Дива кулінарії та закони фізики реферат

Обновлено: 05.07.2024

Основной закон электростатики — закон Кулона — был установлен французским физиком Кулоном в 80-х гг. XVIII в. Справедливости ради хочу сказать, что взаимодействия электрических зарядов наблюдали многие ученые и экспериментаторы еще до Ш. Кулона. Так, например, англичанин Кавендиш так же после череды экспериментов пришел к выводу, что неподвижные заряды взаимодействуют согласно определенному закону, но свои выводы он так и не обнародовал.

Кроме этого исследованиями в этой области занимались :

1. Г.В. Рихман

3. Д. Бернулли

4. Д. Робинсон

Кулон так же проводил скрупулезные измерения. И для своих опытов изобрел специальные крутильные весы.

Созданная конструкция обладала высокой чувствительностью и реагировала на силы порядка 10 -9 Ньютон. При приложении столь малой силы коромысло поворачивалось ровно на 1 градус. В результате этого, вычисляя угол поворота, можно было измерить приложенную силу.

Так же Кулон выдвинул идею, которая заключалась в том, что во время соприкосновения заряженного шара с незаряженным шаром заряд распределялся между ними поровну. На это действие реагировал прибор, поворачивая коромысло на некий угол.

При этом заземляя жестко зафиксированный шар, Кулон нивелировал в нем заряд. Повторяя процесс перераспределения и снятия заряда, экспериментатор уменьшал изначальный заряд незафиксированного шара кратное число раз.

Вычисляя угол отклонения после каждого такого распределения, ученый обнаружил закономерность в действии отталкивающей силы. Это и дало толчок в формулировании знаменитого закона.

Закон Кулона: между двумя точечными электрическими зарядами в вакууме есть определенная сила. Она пропорциональна умножению их модулей, деленных на квадрат расстояния. Под расстоянием подразумевается длина прямой, соединяющей данные заряды. Эта сила считается силой взаимодействия, она направлена вдоль отрезка, соединяющего предметы. Кулоновская сила значится силой отталкивающей в случае совпадения знаков зарядов, и силой притяжения, если знаки зарядов являются разными. Заряды, как известно, бывают положительные и отрицательные. Положительный заряд получается путем трения стеклянной палочки о шелк, в то же время отрицательный достигается путем натирания эбонитовой палочки о шерсть.

Для работы закона нужно соблюдение ряда очень важных условий:

1. Должно быть соблюдено условие точечности зарядов.

2. Заряженные тела должны быть неподвижны.

3. Закон действителен для вакуума и воздушной среды.

Коэффициент пропорциональности в законе Кулона

Коэффициент k введен для того, чтобы обеспечить переход из гауссовой системы единиц в международную систему единиц (СИ). В гауссовой системе коэффициент равен 1. В международной — он обратно пропорционален 4-кратному произведению числа ПИ на электрическую постоянную. Электрическая постоянная — это константа, относится к числу фундаментальных физических постоянных. Ее значение примерно равно 8,85418781762⋅10 −12 Ф/м, где Ф — фарад. Записывается электрическая постоянная как E0.

Важно! В тех средах, где пространство заполнено бесконечным однородным диэлектрическим веществом, также добавляют диэлектрическую проницаемость.

Например, для воздуха диэлектрическая проницаемость равна 1,000594.

Значения диэлектрической проницаемости:

Границы применимости закона Кулона


  • объем и размеры рассматриваемых тел;

  • характеристики среды, в которой рассматривают заряженные тела;

Также на очень маленьких расстояниях, порядка 10–18 м, появляются электрослабые эффекты. Кулоновские силы взаимодействия не работают. Но если внести небольшие поправки, то можно использовать закон Кулона.

Вся современная электротехника построена на принципах взаимодействия кулоновских сил. Благодаря открытию Кулоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.


  • конденсатор;

  • различные диэлектрики;

  • антистатические материалы для защиты чувствительных электронных деталей;

  • защитная одежда для работников электронной промышленности и многое другое.

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Сила упругости и закон Гука

Именно эта сила лежит в основе работы механических часов, её воздействию подвергаются буксирные канаты и тросы подъемных кранов, амортизаторы автомобилей и железнодорожных составов. Её испытывает мяч и теннисный шарик, ракетка и другой спортивный инвентарь. Как возникает эта сила, и каким закономерностям подчиняется?

Как рождается сила упругости

Метеорит под действием земного тяготения падает на землю и… замирает. Почему? Разве земное тяготение исчезает? Нет. Сила не может исчезнуть просто так. В момент соприкосновения с землей сила тяжести уравновешивается другой силой равной ей по величине и противоположной по направлению. И метеорит, как и другие тела на поверхности земли, остается в покое.

hello_html_76f48519.jpg

Этой уравновешивающей силой является сила упругости.

Такие же упругие силы появляются в теле при всех видах деформации:

Силы, возникающие в результате деформации, называются упругими.

Природа силы упругости

hello_html_380680bc.jpg

Но, соприкоснувшись, начинают активно отталкиваться друг от друга.

При деформации растяжения расстояние между молекулами возрастает. Межмолекулярные силы стремятся его сократить. При сжатии молекулы сближаются, что порождает отталкивание молекул.

А, поскольку все виды деформаций можно свести к сжатию и растяжению, то появление упругих сил при любых деформациях объяснимо этими рассуждениями.

Закон, установленный Гуком

Изучением сил упругости и их взаимосвязью с другими физическими величинами занимался соотечественник и современник Ньютона известный естествоиспытатель Роберт Гук . Его считают основоположником экспериментальной физики.

Учёный продолжал свои эксперименты около 20 лет. Он проводил опыты по деформации растяжения пружин, подвешивая к ним различные грузы. Подвешиваемый груз вызывал растяжение пружины до тех пор, пока возникшая в ней сила упругости не уравновешивала вес груза.

В результате многочисленных экспериментов ученый делает вывод: приложенная внешняя сила вызывает возникновение равной ей по величине силе упругости, действующей в противоположном направлении.

Сформулированный им закон (закон Гука) звучит так:

Сила упругости, возникающая при деформации тела, прямо пропорциональна величине деформации и направлена в сторону, противоположную перемещению частиц.

Формула закона Гука имеет вид:

F — модуль, т. е. численное значение силы упругости;

х — изменение длины тела;

k — коэффициент жесткости, зависящий от формы, размеров и материала тела.

Знак минус указывает то, что сила упругости направлена в сторону противоположную смещению частиц.

hello_html_m59ae5b7c.jpg

Каждый физический закон имеет свои границы применения. Закон, установленный Гуком можно применять только к упругим деформациям, когда после снятия нагрузки форма и размеры тела полностью восстанавливаются.

У пластичных тел (пластилин, влажная глина) такого восстановления не происходит.

Упругостью в той или иной степени обладают все твёрдые тела. Первое место по упругости занимает резина, второе — сталь . Даже очень упругие материалы при определенных нагрузках могут проявлять пластичные свойства. Это используют для изготовления проволоки, вырезания специальными штампами деталей сложной формы.

Если у вас есть ручные кухонные весы (безмен), то на них наверняка написан максимальный вес, на который они рассчитаны. Скажем 2 кг. При подвешивании более тяжелого груза, находящаяся в них стальная пружина уже никогда не восстановит свою форму.

hello_html_1eea8488.jpg

Работа силы упругости

Как и любая сила, сила упругости, способна совершать работу. Причем очень полезную. Она предохраняет деформируемое тело от разрушения. Если она с этим не справляется, наступает разрушение тела. Например, разрывается трос подъёмного крана, струна на гитаре, резинка на рогатке, пружина на весах. Эта работа всегда имеет знак минус, поскольку сама сила упругости тоже отрицательна.

Вместо послесловия

Вооружившись некоторыми сведениями о силах упругости и деформациях, мы легко ответим на некоторые вопросы. Скажем, почему крупные кости у человека имеют трубчатое строение?

hello_html_7e3e7a1c.jpg

Изогните металлическую или деревянную линейку. Её выпуклая часть испытает деформацию растяжения, а вогнутая — сжатия. Средняя же часть нагрузки не несет. Природа и воспользовалась этим обстоятельством, снабдив человека и животных трубчатыми костями. В процессе движения кости, мышцы и сухожилья испытывают все виды деформаций. Трубчатое строение костей значительно облегчает их вес, абсолютно не влияя на их прочность.

Стебли злаковых культур имеют такое же строение. Порывы ветра пригибают их до земли, а силы упругости помогают выпрямиться. Кстати, рама у велосипеда тоже изготавливается из трубок, а не из стержней: вес намного меньше и металл экономится.

Закон, установленный Робертом Гуком, послужил основой для создания теории упругости. Расчёты, выполненные по формулам этой теории, позволяют обеспечить долговечность высотных сооружений и других конструкций .

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Исаак Ньютон — великий английский физик, астроном и математик, механик. Высокой похвалы заслуживают работы Ньютона, в которых он заложил основы научного понимания законов Вселенной и заменил фантастические религиозные домыслы.

Исаак Ньютон родился в 1643 году в Вулсторпе, недалеко от Грантема, сына бедной фермерской семьи. Он учился в Кембриджском университете. В 1672 году Исаак Ньютон стал членом, а с 1673 года — постоянным президентом Лондонского королевского общества Английской академии наук. С 1669 по 1701 год Исаак Ньютон был членом Лондонского королевского общества. С 1669 по 1701 год Ньютон был профессором физики и математики в Кембриджском университете.

Физические открытия Ньютона были тесно связаны с решением астрономических проблем. Независимо от Г. Лейбница, Ньютон разработал дифференциальное и интегральное исчисление. Чуть позже он обнаружил рассеяние света, хроматические аберрации; изучил интерференцию и дифракцию, а также кольца, которые позднее были названы его именем. Оптика Ньютона родилась из попытки улучшить линзы для астрономических преломляющих телескопов и освободить их от искажений — аберраций. В 1668 году он разработал конструкцию зеркального телескопа, а в 1672 году был избран членом Лондонского королевского общества. Основываясь на установленном им законе гравитации, Ньютон пришел к выводу, что все планеты и кометы притягиваются Солнцем, а спутники — планетами с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел. Ньютон показал, что из закона всемирного гравитационного потока законы Кеплера, пришли к выводу о неизбежности отклонений от этих законов из-за возмутительного действия на каждой планете или спутнике от других тел Солнечной системы. Теория гравитации позволила ему объяснить многие астрономические явления — особенности движения Луны, прецессию, приливы, сжатие Юпитера, разработать теорию фигуры Земли.

Мнения Ньютона, его способность объяснять и описывать самые разнообразные природные явления, в частности, астрономические, оказали огромное влияние на дальнейшее развитие науки.

Фундаментальные законы ньютоновской механики

Концепция Ньютона стала основой для многих технических достижений в долгосрочной перспективе. На его основе были построены многие методы научных исследований в различных областях науки.

Законы ходатайства Ньютона

Если кинематика изучает движение геометрического тела, не обладающего какими-либо свойствами материального тела, кроме свойства занимать определенное положение в пространстве и изменять это положение во времени, то динамика изучает движение реальных тел под действием действующих на них сил. Три закона механики, установленные Ньютоном, составляют основу динамики и представляют собой фундаментальный раздел классической механики.

Они могут применяться непосредственно в простейшем случае движения, когда движущееся тело рассматривается как материальная точка, а именно, когда размер и форма тела не учитываются и когда движение тела рассматривается как движение точки с грузом. В кипящей воде для описания движения точки может быть выбрана любая система координат, относительно которой определяются количества, характеризующие это движение. Любое тело, которое движется по отношению к другим телам, может рассматриваться как точка отсчета. В динамике мы имеем дело с инерциальными системами координат, которые характеризуются тем, что точка свободного материала движется относительно них с постоянной скоростью.

Первый ньютоновский закон

Закон инерции был впервые установлен Галилеем для случая горизонтального движения: Если тело движется в горизонтальной плоскости, его движение равномерно и продолжалось бы постоянно, если бы плоскость бесконечно расширялась в пространстве. Ньютон дал более общую формулировку закона инерции как первого закона движения: каждое тело находится в состоянии покоя или в прямом и равномерном движении до тех пор, пока действующие на него силы не изменят это состояние.

В жизни этот закон описывает случай, когда, перестав тянуть или толкать движущееся тело, оно останавливается и не продолжает двигаться с постоянной скоростью. Автомобиль с выключенным двигателем останавливается. Закон Ньютона требует применения тормозной силы к автомобилю, катящемуся по инерции, которая на практике представляет собой сопротивление и трение автомобильных шин о поверхность автострады. Это то, что они говорят машине разгоняться отрицательно, пока она не остановится.

Второй закон Ньютона — дифференциальный закон движения, описывающий связь между уравнением всех сил, действующих на тело, и ускорением этого тела. Один из трех законов Ньютона.

Второй закон Ньютона гласит, что ускорение, которое испытывает тело, прямо пропорционально всем силам, воздействующим на тело, и обратно пропорционально весу тела.

Этот закон записан в виде формулы: a = F / м, где a — это ускорение тела, F — это сила, прилагаемая к телу, а m — это вес тела.

Или, более известный: F = ма в тех же выражениях.

Если вес тела меняется со временем, то второй закон Ньютона записывается более общим образом: F = dp / dt, где p — импульс (количество движений) тела, t — время, а d/dt — производная времени. Второй закон Ньютона применяется только к скоростям, значительно меньшим, чем скорость света и в инерциальных системах подсчета.

Понятие массы тела было введено на основе экспериментов по измерению ускорений двух взаимодействующих тел: Масса взаимодействующих тел обратно пропорциональна числовым значениям ускорений: m1 / m2 = — a2 / a1 или m1a1 = — m2a2.

В векторной форме это соотношение принимает форму: m1a1 = — m2a2.

Это равенство известно как Третий закон Ньютона. В модуле тела действуют друг на друга с силами, равными по величине и в противоположных направлениях. Силы, возникающие в результате взаимодействия тел, всегда имеют одну и ту же природу. Они применяются к разным телам и поэтому не могут уравновешивать друг друга. Только силы, действующие на тело, могут быть добавлены по правилам векторного сложения. На рис. 1.9.1 показан третий закон Ньютона. Мужчина действует по обвинению с тем же модулем силы, что и обвинение, действующее на человека. Эти силы направлены в противоположных направлениях. Они имеют одинаковую физическую природу — это упругие силы веревки. Ускорения, о которых сообщают оба тела, обратно пропорциональны массам тел.

Силы, действующие между частями одного и того же тела, называются внутренними силами. Когда тело движется в целом, его ускорение определяется только внешней силой. Внутренние силы исключены из второго закона Ньютона, потому что их векторная сумма равна нулю. Рассмотрим в качестве примера рис. 2, на котором изображены два тела с массой m1 и m2, жестко соединенные невесомой неразрывной нитью, которые движутся под действием внешней силы F с тем же ускорением, что и единое целое: F1 = — F2

Движение отдельных тел зависит от сил, действующих между ними. Второй ньютоновский закон, который применяется к каждому телу в отдельности.

Сложите левую и правую части этих уравнений и учтите их.

Внутренние силы были исключены из уравнения движения системы двух связанных тел.

Пространство и время в связи с механическим образом мира

Ключевым понятием механического мировоззрения было движение. Именно законы движения Ньютон считал фундаментальными законами Вселенной. Тело имеет внутреннюю врожденную способность двигаться плавно и линейно, и отклонения от этого движения связаны с действием на тело внешней силы (инерции). Мерой инерции является масса, еще одно важное понятие в классической механике. Универсальным свойством тел является гравитация.

Для решения проблем взаимодействия тела Ньютон предложил принцип диапазона. Согласно этому принципу, взаимодействие между телами на любом расстоянии происходит немедленно и без материальных посредников.

В механической картине мира все события строго предписывались законами механики. Совпадение было в корне исключено из картины мира. Как говорил о. Лаплас, если бы существовал гигантский дух, способный охватить весь мир (зная координаты всех тел в мире и силы, действующие на них), то он определенно мог бы предсказать будущее этого мира.

Жизнь и дух в механическом образе мира не имели качественных характеристик. Поэтому присутствие человека в мире ничего не изменило. Как только человек исчезает с лица земли, мир продолжает существовать так, как будто ничего не произошло.

На основе механического образа мира в XVIII — начале XIX века была разработана земная, небесная и молекулярная механика. Стремительное развитие технологий. Это привело к абсолютизации механического мировоззрения, к тому, что оно стало считаться универсальным.

В то же время физика начала собирать эмпирические данные, которые противоречили механическому образу мира. Таким образом, помимо рассмотрения системы материальных точек, которая полностью соответствовала бы корпускулярным представлениям о материи, необходимо было ввести понятие непрерывной среды, которая на самом деле уже не связана с корпускулярной, а с континуумными представлениями о материи. Чтобы объяснить световые явления, было введено понятие эфира — особой тонкой и абсолютно непрерывной световой материи.

В XIX веке методы механики были распространены на область тепловых явлений, электричества и магнетизма. Это, казалось бы, свидетельствует о большом успехе механического понимания мира как общей отправной точки для науки. Но, пытаясь выйти за пределы механики материи, точки должны были вводить все больше и больше новых искусственных и предположений, которые постепенно готовили коллапс механического мировоззрения. Подобно световым явлениям, термины тепло, электричество и магнетизм были введены для объяснения тепла, электрических и магнитных жидкостей как особых видов твердого вещества.

Хотя механический подход к этим явлениям был неприемлем, экспериментальные факты были искусственно адаптированы к механической картине мира. Попытки построить атомистическую модель воздуха продолжались и в XX в. Эти факты, не вписывающиеся в ход механического мировоззрения, показали, что противоречия между устоявшейся системой взглядов и эмпирическими данными несовместимы. Физика нуждалась в существенном изменении представлений о материи, в изменении физического мировоззрения.

Заключение

По словам Эйнштейна, Ньютон — этот гениальный гений — указал на образ мышления, экспериментальные исследования и практические построения, создал гениальные методы и прекрасно ими владел, был чрезвычайно изобретателен в поисках математических и физических доказательств, был реальной судьбой на переломном этапе духовного развития человечества. Современная физика не отвергала ньютоновскую механику, она лишь устанавливала пределы ее применимости.

Список литературы

  1. Иродов И.Е. Основные законы механики М. :Таинство 2002
  2. Карпенков Х.Х. Основные понятия естествознания. МОСКВА: ПОДРАЗДЕЛЕНИЕ, 1998 ГОД.
  3. Гурская И.П. Элементарная физика. М.: Наука, 1985.
  4. Дорфман Я.Г. Всемирная история физики с начала XIX до середины XX М., 1974 г.
  5. Доктор Ахундова. Илларионова С.В. Ньютон и философские проблемы физики XX века. Коллекция авторов под редакцией М.: Наука, 1996.
  6. Дорфман Я.Г. мировая история физики с начала XIX до середины XX века, 1975.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Законы Ньютона – в зависимости от того, под каким углом на них посмотреть, – представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки – блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.

Первый закон Ньютона

Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.

Теперь заменим ядро легкоатлетического молота планетой, молотобойца – Солнцем, а струну – силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.

Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).

Второй закон Ньютона

Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:

где F – сила, m – масса, а – ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.

Именно второй закон Ньютона придает всей классической механике ее особую прелесть – начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики .

Третий закон Ньютона

За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.

Читайте также: