерти от различных причин изменяется в исключительно широких пределах: от 10-9 до 10-2 1/(чел.•год).

2.2. Оценка риска от АЭС

Риск есть вероятность причинения вреда. Количественно считать риск неблагоприятных последствий своих действий люди стали недавно, больше полагаясь на житейский опыт и интуицию.

Но при этом интуитивным, иррациональным остаётся восприятие риска – отношение людей и общества к риску. Восприятие риска связано не только с оценкой уровня риска, но зависит от многих других факторов: катастрофичности событий, знакомства людей с опасным явлением, пониманием явления простыми людьми, неопределённости последствий, контролируемости событий, добровольности принятия решений, воздействия на детей, обратимости событий, доверия к лицам, ответственным за риск, внимания СМИ, предшествующей истории, справедливости – равномерности распределения риска, пользы (выгоды) для рискующего, личной вовлечённости людей, происхождения риска (природный или от деятельности человека).

Есть расчётные модели особого рода, оперирующие не с параметрами, а с событиями, рассчитывающими не температуры и давления, а вероятности разных сложных событий. Соответственно, исходными данными служат вероятности простых событий – разных отказов оборудования или вероятности ошибок персонала.

Оценка "риска" в год для среднестатистического жителя территории, прилегающей к АЭС.

Новообразования (спонтанный рак) - 0.0020

Несчастные случаи, всего - 0.0022

В том числе ДТП - 0.00019

Несчастных случаев с огнем - 0.00012

Отравлений алкоголем - 0.00014

"Атомный риск" - 0.00000002

Отсюда видно, в чём заключаются основные опасности нашей жизни.

Отсюда вывод: АЭС удовлетворяет определению закона о техническом регулировании о безопасности – неприемлемый риск отсутствует.

2.3. Здоровье в зоне АЭС

Недавно в отрасли стартовало интересное исследование - "Мониторинг состояния здоровья населения, проживающего в зоне наблюдения АЭС".

Его первые результаты, а также перспективы обсуждались на заседании Пятого научно-технического совета Минатома России ("Человек и экология в ядерно-топливном цикле. Проблемы ядерной и радиационной безопасности"). Отчетный доклад представили академик РАМН д.м. н. Л. А. Булдаков и к.м. н. П. В. Ижевский.

Мониторинг проводится в соответствии с Законом "О санитарно-эпидемиологическом благополучии населения" и приказом Федерального управления "Медико-биологических и экстремальных проблем", силами специалистов ГНЦ "Институт биофизики" на средства, выделяемые концерном "Росэнергоатом".

Принципы и методы мониторинга были разработаны на основе уникального опыта, накопленного в ГНЦ ИБФ, под методическим руководством академика РАМН Л. А. Ильина. Объект исследования - люди, проживающие рядом с атомными электростанциями в тридцатикилометровой зоне наблюдения. Смысл исследования - оценить, насколько влияет на их здоровье близость АЭС.

На первом этапе исследований была разработана концепция и программа проведения мониторинга, выбраны критерии и методы оценки здоровья людей, выявлены основные факторы окружающей среды, способные повлиять на здоровье людей, на основе современных информационных технологий создан единый банк данных для хранения и систематизации всей накопленной информации. Он состоит из медицинской и гигиенической баз данных. В первой содержатся сведения медицинской статистики и результаты обследований, во второй - сведения о радиационной обстановке и о наличии вредных химических веществ в ареале наблюдения.

Наблюдения ведутся в зоне расположения двух атомных станций - Калининской и Ростовской. Первая - работает долгие годы, вторая - недавно пущена. Ростовская АЭС, пуск которой был осуществлен после начала исследования, дала медикам уникальную возможность оценить так называемый "нулевой фон", то есть состояние здоровья населения в период, предшествующий началу эксплуатации энергоблока.

Исследование началось с изучения радиационно-гигиенической обстановки, уровня химических полютантов, оценки надежности показателей государственной статистики.

В ходе мониторинга специалисты ГНЦ "Институт биофизики" обследовали людей, а также собирали медицинские данные обследуемых за последние пять лет. Они изучали демографическую и медицинскую статистику - показатели рождаемости, смертности и заболеваемости в основной и контрольной группах населения. Основная группа - люди, проживающие в зоне наблюдения, контрольная - жители отдаленных от АЭС населенных пунктов, имеющих сходные климатические и демографические условия.

С особой тщательностью, методом углубленного медицинского обследования, изучалось состояние здоровья у наиболее чувствительных к воздействию радиации групп населения - детей, подростков, беременных. Предметом изучения было не только общее состояние здоровья, но и состояние критических систем организма, таких как кроветворная, эндокринная, репродуктивная.

В общей сложности исследованиями были охвачены 36 тысяч жителей Ростовской области и 75 тысяч жителей Тверской.

В ходе мониторинга определялся и такой важный параметр как частота врожденной и наследственной патологии, так называемый генетический груз. Частота наследственных болезней в популяциях - фундаментальный параметр, от которого отталкиваются при расчете оценок генетических последствий облучения. При проведении мониторинга специалисты ИБФ пользовались специально разработанным для популяционных исследований и получившим одобрение Всемирной организации здравоохранения протоколом. Он включает в себя целый комплекс исследований, направленных на выявление возможного влияния различных факторов на формирование наследственных болезней.

Первые результаты исследования уже получены, но выводы пока делать преждевременно - для этого потребуются многолетние наблюдения. Однако некоторые результаты можно привести в качестве примера.

Так, стало очевидно, что проработавшая долгие годы Калининская АЭС не является существенным загрязнителем окружающей среды Удомельского района Калининской области, загрязнение атмосферного воздуха, наземных и подземных вод не связаны с ее деятельностью. На обеих станциях - и Калининской, и Ростовской - радиационная обстановка благоприятная. Содержание основных радионуклидов в пищевых продуктах растительного и животного происхождения и питьевой воде такое же, как в аналогичных продуктах других регионов страны, и составляет доли процентов от регламентируемых санитарными нормами и правилами.

Медики не обнаружили отрицательного влияния соседства АЭС на человеческий организм - показатели здоровья населения, проживающего радом со станциями, не хуже, чем у остальных россиян. А некоторые показатели даже лучше. Например, смертность детей до одного года в Удомле намного ниже, чем в целом по стране.

Согласно данным 3 ч исленность постоянного населения на декабрь 2010 года, составила 1348,7 тыс. человек (1361,2 тыс. человек в 2009 году). Численность населения за истекший год уменьшилась на 11,6 тыс. человек.

Распределение умерших по причинам смерти приведено в таблице.

Читайте также: