Достижения молекулярной биологии реферат

Обновлено: 05.07.2024

Исторически молекулярная биология сформировалась в ходе развития направлений биохимии, изучающих биополимеры. В то время как биохимия исследует глобальным образом обмен веществ и биоэнергетику, молекулярная биология уделяет главное внимание изучению способа хранения наследственной информации, механизма ее передачи дочерним клеткам и реализации этой информации. Молекулярная биология - пограничная наука, возникшая на границе биохимии, биоорганической химии, биофизики, орг. химии, цитологии и генетики. Формальной датой возникновения молекулярной биологии считают 1953, когда Д. Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации (удвоении), лежащем в основе наследственности. Таким образом были увязаны функции этого биополимера (тот факт, что ДНК-фактор наследственности, установлен в 1944 О. Эйвери) с его химической структурой и свойствами. Важное значение для становления молекулярной биологии как науки имели также работы по изучению молекулярных основ мышечного сокращения (В. А. Энгельгардт и М. И. Любимова, с 1939).

Работа содержит 1 файл

Молекулярная биология (хороший).docx

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, изучает явления жизни на уровне макромолекул в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель молекулярной биологии - установление роли и механизма функционирования этих макромолекул на основе знания их структуры.

Исторически молекулярная биология сформировалась в ходе развития направлений биохимии, изучающих биополимеры. В то время как биохимия исследует глобальным образом обмен веществ и биоэнергетику, молекулярная биология уделяет главное внимание изучению способа хранения наследственной информации, механизма ее передачи дочерним клеткам и реализации этой информации. Молекулярная биология - пограничная наука, возникшая на границе биохимии, биоорганической химии, биофизики, орг. химии, цитологии и генетики. Формальной датой возникновения молекулярной биологии считают 1953, когда Д. Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации (удвоении), лежащем в основе наследственности. Таким образом были увязаны функции этого биополимера (тот факт, что ДНК-фактор наследственности, установлен в 1944 О. Эйвери) с его химической структурой и свойствами. Важное значение для становления молекулярной биологии как науки имели также работы по изучению молекулярных основ мышечного сокращения (В. А. Энгельгардт и М. И. Любимова, с 1939).

По истокам своего развития молекулярная биология неразрывно связана с молекулярной генетикой (наука, изучающая структурно функциональную организацию генетического аппарата клеток и механизма реализации наследственной информации), которая продолжает составлять важную часть молекулярной биологии, хотя и сформировалась уже в значительной мере в самостоятельную дисциплину. Именно в этой области были достигнуты результаты, которые способствовали развитию молекулярной биологии и восприятию ее принципов.

Для понимания закономерностей строения нуклеиновых кислот и их поведения в клетке важнейшее значение имеет принцип комплементарности пуриновых и пиримидиновых оснований, установленный в 1953 Уотсоном и Криком. Признание значения пространственных отношений нашло свое выражение также в представлении о комплементарности поверхностей макромолекул и молекулярных комплексов, что является необходимым условием проявления слабых сил – не валентных взаимодействий (водородные связи и др.), действующих лишь на коротких расстояниях и создающих морфологическое разнообразие биологических структур, их функциональную подвижность. Не валентные взаимодействия обусловливают образование фермент-субстратных комплексов, самосборку биологических структур, рибосом, и др.

Важное достижение молекулярной биологии - раскрытие на молекулярном уровне механизма мутаций. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований молекулярных основ эволюции был А. Н. Белозерский). Раскрыты молекулярные основы таких генетических процессов у прокариот (бактерии и сине-зеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значительные успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Была развита идея о репликоне (элементарная генетическая структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значительный успех молекулярной биологии - первый химический синтез гена, который осуществил в 1968 X. Корана. Данные о химической природе и тонком строении генов способствовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом).

Исследование механизма биосинтеза белка позволило установить так называемый центральный постулат, характеризующий движение генетической информации: ДНК—> матричная рибонуклеиновая кислота (м РНК) —> белок (существование м РНК впервые предсказано Белозерским и А. С. Спириным в 1957). Согласно этому постулату, белок представляет собой своего рода информационный клапан, препятствующий возвращению информации на уровень РНК и ДНК.

Образование в организме белков и нуклеиновых кислот осуществляется по типу матричного синтеза, для которого необходима матрица, или "шаблон",-исходная полимерная молекула, которая предопределяет последовательность нуклеотидов (аминокислот) в синтезируемой копии (гипотеза о таком механизме синтеза биополимеров сформулирована в 1928 Н. К. Кольцовым). Такими матрицами являются ДНК при репликации и транскрипции (синтез м РНК на матрице ДНК), а также м РНК при трансляции (синтезе белка на матрице м РНК). Важное значение имело открытие обратной транскрипции, т.е. синтеза ДНК на матрице РНК, которое происходит у онкогенных РНК-содержащих вирусов с помощью специального фермента - обратной транскриптазы (X.Темин и Д.Балтимор, 1970). Открытие генетического кода (его концепция сформулирована А. Даунсом и Г. Гамовым в 1952 - 1954, а расшифровка осуществлена М. Ниренбергом,

X. Маттеи, С. Очоа и Кораной в 1961-65) позволило установить соотношение последовательности нуклеотидов в нуклеи

новых кислотах с последовательностью аминокислот в белках. Регуляция синтеза белка наиболее изучена на уровне транскрипции. Для объяснения механизма регуляции важное значение имеет концепция оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков), разработанная Жакобом и Ж. Моно в 1959, открытие белков-репрессоров (подавляют транскрипцию гена; см. Регуляторные белки), регуляции по принципу обратной связи (см. также Регуляторы ферментов). К сер. 60-х гг. 20 в. утвердилось представление об универсальности осн. черт строения и ф-ции гена как сложной линейной структуры ДНК, который в результате транскрипции и послед. трансляции определяет первичную структуру полипептидной цепи.

Молекулярная биология рассматривает также ряд других вопросов фундаментального и прикладного характера. Большой интерес и значение имеют исследования репараций (исправлений) повреждений генома, причиненных коротковолновой радиацией, мутагенами и др. Большую самостоятельную область составляют исследования механизма действия ферментов, основанные на представлениях о трехмерной структуре белков и роли слабых взаимодействий. Выяснены многие детали строения и развития вирусов, в особенности бактериофагов (вирусов бактерий). Изучение гемоглобинов у лиц, страдающих серповидно-клеточной анемией и другими гемоглобинопатиями, положило начало изучению структурной основы "молекулярных болезней" - врожденных ошибок метаболизма.

Важная область молекулярной биологии - генетическая инженерия, разрабатывающая методы конструирования наследственных структур в виде молекул рекомбинантных ДНК. Применение методов генетической инженерии позволило в короткие сроки выделить многочисленные гены и установить в них последовательность нуклеотидов. Таким образом были обнаружены мигрирующие генетические элементы (впервые предсказаны Б. Мак-Клинток в конце 40-х гг. 20 в.), установлена молекулярная природа вариабельности молекул антител, открыта прерывистость в структуре эукариотических генов и установлены новые принципы регуляции их активности. На базе генетической инженерии стала активно развиваться биотехнология, связанная с производством пептидов и белков, таких, как человеческие гормон роста, инсулин, интерфероны и др. Целенаправленное изменение структуры генов и их регуляторных областей и введение таких генов в бактериальные, животные и растительные клетки позволило создавать трансгенные организмы, способные вырабатывать новые белки (белковая инженерия) и придавать новые свойства этим организмам.

Для проведения исследований в молекулярной биологии широко используют физико-химические методы и биологические эксперименты. Применяют различные виды хроматографии, ультрацентрифугирование, рентгеноструктурный анализ, электронную микроскопию, ЭПР, ЯМР и изотопные индикаторы, используют также синхротронное (магнитно-тормозное) излучение, дифракцию нейтронов и лазерную технику. В экспериментах широко применяют модельные системы "ин витро" и мутагены.

Важное практическое значение молекулярная биология играет в развитии сельского хозяйства (направленное и контролируемое изменение наследств. аппарата животных и растений для получения высокопродуктивных пород и сортов), микробиологические примеси (см., напр., Микробиологический синтез), в развитии теоретических основ различных разделов медицины. Актуальные проблемы молекулярной биологии - исследование молекулярных механизмов злокачественного роста клеток, поиск способов предупреждения наследств. заболеваний, познание механизмов памяти, дальнейшее изучение механизмов действия ферментов, гормонов.

XIX век ознаменовался революционными переворотами во всех отраслях естествознания, которые привели к значительным качественным изменениям в основах научного мышления. Механистическое мировоззрение изжило своё, вследствие этого классическая наука Нового времена оказалась загнанной в тупик. Данному факту способствовали открытие периодической системы химических элементов выдающимся русским учёным Д.И. Менделеевым, также открытие электрона и явления радиоактивности. В результате разрешения кризиса произошла новая научная революция, получившая своё начало в физике и охватившая все основные отрасли науки. Главным образом, она связана с именами таких гениальных учёных, как М. Планк и А. Эйнштейн. Успехи физики вызвали цепную реакцию в прорыве в других дисциплинах. Так, благодаря открытию квантовой теории, началось изучение механизма наследственности, получила развитие генетика, а следом за ней и молекулярная биология.

Однако, что изучает молекулярная биология и каковы её основные задачи? Молекулярная биология – это комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции нерегулярных биополимеров (белков и нуклеиновых кислот). Отличительной чертой молекулярной биологии является изучение процессов жизни на неживых объектах или таких, которым присущи самые примитивные проявления жизни. При этом, основные задачи, которые ставит перед собой молекулярная биология, сводятся к следующим пунктам:

  • расшифровка структуры геномов;
  • создание банков генов;
  • геномная дактилоскопия;
  • изучение молекулярных основ эволюции, дифференцировки, биоразнообразия, развития и старения, канцерогенеза, иммунитета;
  • создание методов диагностики и лечения генетических болезней, вирусных заболеваний;
  • создание новых биотехнологий производства пищевых продуктов и разнообразных биологически активных соединений;
  • раскрытие сущности жизни

Цель работы: освещение истории развития и переломного революционного момента в становлении молекулярной биологии как науки, а также ознакомление с основными достижениями молекулярной биологии и генетики 20 века.

Актуальность данной темы для меня заключается в расширении собственного кругозора, формировании понимания различных процессов, протекающих в нашем организме, а также в осознании значимости данных дисциплин в нашей жизни, ведь недаром генетика и молекулярная биология так прочно стоят в списке самых инновационных и необходимых человечеству наук.

Основные этапы развития молекулярной биологии

Фундамент, легший в основу развития молекулярной биологии, закладывался целым рядом наук, среди которых можно упомянуть генетику, биохимию, физиологию элементарных процессов и т. д. Исторически молекулярная биология тесно связана с молекулярной генетикой, составляющей важную её часть, хотя и представляющей собой самостоятельную науку. Первый русский нобелевский лауреат, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения Иван Петрович Павлов говорил о физиологии живой молекулы, как о последнем этапе в науке о жизни. Он же и предвидел колоссальное значение исследований биологических проблем на молекулярном уровне.

Прогресс биологии в ХХ в. определялся в первую очередь развитием генетики и молекулярной биологии. В их рамках были изучены на молекулярном уровне основные закономерности процессов жизнедеятельности: обмена веществ, биосинтеза белков, генетического воспроизводства.

Процессы жизнедеятельности организмов определяются взаимодействием двух видов макромолекул – белков и нуклеиновых кислот. Белки – это макромолекулы, представляющие собой длинные цепи из аминокислот (органических кислот, включающих одну или две аминогруппы –NH2). В клетках и тканях встречается свыше 170 аминокислот, но в состав белков входят только 20. Большинство белков выполняют функцию катализаторов (ферментов). В их пространственной структуре есть активные центры в виде углублений, куда попадают молекулы, превращения которых катализируется данным белком. Также белки играют роль переносчиков. Например, гемоглобин переносит кислород от легких к тканям. Есть белки – антитела, защищающие организмы от вирусов, бактерий и т.п. Белки, называемые гормонами, управляют ростом клеток и их активностью. В настоящее время довольно хорошо изучены молекулярные основы обмена веществ в клетке и выявлены его три основных типа: катаболизм (расщепление сложных органических соединений, сопровождающееся выделением энергии), амфоболизм (образование в ходе катаболизма мелких молекул), анаболизм (биосинтез сложных молекул с расходованием энергии).

Генетическая информация организма хранится в молекулах нуклеиновых кислот. Она нужна для рождения следующего поколения и биосинтеза белков, контролирующих почти все биологические процессы. Нуклеиновые кислоты – это сложные органические соединения, представляющие собой фосфорсодержащие биополимеры (полинуклеотиды). Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Молекула РНК содержит 4-6 тыс отдельных нуклеотидов, ДНК – 10-25 тыс. Молекулы ДНК вместе с белками-гистонами образуют вещество хромосом.

Доказательство генетической роли ДНК было получено в 1944 г. О.Эвери в опытах на бактериях. А в 1953 г. Д. Уотсоном и Ф. Криком была расшифрована структура ДНК. Рентгеноструктурные исследования показали, что ДНК представляет собой двойную спираль из цепей сахарофосфатных группировок, связанных с помощью двух пар нуклеотидных оснований (тимин-аденин, цитозин-гуанин). Генетическая информация закодирована последовательностью оснований в цепи ДНК. Ген – это участок молекулы ДНК или РНК, у высших животных локализованный в хромосомах. Например, ДНК человека содержит более 80 тыс генов. Гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом, называются аллельными генами или аллелями. Геном – это совокупность генов, содержащихся в одинарном наборе хромосом, а генотип – совокупность всех генов организма, его наследственная основа. Совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития, называется фенотипом. При скрещивании организмов, различающихся по одному или нескольким признакам, получается потомство со смешанными признаками (гибриды). Организмы, генотип которых содержит одинаковые аллели одного и того же гена, называются гомозиготными, а разные аллели – гетерозиготными.

В рамках генетики, изучающей два важнейших свойства живых организмов – наследственность и изменчивость, были установлены основные количественные закономерности наследования признаков, названные в честь первооткрывателя законами Менделя. Под наследственностью понимается способность живых организмов передавать свои признаки и свойства из поколения в поколение. Согласно первому закону Менделя при скрещивании двух гомозиготных организмов, отличающихся только по одному признаку (такое скрещивание называется моногибридным), первое поколение гибридов получается единообразным. В соответствии со вторым законом при дальнейшем скрещивании гибридов первого поколения происходит расщепление признаков в соотношении 3:1 по фенотипу и 1:2:1 по генотипу. Третий закон Менделя описывает скрещивание двух гомозиготных организмов, отличающихся по двум и более признакам. В этом случае гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Под изменчивостью в генетике понимается способность живых организмов приобретать новые признаки и свойства. Она является основой для естественного отбора и эволюции организмов. Различают наследственную (генотипическую) изменчивость, обусловленную мутациями и рекомбинацией генов, и ненаследственную (модификационную) изменчивость, обеспечивающую приспособляемость организма к условиям внешней среды.

Еще в 1941 г. американские ученые Д. Бидл и Э. Тэйтум установили связь между состоянием генов и синтезом белков. Позже было выяснено, что основной функцией генов является кодирование синтеза белка. В середине 50-х гг. американским физиком Г. Гамовым был расшифрован молекулярный механизм считывания генетической информации с молекулы ДНК при создании белков: для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. В клетке имеются органеллы – рибосомы, считывающие структуру ДНК и синтезирующие белок в соответствии с этой информацией. Таким образом, в структуре ДНК зафиксированы генетический код организма и последовательность аминокислот синтезируемого белка.

Механизм воспроизводства ДНК включает три этапа: репликацию, транскрипцию и трансляцию. Репликация – это получение копий ДНК в процессе клеточного деления. Нарушение последовательности нуклеотидов в цепи ДНК приводит к наследственным изменениям в организме – мутациям. Транскрипция – это перенос информации для синтеза белка от нити ДНК к нити информационной РНК. Трансляция – синтез белка, при котором закодированная в РНК информация трансформируется в последовательность аминокислот в белковой цепи.

Современные методы исследования позволяют выделять ДНК, вырезать из них отдельные участки, изменять их и вводить обратно в геном, а затем по фенотипическим изменениям судить о генах и их функциях в организме. Современная биология не только исследует биологические системы, но и пытается манипулировать ими. Она приобрела инженерный характер. С помощью генной инженерии были синтезированы нормальные и модифицированные белки, получен в необходимых количествах ряд вакцин и гормонов (интерферон, инсулин, гормон роста и др.). Одно из важнейших направлений в этой области – изменение клеток зародышевой линии, в процессе которого сконструированные гены вводятся в половые клетки растений и животных. Создание таких трансгенных организмов открывает перед селекционерами широкие возможности по выведению новых сортов с улучшенными свойствами. При генетическом и клеточном клонировании используются неполовые клетки взрослых особей со сформированными фенотипическими признаками. Это позволяет клонировать растения и животных с ценными свойствами.

Молекулярная биология - это наука о механизмах хранения, воспроизведения, передачи и реализации генетической информации, о структуре и функциях нерегулярных биополимеров – нуклеиновых кислот и белков.

Начав с изучения биологических процессов на молекулярно-атомном уровне, молекулярная биология перешла к сложным надмолекулярным клеточным структурам, а в настоящее время успешно решает проблемы генетики, физиологии, эволюции и экологии.

Макс Дельбрюк и Сальвадор Лурия занимались изучением репродукции фагов и вирусов, представляющих собой комплексы нуклеиновых кислот с белками.

В 1940 г. Джордж Бидл и Эдуард Татум сформулировали гипотезу - "Один ген -один фермент". Однако, что такое ген в физико-химическом плане тогда еще не знали.

Была доказана генетическая роль ДНК. В 1953 г. появилась модель двойной спирали ДНК, за которую ее создатели Джеймс Уотсон, Френсис Крик и Морис Уилкинс были удостоены Нобелевской премии.

4. Академический период с 1962 г. по настоящее время, в котором с 1974 года выделяют генно-инженерный подпериод.

1967 г . Синтез in vitro биологически активной ДНК. Артур Корнберг (неформальный лидер молекулярной биологии).

1970 г . Открытие фермента обратной транскриптазы и явления обратной транскрипции. Говард Темин, ДэвидБалтимор, Ренато Дульбеко.

Гриффит работал с пневмококками - бактериями, вызывающими пневмонию. Он брал два штамма пневмококков: капсульный и бескапсульный. Капсульный - патогенный (вирулентный), при инфицировании таким штаммом мыши погибают, бескапсульный - непатогенный. При введении мышам смеси убитых нагреванием (и, следовательно, потерявших вирулентность) капсульных пневмококков и живых бескапсульных невирулентных бактерий, животные погибали в результате размножения капсульных вирулентных форм. Обнаруженное явление Гриффит интерпретировал как трансформацию.

Трансформация - это приобретение одним организмом некоторых признаков другого организма за счет захвата части его генетической информации.

В 1944 г. этот эксперимент был повторен Освальдом Эйвери, Колином Мак-Леодом и Маклином Мак-Карти в варианте смешивания бескапсульных пневмококков с взятыми от капсульных белками, полисахаридами или ДНК. В результате этого эксперимента была выявлена природа трансформирующего фактора.

2 . 1952 г. Эксперимент Альфреда Херши и Марты Чейз. Фаги (бактериофаги) - это вирусы, размножающиеся в бактериях. Е. coli - кишечная палочка (эубактерия).

Суть опыта: фаги, у которых белковая оболочка была мечена радиоактивной серой ( S 35 ), а ДНК - радиоактивным фосфором (Р 32 ), инкубировали с бактериями. Затем бактерии отмывали.

В смывных водах не обнаруживали Р 32 , а в бактериях - S 35 . Следовательно, внутрь попала только ДНК. Через несколько минут из бактерии выходили десятки полноценных фагов, содержащих и белковую оболочку, и ДНК.

Отсюда следовал однозначный вывод о том, что именно ДНК выполняет генетическую функцию - несет информацию как о создании новых копий ДНК, тик и о синтезе фаговых белков.

Френкель-Конрат работал с вирусом табачной мозаики (ВТМ). В этом вирусе содержится РНК, а не ДНК. Было известно, что разные штаммы вируса вызывают разную картину поражения листьев табака. После смены белковой оболочки "переодетые" вирусы вызывали картину поражения, характерную для того штамма, чья РНК была покрыта чужим белком.

На сегодняшний день существуют сотни тысяч доказательств генетической роли нуклеиновых кислот. Приведенные три являются классическими.

Читайте также: