Дезинфекция воды ультрафиолетом реферат

Обновлено: 08.07.2024

По данным Всемирной организации здравоохранения, основное негативное воздействие при употреблении воды человеком или при его контакте с ней связано не с наличием неприемлемых органолептических свойств или неудовлетворительного химического состава, а с бактериальной загрязненностью водной среды, являющейся идеальным местом для существования большого числа микроорганизмов, в том числе возбудителей чумы, вирусного гепатита, холеры и т.д. Поэтому основным этапом водоподготовки и водоочистки является обеззараживание. В данной статье даются ответы на вопросы, касающиеся особенности применения технологии УФ-обеззараживания воды.

Какие методы обеззараживания существуют? Их достоинства и недостатки?

В настоящее время широкое распространение получили технологии обеззараживания, основанные на физических (УФ-обеззараживание) или химических (хлорирование, озонирование) методах.

Самым распространенным химическим методом обеззараживания питьевой воды является обработка хлором или хлорсодержащими реагентами. Основной недостаток метода — образование высокотоксичных хлорорганических соединений, обладающих мутагенным и канцерогенным действием, способных вызвать ряд серьезных заболеваний [1]. Именно поэтому государственные нормативные документы РФ устанавливают жесткие требования к ПДК этих веществ в воде. Примерами таких соединений, нормативы содержания которых в питьевой воде опубликованы в Дополнении №1 к ГН 2.1.5.1315-03 в виде перечня ПДК ГН 2.1.5.2280-07, служат: хлороформ — 0,06 мг/л; четыреххлористый углерод (тетрахлорметан) — 0,002 мг/л; дихлор- бромметан — 0,03 мг/л; хлордибромме- тан — 0,03 мг/л [2]. Причем современный тренд развития нормативной базы предполагает дальнейшее ужесточение этих нормативов.

Особенности технологии УФ-обеззараживания воды. 11/2014. Фото 1

Также известно о высокой резистив- ности вирусов и цист простейших к хлору [3], что приводит к увеличению доз подаваемого реагента и, как следствие, к ухудшению органолептических свойств обрабатываемой воды.

Самым распространенным химическим методом обеззараживания питьевой воды является обработка хлором или хлорсодержащими реагентами. Основной недостаток метода — образование высокотоксичных хлорорганических соединений, обладающих мутагенным и канцерогенным действием, способных вызвать ряд серьезных заболеваний

Ещё одним химическим методом обеззараживания воды является озонирование. Озон О3 — аллотропная форма кислорода O2 — является сильным окислителем, а технология очистки воды, основанная на применении этого вещества, направлена на окисление и устранение вредных органических примесей. Обеззараживание является дополнительным, второстепенным эффектом. Стоит отметить, что озон относится к самому высокому классу опасности вредных веществ. Озон индуцирует появление токсичных галогенсодержащих соединений, таких как броматы и пероксиды [4]. Технология обеззараживания является крайне энергозатратной и дорогой, что связано с процессом получения озона. При этом стоит отметить высокую обеззараживающую способность озона в отношении вирусов и цист простейших.

Особенности технологии УФ-обеззараживания воды. 11/2014. Фото 2

Бактерицидное УФ-излучение эффективно в отношении вирусов и простейших, стойких к воздействию хлорсодержащих реагентов. УФ-обработка воды не приводит к образованию вредных побочных продуктов, даже если доза превышена многократно. Обработка воды ультрафиолетом не приводит к изменению органолептических свойств, но, в отличие от хлорирования и обработки хлорсодержащими реагентами, обеззараживание УФ-лучами не носит пролонгированного характера. Поэтому при применении ультрафиолета при водоподготовке возможно вторичное микро биологическое загрязнение воды, подаваемой потребителю. Решением этой проблемы явилось совместное применение УФ-обеззараживания и хлорирования, обеспечивающего последействие. Наиболее оптимальным считается применение хлораминов. Вследствие более длительного сохранения в сетях и более активного, чем хлор, действия на биопленки в трубах [5] хлорамины находят всё большее применение в практике водоподготовки.

Высокая эффективность действия на различные типы микроорганизмов, отсутствие вредных побочных продуктов позволяют рассматривать ультрафиолетовое облучение как реальный практический метод обеззараживания.

Одним из важнейших, и во многих случаях определяющих критериев выбора метода обеззараживания воды является стоимость оборудования и его эксплуатации.

Особенности технологии УФ-обеззараживания воды. 11/2014. Фото 3

Какова стоимость применения ультрафиолета?

В то же время по совокупности показателей наиболее приемлемым был признан метод обеззараживания ультрафиолетовым излучением, как высокоэффективный в эпидемическом отношении и не сопровождающийся образованием побочных продуктов, негативно влияющих на окружающую природную среду и здоровье человека.

На рис. 1, 2 и 3 приведены результаты экономического сравнения трех основных методов обеззараживания.

Принимая во внимание полученные результаты, можно сделать вывод, что применение УФ-оборудования на лампах низкого давления является наиболее перспективным в практике обеззараживания стоков и питьевой воды. Косвенным подтверждением являются данные о широком применении УФ-обеззараживания за рубежом.

Особенности технологии УФ-обеззараживания воды. 11/2014. Фото 4

Какие тенденции применения УФ прослеживаются?

В 1970-х годах в ряде развитых стран Европы и в США начался поиск альтернативы хлорированию, и отметилось возрастание интереса именно к методу УФ-обеззараживания, имеющему ряд вышеназванных преимуществ.

В связи с проведением исследований и разработкой оборудования с конкурентоспособными параметрами, такими как энергосбережение, энергоэффективность, безопасность и высокая надежность, активное внедрение оборудования началось с 1980-х годов.

По состоянию на текущий момент с начала внедрения УФ на территории России прослеживается экспоненциальный рост объемов обрабатываемой УФ-излучени- ем воды (рис. 4).

Однако, несмотря на возросший интерес, всё ещё существуют мифы по поводу применения ультрафиолета.

Особенности технологии УФ-обеззараживания воды. 11/2014. Фото 5

Миф №1. Ультрафиолет изменяет физико-химические свойства и состав воды

Ошибочно считается, что при обработке воды УФ-лучами с целью обеззараживания изменяются её физико-химические свойства и состав. Однако при применении УФ-оборудования для обработки сточной и питьевой воды никакого влияния на органолептические свойства и химический состав не наблюдается.

Миф №2. Обеззараживать воду из скважин не нужно

Основной причиной возникновения и роста спроса на системы обеззараживания малой производительности стало осознание людьми необходимости обеззараживания воды из скважин. Бытует неверное мнение, что из скважины поступает чистая в эпидемиологическом плане вода, не требующая обеззараживания. Однако нельзя исключать возможность проникновения вирусологического и бактериологического загрязнения в питающие подземные водоносные горизонты с грунтовыми водами или через стоки септиков. В связи с осознанием этого факта продолжает расти понимание того, что обеззараживание при подаче питьевой воды из скважин является необходимым этапом.

Миф №3. Качество воды не влияет на эффективность УФ-обеззараживания

Основной причиной возникновения и роста спроса на системы обеззараживания малой производительности стало осознание людьми необходимости обеззараживания воды из скважин. Бытует неверное мнение, что из скважины поступает чистая в эпидемическом плане вода, не требующая обеззараживания

Диапазон физико-химических показателей качества воды, рекомендуемых для применения метода УФ-обеззараживания, является достаточно широким. На процесс УФ-обеззараживания не оказывают влияние pH и температура воды. Присутствие в воде ряда органических и неорганических веществ, поглощающих УФ- излучение, приводит к снижению фактической дозы облучения, обеспечиваемой УФ-установками. Влияние качества воды на пропускание излучения должно быть учтено при выборе УФ-оборудования. При превышении хотя бы одного из показателей рекомендуется проведение дополнительных исследований.

Миф №4. Эффективность работы УФ-установок нельзя контролировать

Для контроля работы УФ-установки необходимо иметь в установке УФ-датчик. При снижении интенсивности ниже порогового значения сработает аварийная сигнализация, предупреждающая пользователя о необходимости принять меры по предупреждению или устранению неполадки.

За рубежом также распространена практика сертификации установок обеззараживания питьевой воды, балластной воды судов. После прохождения всех этапов сертификации на установку выдается сертификат, подтверждающий её способность обеззараживать. В нем приведен список технологических параметров, соблюдение которых гарантирует обеззараживание.

По данным Всемирной организации здравоохранения, основное негативное воздействие при употреблении воды человеком или при его контакте с ней связано не с наличием неприемлемых органолептических свойств или неудовлетворительного химического состава, а с бактериальной загрязненностью водной среды, являющейся идеальным местом для существования большого количества микроорганизмов, в том числе возбудителей тифа, вирусного гепатита, холеры и т. д. Поэтому основным этапом водоподготовки и водоочистки является обеззараживание.

Технологии обеззараживания воды

Самым распространенным химическим методом обеззараживания питьевой воды является обработка хлором или хлорсодержащими реагентами. Однако основной недостаток этих технологий – образование высокотоксичных хлорорганических соединений, обладающих мутагенным и канцерогенным действием, способных вызвать ряд серьезных заболеваний [1]. Именно поэтому государственные нормативные документы РФ устанавливают жесткие требования к предельно допустимой концентрации (ПДК) этих веществ в воде. Современный тренд развития нормативной базы предполагает дальнейшее ужесточение этих нормативов.

Вирусы и цисты простейших обладают высокой устойчивостью (резистентностью) к хлору [2], для их инактивации требуется увеличение дозы подаваемого реагента, что, в свою очередь, приводит к изменению в худшую сторону органолептических свойств обрабатываемой воды – появляется резкий запах, ощущается вкус хлора.

Технология хлорирования подразумевает наличие небезопасных хлорных хозяйств. Таким хозяйствам присваивается высокий класс опасности, что обусловливает наличие специальных конструкций хлораторных и санитарно-охранной зоны.

Еще одним химическим методом обеззараживания воды является озонирование. Озон (О3) – аллотропная модификация кислорода (O2), является сильным окислителем, а технология очистки воды, основанная на применении этого вещества, направлена на окисление и устранение вредных органических примесей. Обеззараживание здесь, по сути, является дополнительным, второстепенным эффектом. Стоит отметить, что озон относится к самому высокому классу опасности вредных веществ: он индуцирует появление токсичных галогенсодержащих соединений, таких как броматы, пероксиды [3]. Технология обеззараживания является крайне энергозатратной и дорогостоящей, что связано с этапом получения озона. Оборудование для озонирования технически сложное, требует наличия грамотной системы контроля и автоматического регулирования, которая стоит немалых денег. По природе своей озон не обладает эффектом последействия, необходимым для поддержания надлежащего санитарного состояния коммуникаций и оборудования, находящегося после ступени озонирования. Существенным преимуществом озонирования перед хлорированием является отсутствие необходимости хранения опасных реагентов (хлор в жидком или газообразном состоянии). Однако озонирование требует повышенного внимания и дополнительных затрат на обеспечение техники безопасности, так как озон является опасным газом, требующим отдельных помещений, оборудованных системами приточно-вытяжной вентиляции и специализированными датчиками. Вместе с этим стоит отметить высокую обеззараживающую способность озона в отношении вирусов и цист простейших.

Особенности технологии УФ-обеззараживания воды

За последние десятилетия технология ультрафиолетового (УФ) обеззараживания воды заняла ведущее место в ряду других технологий обеззараживания. Помимо водоснабжения и канализации УФ-обеззараживание также широко используется в различных отраслях промышленности – пищевой, фармакологической, электронной, а также в оборотном водоснабжении, аквакультуре и других. Ультрафиолетовое излучение – электромагнитное излучение, занимающее диапазон между рентгеновским и видимым излучением (диапазон длин волн от 100 до 400 нм). Различают несколько участков спектра ультрафиолетового излучения, имеющих разное биологическое воздействие: УФ-A (315–400 нм), УФ-B (280–315 нм), УФ-C (200–280 нм), вакуумный УФ (100–200 нм).

Из всего УФ-диапазона участок УФ-С часто называют бактерицидным из-за его высокой обеззараживающей эффективности по отношению к бактериям и вирусам. Максимально эффективным является ультрафиолетовое излучение с длиной волны 254 нм.

УФ-излучение – это физический метод обеззараживания, основанный на фотохимических реакциях, которые приводят к необратимым повреждениям ДНК и РНК микроорганизмов и вирусов, в результате чего теряется способность к размножению (происходит инактивация).

Также нельзя полностью исключить хлорирование и при обеззараживании воды для плавательных бассейнов. Здесь важным аспектом остается микробиологическая безопасность воды в чаше бассейна. При применении комбинированного метода обеззараживания УФ + хлор содержание свободного остаточного хлора должно находиться в пределах 0,1–0,3 мг/л, тогда как при хлорировании без УФ-обеззараживания – в пределах 0,3–0,5 мг/л, соответственно затраты на реагент снижаются в 2–3 раза [5].

Для обеззараживания сточных вод достаточно применения только УФ без каких-либо дополнительных дезинфицирующих реагентов. Применение хлорирования вследствие наличия последействия, являющегося преимуществом в процессах водоподготовки, при обеззараживании сточных вод нежелательно из-за негативного влияния на биоценоз водоемов, куда сбрасываются стоки.

Высокая эффективность действия на различные типы микроорганизмов, отсутствие вредных побочных продуктов позволяют рассматривать облучение ультрафиолетом как реальный и уже хорошо зарекомендовавший себя практический метод обеззараживания.

Технологические и технические особенности применения технологии УФ-обеззараживания

Возможность применения технологии обеззараживания УФ-излучением определяется качеством воды, поступающей на обеззараживание. Диапазон физико-химических показателей качества воды, рекомендуемых для применения метода УФ-обеззараживания, является достаточно широким. На процесс УФ-обеззараживания не оказывают влияние pH и температура воды. Присутствие в воде ряда органических и неорганических веществ, поглощающих УФ-излучение, приводит к снижению фактической дозы облучения, обеспечиваемой УФ-установками. Влияние качества воды на пропускание излучения должно быть учтено при выборе УФ-оборудования.

При превышении хотя бы одного из показателей рекомендуется проведение дополнительных исследований.

Важнейшим критерием работы установок УФ-обеззараживания является эффективность обеззараживания. Основной характеристикой эффективности, кроме непосредственно микробиологических показателей в обеззараженной воде, является доза УФ-облучения. В соответствии с законодательством РФ для обеззараживания сточных вод доза должна быть не менее 30 мДж/см 2 [6], а для питьевой воды – е менее 25 мДж/см 2 для безопасности воды по вирусологическим показателям [8]. Установки УФ-обеззараживания обеспечивают требуемые дозы при применении оборудования в пределах рекомендуемых производителем технических параметров.

Основными промышленно применяемыми источниками УФ-излучения являются ртутные лампы высокого, а также низкого давления, в том числе их новое поколение – амальгамные. Лампы высокого давления обладают высокой единичной мощностью (до нескольких десятков кВт), но более низким КПД (9–12 %) и меньшим ресурсом, чем лампы низкого давления (КПД 40 %), единичная мощность которых составляет десятки и сотни ватт. УФ-системы на амальгамных лампах чуть менее компактны, но гораздо более энергоэффективны, чем системы на лампах высокого давления. Поэтому требуемое количество УФ-оборудования, а также тип и количество используемых в нем УФ-ламп зависят не только от требуемой дозы УФ-облучения, расхода и физико-химических показателей качества обрабатываемой среды, но и от условий размещения и эксплуатации.

Для контроля работы УФ-установки необходимо иметь датчик ультрафиолетового излучения, селективно измеряющий интенсивность УФ-излучения на длине волны 254 нм. При снижении интенсивности ниже порогового значения сработает аварийная сигнализация, предупреждающая пользователя о необходимости принять меры по предупреждению или устранению неполадки.

Комплектация и оснащенность УФ-установок могут изменяться и зависят от конкретного случая применения. Счетчик времени наработки лампы, например, является важнейшим инструментом и должен присутствовать в каждой установке. По истечении срока службы лампы подается сигнализация, которая позволяет вовремя заменить лампы на новые. Для защиты от перегрева мощных УФ-ламп должна быть предусмотрена аварийная индикация, своевременно предупреждающая о росте температуры внутри камеры. Перечисленные выше функции – необходимый минимум для стабильной и эффективной работы УФ-системы. Если качество воды, определяемое коэффициентом пропускания, и расход меняются в широких пределах – целесообразно использовать систему регулировки мощности. Система регулировки мощности позволяет снижать мощность ламп при изменении одного из параметров, тем самым уменьшая расходы на электроэнергию.

Для подтверждения эффективности обеззараживания ультрафиолетовым излучением за рубежом, например, распространена практика биовалидации установок обеззараживания питьевой и сточной воды, балластной воды судов. Например, в основе процесса сертификации систем для обеззараживания воды лежат реальные тесты, проверяющие способность установок УФ-обеззараживания инактивировать бактерии (например, Bacillus Subtilis), имеющие низкую чувствительность к ультрафиолету по сравнению с другими микроорганизмами и вирусами, в том числе болезнетворными. После прохождения всех этапов сертификации на установку выдается сертификат, подтверждающий ее эффективность. В нем приведен список технологических параметров (максимальный расход при определенном коэффициенте пропускания), соблюдение которых гарантирует обеззараживание.

Самыми распространенными стандартами биовалидации систем УФ-обеззараживания являются нормативы, выпущенные такими организациями, как DVGW (Германия), ONORM (Австрия), US EPA (США). Получение общепризнанных мировых сертификатов подтверждает правильность выбранных технологических решений и высокое качество производимого оборудования.

Выбор типа оборудования и его оснащенности во многом зависит от области применения. Однако немаловажным общим критерием является наличие базовых инструментов (температурный датчик, датчик УФ-интенсивности), которые гарантируют эффективность обеззараживания за счет постоянного мониторинга основных технических параметров, обеспечивая бесперебойную работу и возможность своевременного устранения неполадок. Гарантией эффективного обеззараживания и высокого качества самого оборудования в целом является прохождение реального биотестирования.

За счет достаточной простоты технологии УФ-обеззараживания, эффективности ультрафиолета в отношении вирусов и простейших этот метод получил широкое распространение, а совершенствование конструкции оборудования и систем мониторинга является на данный момент приоритетной задачей разработчиков систем УФ-обеззараживания воды.

Ультрафиолетовая очистка воды. Как работает и когда применяется?

Существует довольно немало различных методов очищения воды, основанных как на химических, так и физических принципах. К примеру, очистка хлором – это средство из области химии. А к физике имеют отношение такие способы, как кипячение и обеззараживание ультрафиолетом, которое стало широко использоваться в последние десятилетия.

Ультрафиолетовая очистка – одно из максимально результативных средств избавления от микроорганизмов и вирусов, а они часто присутствуют в воде наравне с другими органическими примесями. Этот способ обеззараживания к тому же относительно дешевый и простой в обслуживании.

Главный мотив широкого распространения метода – его безопасность. Ведь
в большинстве случаев химические средства очистки воды не только вызывают неприятные последствия для здоровья людей, но и отрицательно сказываются на окружающей среде. И кроме того, не решают проблемы заражения воды на 100%. В то время как очистка ультрафиолетом полностью безопасна как для человеческого организма, так и для экосистемы. И к тому же помогает избавить воду от кальция и прочих нежелательных субстанций.

Сфера использования ультрафиолетовой водоочистки воды довольно велика:

· Обеззараживание питьевой воды. Невзирая на то, что на муниципальных станциях вода подвергается хлорированию, есть немалая возможность повторного инфицирования, так как в участках разгерметизации водяной магистрали вероятно проникание в водопровод грунтовой либо же канализационной воды.

· Дезинфекция артезианской воды. Хотя в воде из скважин наличие опасных микроорганизмов значительно ниже, чем в городском водопроводе, перед употреблением внутрь ее все же стоит обеззаразить.

· То же самое, только еще в большей степени, касается и колодезной воды. Особенно если вы не уверены в чистоте источника.

Принцип действия ультрафиолетовой очистки воды

Немаловажно понимать, что обеззараживание ультрафиолетом не используется в качестве независимого средства очищения. Для того, чтобы этот метод был максимально эффективным, вода должна пройти предварительную очистку от примесей металла, солей жесткости и прочих соединений. Ультрафиолетовая лампа сможет работать на полную мощность, только если вода будет достаточно прозрачной для проникновения ультрафиолетового излучения сквозь нее.

Установлено, что наибольшую часть болезнетворной микрофлоры уничтожают лучи диапазоном 200 – 295 микрометра. Такую длину волны называют бактерицидной. Под ее влиянием происходит нарушение строения клеток микроорганизмов из-за фотохимической реакции в их ДНК. Как следствие они гибнут. Кроме того, ультрафиолетовая система водоочистки влияет на хромосомы микрофлоры, и бактерии не могут больше размножаться.

Ультрафиолет способен истребить практически все известные болезнетворные микроорганизмы:

· возбудителей холеры и тифа;

· сальмонеллу и других.

Строение ультрафиолетовой системы водоочистки

Фильтр для очистки воды в квартиры на основе ультрафиолета состоит из стального резервуара с вмонтированными лампами ультрафиолетового излучения внутри. Они спроектированы таким образом, чтобы исключить прикосновение к воде. Оказываясь в резервуаре, вода попадает под непрерывное облучение ультрафиолетом, что дает возможность устранить пребывающих в ней бактерий.

Системы ультрафиолетовой очистки оснащены пультом управления и системой для очистки корпуса кварцевых ламп. Это позволяет достичь их максимальной производительности и безопасности использования.

Кроме использования в самостоятельных системах водоподготовки, ультрафиолетовую лампу довольно часто включают в систему обратного осмоса. Данный добавочный этап чаще всего имеет большое значение при очистке воды из естественных скважин. Хотя обратноосмотическая мембрана тоже обладает способностью очищать воду от микроорганизмов, ультрафиолетовое обеззараживание выступает в качестве дополнительной гарантии стерильности очищенной воды.

Но нужно помнить о том, чтобы вовремя менять лампу ультрафиолетового излучения, так как она рассчитана на работу приблизительно от 1400 до 1600 часов. После этого она изнашивается, и эффективность дезинфекции в этом случае уменьшается.

Плюсы водоочистки ультрафиолетом

Способ ультрафиолетовой дезинфекции воды довольно распространен благодаря простоте применения, высокой производительности и относительной дешевизне.

· Простота эксплуатации включает несложную установку и абсолютную самостоятельность функционирования. Такая система не требует вмешательства чаще одного раза в год, когда нужно заменить лампу.

· Позволяет обеззаразить воду почти на 100%.

· Дешевизна благодаря отсутствию больших затрат на монтаж и расходники.

· Высокая скорость дезинфекции воды.

· Стопроцентная безопасность как для человека, так и для экосистемы. Ультрафиолетовая очистка воды абсолютно безвредна. Особенно если сравнивать, к примеру, с хлорированием либо иным способом химочистки. При воздействии ультрафиолета на воду в ней не возникает никаких химических соединений, как это происходит при обработке хлором.

· Нет нужды в использовании каких-либо химических реактивов, соответственно, вкус и запах воды не подвергаются их воздействию.

Минусы ультрафиолетовой очистки:

· Необходимость предварительной очистки воды, так содержание в ней посторонних примесей затрудняют обработку ультрафиолетом. Излучение просто не проходит сквозь мутную воду.

· Ультрафиолетовые системы не имеют никакого эффекта при фильтровании воды от таких примесей, как химические вещества, металлы, асбест и других.

· В зависимости от уровня жесткости очищаемой воды, необходимо время от времени производить очистку лампу ультрафиолетового излучения от известкового налета.

Вам будет интересно

"О важности чистой питьевой воды для человека не знает только ленивый. Но еще более важную роли вода играет для детского организма. Естественно, как у взрослого, так и ребенка, недостаток воды может негативно сказаться на самочувствии в �. "

"В нашей стране всех приучают с самого детства, что сырую воду из-под крана пить НЕЛЬЗЯ! Мол это вредно, в ней много хлора, и т.д. Поэтому мы кипятим и фильтруем, фильтруем и кипятим. Да, на самом деле, даже без лабораторных анализов несложно понять, �. "

" Осознавая проблему негативного влияния на организм загрязненной воды, каждый, кто заботится о своем здоровье, стремится очистить ее любыми подручными способами. Какие способы очистки известны Вам? А вы уверены в их эффективности? Немног�. "

Вопрос обеззараживания на сегодняшний день имеет огромную актуальность не только в сфере дезинфекции питьевой воды, но и в сфере обработки сточных вод.

С бурным развитием промышленности за последние годы значительно увеличилось количество утилизируемых предприятиями сточных вод, которые выбрасываются в грунты и водоемы.

По этой схеме происходит простейший процесс обеззараживания жидкости.

По этой схеме происходит простейший процесс обеззараживания жидкости.

Такая вода, прошедшая не один технологичный процесс, зачастую содержит огромное количество всевозможных бактерий и микроорганизмов, которую представляют прямую угрозу для здоровья человека.

Для их уничтожения, а также для повышения качества питьевой воды в гражданском водоснабжении применяются разнообразные методы дезинфекции и стерилизации.

1 Область применения обеззараживания воды излучением

Cамым популярным способом, до начала 90-х годов являлось хлорирование. Затем исследования выявили, что хоть хлорирование и является неплохим методом для промышленности — слабо подходит для обеззараживания питьевой воды.

Причина проста: обработка хлором приводит к образованию побочных продуктов, вредных для человеческого организма. С тех пор наиболее распространенным способом дезинфекции воды стало обеззараживание посредством ультрафиолетового излучения.

Со временем, когда технология достаточно развилась, она начала широко применяться и в промышленности для стерилизации сточных вод.

Это объясняется тем, что УФ-лучи обеспечивают намного высшую продуктивность, чем реагентная дезинфекция или любые другие фильтры, так как позволяют обрабатывать одновременно большие объемы жидкости.

На сегодняшний день обеззараживание воды ультрафиолетом широко распространено в самых разных областях промышленности и бытового использования:

  • Очистка воды на предприятиях коммунальных служб водообеспечения;
  • Подготовка жидкостей для пищевого производства;
  • Обработка воды в аквапарках и бассейнах;
  • Дезинфекция сточных вод;
  • Очистка питьевой воды в школах, детских садах, центрах здравоохранения;
  • Очистка воды из автономных систем обеспечения – скважин, колодцев.

Ультрафиолетовые лампы для очистки воды.

Ультрафиолетовые лампы для очистки воды.

2 Какие применяются технологии обеззараживания?

Как вы знаете, ультрафиолетовый свет распространяет специальная лампа, которая выдает излучение в диапазоне от 100 до 400 Нм (это интервал, который находится между диапазоном, видимым человеческому глазу, и рентгеновским излучением).

Ученые, которые в своё время изучали УФ-излучение, выяснили, что лучи, длина волны которых составляет от 200 до 295 Нм, при прямом воздействии имеют свойство уничтожать патогенные микроорганизмы.

Этот диапазон был назван бактерицидным, и на сегодняшний день УФ-лампа с длинной волны 245-Нм (самая высокая эффективность бактерицидного воздействия) широко применяется как в медицине, так и в сфере стерилизации всевозможных веществ, в том числе и воды.

Уничтожение бактерий объясняется тем, что у микроорганизмов, которые попадают под ультрафиолетовые фильтры, в молекулах РНК и ДНК происходят фотохимические реакции, которые изменяют их структуру, также наблюдается нарушение целостности мембран и стенок клетки, что и приводит к их гибели.

Эффективность любой установки для УФ дезинфекции питьевой, либо сточных вод, измеряется в том, какую интенсивность излучения она может обеспечить.

Чем выше эта интенсивность (мВт\см), тем меньше времени необходимо для обеззараживания условно взятого количества жидкости, и тем большую дозу облучения (мДж\см²) получают микроорганизмы. Установлено, что для уничтожение большинства патогенных бактерий достаточно дозы излучения в 15 мДж\см².

В целом, для того чтобы точно определить, какая лампа вам необходимы для обеззараживающей установки, нужно выполнить расчет коэффициента пропускания воды (это требуется по той причине, что УФ излучение может поглощаться механическими загрязнениями и растворимыми в жидкости веществами).

Чем меньше коэффициент, тем более сильные фильтры нужны (переусердствовать тут не получится, так как верхняя доза облучения при УФ обеззараживании не ограничивается).

Установка для обеззараживания ультрафиолетом, вблизи.

Установка для обеззараживания ультрафиолетом, вблизи.

Если коэффициент меньше допустимой нормы, то есть вода сильно загрязненная (часто наблюдается при обработке сточных вод) то необходима её дополнительная механическая очистка перед облучением.

Ультрафиолетовая очистка воды, в сравнении с другими технологиями дезинфекции, обладает следующими преимуществами:

Высочайшая эффективность работы, так как обработку ультрафиолетовым излучением не переживают 99% известных вирусов, бактерий, спор и других микроорганизмов.

Эта система водоподготовки гарантирует уничтожение в питьевой воде возбудителей таких опасных болезней как холера, тиф, полиомиелит, дизентерия.

Если сравнивать эффективность воздействия ультрафиолетовой установки и обеззараживания посредством широко распространенного метода хлорирования, то хлорирование полностью проигрывает излучению по всем параметрам, особенно в вопросе уничтожения вирусов.

Экологичность и безопасность для организма человека. Такие фильтры не изменяют химическую структуру воды и не добавляют в неё никаких токсичных соединений, что часто встречается при использовании химических дезинфицирующих реагентов.

Невозможность передозировки или вредного воздействия на организм. Если вы превысите допустимую норму дезинфицирующего вещества при хлорировании, или любом другом реагентном способе обеззараживания, то такая вода станет непригодной для дальнейшего использования.

В случае обработки ультрафиолетовым излучением какая-либо передозировка невозможна, что существенно упрощает контроль за процессом.

Принцип работы ультрафиолетовой очистительной установки.

Принцип работы ультрафиолетовой очистительной установки.

Минимальные затраты времени на работу. Для полного обеззараживания сточных вод в проточном режиме требуется от 5 до 10 секунд, для питьевой воды и того меньше. Это исключает необходимость создания дополнительных рабочих емкостей для накопления воды, что снижает итоговые финансовые затраты;

Высокая надежность аппаратуры и всего оборудования. Современные обеззараживающие установки обладают высоким ресурсом работы, так, сама ультрафиолетовая лампа может эксплуатироваться без замены на протяжении 9000 часов (около 1 года).

Минимальные сопутствующие расходы, так как основную часть расходов на обеззараживание воды излучением, составляет первоначальная стоимость оборудования, после того как ультрафиолетовая установка приобретена никаких существенных расходов не предвидится.

Затраты на электроэнергию намного меньше как в сравнении с затратами на хлорку и дехлораторы, при хлорировании, так и в сравнении с оплатой электроэнергии для устройств озонирования (ультрафиолетовая лампа экономнее в среднем в 3-5 раз).

Компактность, мобильность и функциональность необходимого оборудования. Ультрафиолетовые фильтры имеют минимальные размеры, при этом их установка не требует практически никаких монтажных работ.

Не лишен данный метод и недостатков, что несколько ограничивает его универсальность, в прочем, можно говорить о том, что в сравнении с преимуществами минусы ультрафиолетового обеззараживания не столь значительны:

  • Необходимость предварительной механической очистки;
  • Возможность повторного заражения воды.

Возможность повторного заражения объясняется тем, что ультрафиолетовое излучение не оказывает никакого последействия на воду, что приводит к возможности её вторичного загрязнения вирусами,

А вот предварительная механическая очистка совершенно необходима, в случае обработки сильно загрязненной воды. Это влечет за собой надобность устанавливать дополнительные фильтры, которые будут удалять крупные механические частицы.

Промышленные установки для обеззараживания.

Промышленные установки для обеззараживания.

Он же в свою очередь будет ограничивать попадание излучения внутрь потока, вследствие чего вирусы не будут получать необходимую дозу УФ лучей;
к меню ↑

3 Оборудование для обеззараживания

Современные установки для УФ обеззараживания питьевой воды, в основном, выполняются в виде камер обеззараживания, изготовленных из нержавеющей стали (реже – пластика).

Внутри них расположена ультрафиолетовая лампа в специальном защитном покрытии, что предупреждает попадания воды на лампу.

Поток воды при прохождении сквозь такие фильтры подвергается непрерывному облучению УФ волнами, вследствие чего уничтожаются все патогенные микроорганизмы.

Работа таких устройств не требует постоянного присутствия человека: блок контроля отвечает за автоматическое включение лампы после подачи воды.

Лампа запустится самостоятельно, что существенно упрощает работу человеку. Кроме того, современные фильтры комплектуются пультами дистанционного управления, с помощью которых можно управлять работой устройства. Также лампа будет давать вам знать о неисправностях системы.

Установки для стерилизации сточных вод отличаются большими размерами. Кроме того, перед входом в камеру, на них часто монтируются дополнительные фильтры, которые выполняют предварительную механическую очистку воды.

Так как промышленные устройства для обеззараживания обрабатывают одновременно большое количество воды, требования к их мощности гораздо выше, вследствие чего количество УФ-ламп на них может доходить до нескольких десятков.

Единственное техническое обслуживание, помимо замены периодической замены светильников, которое нужно регулярно выполнять - это очистка кварцевых защитных чехлов, так как поток сточных вод может оставлять на них отложения, которые ослабляют распространение УФ-лучей.
к меню ↑

Читайте также: