Дендритные клетки иммунология реферат

Обновлено: 16.05.2024

В 1990-е годы, когда ДК, полученные из различных тканей человека и экспериментальных животных, научились выращивать в больших количествах в лабораторных условиях, появилась возможность изучать эти клетки на моделях [1]. В результате было описано несколько подтипов ДК с уникальными и специфическими функциями, морфологией и локализацией [2–5]. Особый интерес представляют те из них, которые участвуют в иммунных реакциях, направленных на разрушение опухолевых клеток, определяют интенсивность таких реакций и отвечают за формирование опухолевого микроокружения (рис. 1) [6, 7]. Такими свойствами обладают миелоидные ДК, которые происходят из костномозговых гемопоэтических клеток-предшественников, при этом их можно получить из моноцитов периферической крови в специальных лабораторных условиях.

Рис. 1. Фенотипические и функциональные характеристики миелоидных костномозговых дендритных клеток

Для клинического применения могут быть пригодны различные типы миелоидных ДК: выделенные из периферической крови, дифференцированные ex vivo (вне организма) из костномозговых предшественников, полученные из моноцитов периферической крови, а также зрелые и незрелые ДК [8]. Под типом подразумевается стадия созревания гемопоэтической клетки за пределами костного мозга, в которой важная роль отводится типу антигенной стимуляции. Она связана с синтезом внутриклеточных и поверхностных молекул для передачи их сигналов лимфоцитам, во многом зависит от микроокружения и может быть заблокирована или поляризована факторами, приводящими к образованию семейства дендритных клеток с толерантной и/или иммуносупрессивной (подавляющей) функцией [9].

Незрелые и полузрелые (фенотипически или функционально) ДК встречаются в нелимфоидных органах и тканях, но способны мигрировать в лимфатические узлы [10]. Однако незрелые клетки содержат низкий уровень молекул HLA I класса и ко-стимулирующих молекул CD80 и CD86 (CD — от англ. Cluster of Differentiation) и не могут эффективно активировать Т-лимфоциты. Так, введение незрелых ДК периферической крови в лимфатические узлы вызывало у пациентов с опухолью слабый антиген-специфический иммунный ответ, а у здоровых добровольцев подавляло активность цитотоксических Т-лимфоцитов CD8 + , действие которых направлено на вирусные пептиды, и стимулировало образование пептид-специфических Т-клеток, продуцирующих иммуносупрессирующий интерлейкин-10 или аутореактивные Т-клетки. В противоположность этому зрелые ДК вызывают образование CD8 + Т-лимфоцитов и способствуют продукции γ-интерферона CD4 + Т-клетками [11].

Кроме созревания необходимо исследовать пути миграции активированных ДК из места их введения в качестве вакцинного препарата. Например, важной характеристикой эффективности дендритноклеточной вакцины может оказаться экспрессия CCR7-рецептора на созревающих ДК и их способность отвечать на взаимодействие с соответствующими лигандами (CCL19 и CCL21). В результате рецепторный аппарат, обеспечивающий миграцию клеток, меняется на новый спектр мембранных молекул, способных реализовать их проникновение в лимфатические узлы [12].

По данным одного из авторов этой статьи (Т. Л. Нехаевой), созревание ДК характеризуется высокой экспрессией маркера дифференцировки CD83 и утратой CD1a антигена, а также статистически достоверным усилением выработки костимулирующих молекул CD80 [13]. Высокий уровень синтеза молекул хемокинового рецептора CCR7, обеспечивающего миграцию созревающих ДК в лимфатические узлы, и белков, участвующих в презентации антигена HLA-DR на седьмой и девятый дни культивирования, говорит о зрелости ДК и оптимальной функциональной активности. Этому свидетельствует повышение продукции ко-стимулирующих молекул CD80, CD86, молекул адгезии CD209, а также антигена CD83, характерного для терминальной степени созревания ДК (рис. 2).

Рис. 2. Микрофотографии зрелых вакцинных дендритных клеток, нагруженных высокоиммуногенными опухолевыми антигенами, сделанные с помощью светового микроскопа Carl Zeiss (а–е) и клеточного анализатора Yokogawa (ж, з; увел. ×400). Иммунофенотипы: а — CD1a, б, ж — CD11c, в — HLA-DR, г — CD80, д — CD83, е, з — CD86

Недавно установлено, что качество иммунного ответа также зависит от способа введения дендритноклеточной вакцины [14]. Хотя нагруженные антигеном ДК могут активировать Т-лимфоциты непосредственно в местах их введения, необходимо принимать во внимание, что при внутрикожном и внутрилимфатическом введении происходит индукция Т-хелперов 1-го типа, при внутривенном — Т-хелперов 2-го типа. Эти активированные эффекторные клетки — продуценты антител — мигрируют из места введения вакцины в рядом расположенные скопления лимфоидной ткани, лимфатические узлы, и запускают тканеспецифический иммунитет. Внутривенное введение дендритноклеточной вакцины, например, при меланоме кожи, исключает индукцию и миграцию эффекторных клеток кожи, тем самым обедняя противоопухолевый иммунный ответ. Кроме того, при внутривенном введении ДК оседают в легочной ткани, печени, селезенке и не определяются в опухоли и лимфатических узлах.

Одновременно установлено, что выбор типа ДК для клинического применения зависит от типа антигена. Незрелые ДК, которые активно используют эндоцитоз и эффективно захватывают экзосомы, могут быть наиболее подходящими для доставки иммуногенного белка или антигенных комплексов. Зрелые ДК с высокой экспрессией HLA-молекул больше подходят для использования пептидов. Короткие пептиды (от 8 до 10 аминокислотных остатков) могут напрямую связываться с HLA-молекулами на поверхности ДК и не нуждаются в захвате антигена и его расщеплении.

Хотя во взаимоотношениях иммунной системы организма с опухолями все еще много неясного, очевидно, что весьма значимые достижения фундаментальной онкоиммунологии способствуют прогрессу клинической онкологии [22, 23]. В последние годы противоопухолевые вакцины на основе дендритных клеток — природных усилителей иммунного ответа (естественных адъювантов) — привлекают внимание компаний, занимающихся исследованиями и разработками лекарственных препаратов для лечения рака. В отчете Global Dendritic Cell Cancer Vaccine Market Dosage Price & Clinical Trials Outlook 2024 указывается, что в настоящее время в онкологических центрах мира создано более 60 дендритноклеточных вакцин против рака, большинство из которых проходят доклинические или клинические испытания [17].

* Подробнее см.: Недоспасов С. А. Лауреаты Нобелевской премии 2011 года. По физиологии или медицине — Ж. Хоффманн, Б. Бойтлер, Р. Штайнман // Природа. 2012. № 1. С. 114–117. — Примеч. ред.


Обзор

коллаж автора статьи

Автор
Редакторы


Что не так с этими опухолевыми клетками?

Умелая маскировка опухолевых клеток

Рисунок 1. Умелая маскировка опухолевых клеток.

коллаж автора статьи

Что умеют раковые клетки

Рисунок 2. Что умеют раковые клетки.

коллаж автора статьи

Почему же так трудно лечить рак?

В настоящий момент множество групп ученых работает над повышением эффективности традиционных методов лечения опухолевых заболеваний. Все же существенно повысить выживаемость онкобольных, применяя только стандартную терапию, становится уже практически нереальным, особенно на последних стадиях, а своевременная диагностика зачастую невозможна из-за позднего обращения пациентов за помощью. Так или иначе, рано вешать нос.

Иммунотерапия

Достижения в иммунологии за последние несколько десятков лет привели к созданию совершенно новых подходов к лечению онкологических заболеваний. Результаты исследований уже дали право на существование многим иммунологическим методам [2]. Ведь хорошая же идея — заставить сам организм бороться с опухолью! Иммунотерапия заключается в воздействии на иммунную систему для повышения эффективности ее противостояния раковым клеткам [3]. Для этого в кровь пациента вводят вещества, в той или иной степени представляющие собой опухолевые антигены (молекулы, которые организм рассматривает как чужеродные и опасные и запускает против них иммунный ответ), способствующие размножению специальных иммунных клеток-убийц, которые будут препятствовать развитию опухоли и разрушать ее.

Важным преимуществом иммунотерапии является то, что, в силу своей специфической направленности, она почти не повреждает здоровые ткани. Данный метод более эффективен для лечения последних стадий онкологических заболеваний по сравнению с традиционными подходами. Кроме того, иммунотерапию можно использовать для снижения побочных эффектов лучевой терапии и химиотерапии.

Однако все не так радужно, как могло показаться. Иммунотерапия была крайне неэффективна при лечении некоторых типов опухолевых заболеваний, например предстательной железы [4]. Проблема, опять же, заключалась в недостаточной направленности препаратов.

Но я, мечту свою лелея, решил проблему гениально.

В последние десятилетия развивалась тенденция по внедрению дендритных клеток в качестве вспомогательных средств для лечения различных типов рака. По мнению ученых, их систематическое применение в иммунотерапии позволит добиться от нее максимального эффекта.

Иммунная армия

Рисунок 3. Иммунная армия.

коллаж автора статьи

Кроме того, необученные T-клетки и Т-хелперы посредством выделения активирующего вещества интерлейкина-2 (IL-2), привлекают на помощь снайперов Т-киллеров, которые в дальнейшем уничтожают зараженные клетки, ведя обстрел ядовитыми цитотоксинами. Таким образом работает клеточный иммунитет.

Дендритные клетки в иммунотерапии

Поскольку опухолевые клетки великолепно владеют искусством маскировки, иммунной системе очень сложно распознать антигены на их поверхности. Встает вопрос о том, как можно создать действительно мощный иммунный ответ, направленный на их уничтожение.

В настоящее время развивают две темы исследований: как опухолевые клетки изменяют физиологию ДК, и как мы можем опираться на мощные свойства ДК при создании новых методов иммунотерапии рака.

Опухолевые клетки так просто не сдаются!

Дендритные клетки обнаруживают в большинстве опухолей. ДК отбирают образцы опухолевых антигенов путем захвата умирающих клеток или буквальным откусыванием частей живых [14]. В свою очередь опухоли могут препятствовать представлению и созданию иммунных реакций с помощью различных механизмов. В пример можно привести такие антигены опухолей, как раково-эмбриональный антиген (РЭА) и муцин-1, которые, попав в ДК, могут быть ограничены ранними эндосомами, то есть плазматической мембраной, что предотвращает эффективную обработку и презентацию антигена Т-клеткам [15].

Вакцина на основе дендритных клеток

ДК могут быть получены из кровяных клеток-предков (моноцитов) пациента, которые загружают антигенами ex vivo, то есть знакомят с врагом вне организма в стерильных лабораторных условиях. Затем эти моноциты надлежащим образом созревают и вводятся обратно пациенту при вакцинации. Теоретически это должно давать целый набор дендритных клеток, запускающих иммунные войны.

В последнее десятилетие значительные экспериментальные и клинические ресурсы были отданы на разработку противораковых вакцин на основе ДК [19], [20]. Это привело к созданию многочисленных типов вакцин, которые различаются протоколами загрузки ДК антигенами или биохимическим манипулированием клетками. Например, один из типов вакцин подразумевает введение антигенов опухоли и их прямую доставку в ДК непосредственно в организме пациента.

Еще одна стратегия вакцинации, которая совсем недавно начала привлекать внимание, связана с естественными подмножествами дендритных клеток, которые могут быть выделены с помощью высокоэффективных магнитных гранул, покрытых антителами [21], [22]. Накопленные клинические данные говорят о том, что такие вакцины достигают многообещающей эффективности у пациентов с меланомой — долгосрочной выживаемости без прогрессирования (1–3 года) у 28% пациентов [22]. Те или иные разновидности вакцин применяют в зависимости от типа опухолевого заболевания и его стадии.

В целом эффективность вакцинации на основе ДК зависит от множества различных факторов, включая характер и источники антигенов, иммунологический статус пациента, тип вовлеченных рецепторов на ДК и подмножества специфических ДК, на которые осуществляется воздействие [23–27].

Важно отметить факт, что на май 2017 года только одна клеточная терапия с участием ДК лицензирована для лечения людей, а именно Sipulteucel-T (Provenge, США). C 2010 года Sipulteucel-T одобрен для лечения бессимптомного и минимально-симптоматического метастатического рака, а также рака предстательной железы [28–31].

Безопасность — наше все!

Безопасность противоопухолевых вакцин на основе ДК подтверждена и хорошо документирована во многих клинических исследованиях [32]. Местные реакции в виде зуда, сыпи или боли обычно мягкие и самоограничивающиеся. Они характерны и для других лечебных процедур. Случаются и системные побочные эффекты, связанные с заболеванием гриппом или другими инфекциями вследствие переброса защитных сил на опухолевый фронт.

Одной из особых проблем иммунотерапии является возможность развития аутоиммунитета. Это состояние, при котором иммунная система принимает собственные здоровые клетки организма за чужеродные и атакует их [33]. Однако стратегии противоопухолевой вакцинации дендритными клетками редко ассоциируются с тяжелой иммунной токсичностью. Ожидается, что иммунотерапия на основе ДК сохранит качество жизни пациентов с онкозаболеваниями на более высоком уровне.

Качество жизни является важным показателем при оценке новых противоопухолевых средств. Например, в работе Николая Леонарцбергера у всех 55 пациентов с таким типом рака, как карцинома почек, при иммунотерапии на основе ДК не было выявлено отрицательного влияния на качество жизни. Это выгодно отличается от других существующих методов лечения, вызывающих существенное токсическое действие [34].

Вместе с тем, отчетов о результатах изменения качества жизни пациентов после дендритной клеточной иммунотерапии недостаточно, что требует дальнейших исследований.

Перспективы

Это позволяет надеяться на скорейшее внедрение новых эффективных методик иммунотерапии онкозаболеваний, которые позволят успешно бороться с различными типами рака.

Заключение

Ученые все чаще приходят к выводу о том, что иммунотерапия на основе дендритных клеток является достойным, безопасным и хорошо переносимым иммунотерапевтическим методом, который может вызывать иммунные реакции даже у пациентов с раком последней стадии. В последнее время разработано множество стратегий использования противоопухолевой активности ДК. Существует реальная необходимость в клинических исследованиях, демонстрирующих, что вакцины на основе дендритных клеток могут вызывать долговременные объективные ответы и улучшать долгосрочную выживаемость пациентов.

Общее развитие вакцин с ДК постоянно сталкивается со множеством препятствий. Помимо проблем с эффективностью вакцин, разработка терапии для клинического применения является финансово затратной, требует хорошо оснащенных современных лабораторий и наличия высококвалифицированных научных кадров, что позволило бы проводить многоцентровые клинические испытания последних фаз с участием большого количества пациентов.

В заключение хочется сказать, что иммунотерапия весьма перспективна и требует дальнейшего раскрытия своего потенциала. Речь идет не только о вакцинах на основе ДК, но и о многочисленных специфичных антителах и т.п. Онкология не обойдется без комбинирования различных методов терапии, традиционных и инновационных. С другой стороны, встает вопрос о доступности этих инновационных методик конкретно на местах лечения онкобольных.

В России сегодня иммунотерапия слабо развита, она не преобладает над стратегиями лучевой терапии и химиотерапии. В то же время в США и Израиле иммунотерапия развивается быстрее и уже активно используется в онкоцентрах как в качестве профилактических вакцин, так и для продления жизни тяжелобольных пациентов [37]. Иммунотерапия на основе дендритных клеток только начинает свою историю, в которую еще предстоит вписать лучшие страницы.

Лимфоидные дендритные клетки или плазмацитоидные дендритные клетки являются основными IFN-a-продуцирующими клетками Лимфоидные ДК образуются в тимусе из унипотентного предшественника Т-лимфоцитов, а именно из CD11cIL-3Ra-клеток. Основной ростовой фактор для лимфоидных ДК — IL-3 (он также является антиапоптотическим фактором); ранние стадии их гематопоэза стимулируют также FltЗ-лиганд, G-CSF и CSF. Плазмацитоидные ДК на всех этапах дифференцировки экспрессируют высокие уровни a-цепи рецептора к IL-3 (CD123). Описаны два специфических поверхностных маркера плазмацитоидных ДК человека: CD303 (BDCA-2) и CD304 (BDCA-4).

Лимфоидные дендритные клетки присутствуют в крови, лимфатических узлах, селезенке и тимусе. Судьба лимфоидных ДК, поступающих в Т-клеточные области лимфоузлов из крови, неизвестна. В тимусе лимфоидные ДК принимают участие в процессе отрицательной селекции, то есть отвечают за элиминацию Т-клеток, реагирующих на собственные антигены.

Незрелые дендритные клетки и их предшественники избирательно реагируют на патогены. В отличие от миелоидных пре-ДК плазмацитоидные пре-ДК заселяют преимущественно Т-клеточные зоны вторичных лимфоидных органов, а в нелимфоидных практически отсутствуют Незрелые ДК и их предшественники (пpe-DCs) вовлекаются во врожденное распознавание микробов, в то время как пре-DCsl (предшественники миелоидных ДК) фагоцитируют и вызывают киллинг различных бактерий и грибков. Пpe-DCs2 (предшественники лимфоидных ДК) играют главную роль в раннем антивирусном иммунном ответе, продуцируя IFN-a и В. Эти клетки были названы натуральными интерферонпродуцирую-щими клетками (NIPCs).

NIPCs продуцируют в 200-1000 раз больше IFN, чем другие клетки крови после микробной инфекции или после стимуляции ЛПС и бактериальными ДНК. Пре-DCs составляют менее 1% мононуклеаров крови и имеют фенотип lin CD11сCD123CD303CD304*HLA-DR.

В отличие от других клеток врожденного иммунитета (нейтрофилы, эозинофилы и базофилы), которые погибают после выполнения их функций, пре-DCsl и пpe-DCs2 дифференцируются в ДК.

Плазмацитоидные дендритные клетки участвуют в В-клеточном ответе на вирусы: после их элиминации из культур МЛПК уровень продукции антител резко падает. За счет секреции интерферонов I типа лимфоидные ДК стимулируют пролиферацию плазмобластов, а проведение сигналов с TLRs ДК способствует выработке ими IL-6 и индукции синтеза специфических антител В-клетками.

При аллергических реакциях и некоторых видах хронического воспаления пpe-DCs привлекаются как в пораженные нелимфоидные ткани, так и в реактивно измененные регионарные лимфатические узлы; они инфильтрируют также опухолевую ткань при некоторых злокачественных новообразованиях.

плазмацитоидные дендритные клетки

В тканях незрелые дендритные клетки могут поглощать антигены различными способами:
— макропиноцитозом (растворимые АГ);
— рецептор-опосредованным эндоцитозом через лектиновые рецепторы, FcR и рецептор комплемента (CR3) (поглощают иммунные комплексы, опсонизированные частицы и бактерии);
— путем фагоцитоза через CD36 и ар-интегрины (латекс, вирусы, бактерии, внутриклеточные паразиты);
— через TLRs идет распознавание патогенов и сбор информации о природе микроорганизмов);
— через поверхностные рецепторы (CD91) поглощают белки теплового шока gp96 и др70.

Созревание дендритных клеток инициируется различными факторами:
— после воздействия PAMPs на TLRs;
— TNF-подобными сигналами (TNF, FasL, CD40L), поступающими от лимфоцитов (Т, В, NK, NKT), тромбоцитов, тучных клеток;
— провоспалительными и противовоспалительными цитокинами (IL-1, -2, -6, -13, TNF-a), GM-CSF;
— механическим стрессом.

Морфология, иммунофенотип и функциональная активность ДК зависят от активации и дифференцировки. Основным морфологическим признаком ДК является наличие многочисленных подвижных отростков разнообразной формы — нитевидной, вуалевидной, луковичных псевдоподий. Благодаря отросткам, ДК обладают большой совокупной поверхностью, обеспечивающей уникальные условия для эффективного межклеточного взаимодействия. Для ДК характерно наличие крупных митохондрий, большого количество эндосом и лизосом, имеющих важное значение для процессинга антигена.

Дендритные клетки весьма лабильны в отношении путей активации и дифференцировки под воздействием многочисленных факторов на разных стадиях созревания, в связи с чем у авторов статей, изучающих морфо-функциональную характеристику ДК, нет единства мнений относительно иммунофенотипических особенностей этой клеточной популяции. Однако в настоящее время выявлены некие общие закономерности в экспрессии поверхностных клеточных маркеров, характерных для зрелых и незрелых ДК.

На поверхности мембран ДК экспрессируются маркеры антигенного представления (CDIa, МНС I и II), костимулирующие молекулы (CD80, CD86, CD40) (перечисленные маркеры экспрессируются преимущественно на зрелых ДК); маркеры моноцитов/макрофагов (CD14, CD68, CD115), адгезивные молекулы (CD54, CD58, семейство молекул CD11, CD29 и т.д.), хемокиновые рецепторы (CCR-1, -2, -5, -6, -7, СХ-CR-4) и другие молекулы.

Незрелые дендритные клетки экспрессируют хемокиновые рецепторы CCR-1, -2, -5, -6 и CXCR-1 и способны активно мигрировать в очаг воспаления в ответ на воспалительные хемокины семейства МСР и MIP-1, а также RANTES и IL-8.

В процессе созревания ДК теряют способность захватывать антиген, но они приобретают свойство экспрессировать процессированный пептидный антиген в контексте собственных молекул МНС I и МНС II. Зрелые ДК продуцируют провоспалительные и регуляторные цитокины IL-6, IL-10, IL-12, IL-18, IL-23, IL-27 и TNF-a, лимфоидные ДК экспрессируют TLR7-9 и продуцируют IFN-a. Напротив, миелоидные ДК и моноциты отличаются экспрессией TLR1-6, TLR8. Индукция IFN-B осуществляется через лигацию TLR3 и 4 с двуспиральными РНК и ЛПС. Эти различия в экспрессии TLRs и пути INF-индукции свидетельствуют, что субпопуляции ДК распознают дифференцированно микробные патогены.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.



Изучение механизмов иммунного ускользания опухоли показало, что рост, метастазирование и прогноз злокачественного новообразования зависят от функционирования иммунной системы пациента [1]. В настоящее время ведутся интенсивные работы по разработке и внедрению методов лечения, которые основаны на активации компонентов клеточного и гуморального противоопухолевого иммунитета. Одним из наиболее изученных и клинически эффективных методов является вакцинация с помощью дендритных клеток.
Дендритные клетки (ДК) — компонент клеточного звена врожденного иммунитета, выполняют антигенпрезентирующую и регуляторную функцию [2].
В организме человека ДК представлены гетерогенной популяцией, не имеющей одного общего антигенного маркера. Выделяют два основных типа ДК, которые в отечественной литературе называются миелоидными ДК (мДК) и плазмоцитоидными ДК (пДК), в зависимости от клетки-предшественницы (Рис. 1) [3].


Рисунок 1 | Образование и дифференцировка подтипов ДК (подробности в тексте) [3].
MDP — общий предшественник клеток миелопоэза; LMPP — общий предшественник лимфопоэза; pDC — пДК; conventional dendritic cells — мДК; monocyte derived cells — ДК, дифференцирующиеся из моноцитов.

Зрелые ДК могут иметь разнообразный набор антигенов, но важнейшим является наличие молекул главного комплекса гистосовместимости II класса (MHC-II), с помощью которых ДК могут активировать CD8+ и CD4+ лимфоциты, запуская адаптивный иммунный ответ. Для модуляции работы клеток иммунной системы на поверхности ДК имеются различные рецепторы и костимуляторы, представленные на рисунке 3.

Рисунок 3 | Основные рецепторы зрелой ДК.
CD86, CD80 — костимуляторы передачи сигнала Т-лимфоцитам;
CD40 — стимулирует продукцию ИЛ-12 и ИФН-γ Т-хелперами;
А — молекулы межклеточной адгезии;
TLR — toll-like рецепторы, необходимы для захвата антигенов;
К — рецепторы к компонентам комплемента;

Кроме стандартного для антигенпрезентирующих клеток (АПК) представления антигена через MHC-II, ДК способны встраивать захваченный антиген в MHC-I, напрямую активируя CD8+ лимфоциты [7].

Рисунок 4 | Взаимодействие ДК с Т-лимфоцитами. Комплексы антиген+MHC-I и MHC-II распознаются рецепторами Т-лимфоцитов (TCR), при этом ДК выделяет медиаторы, способствующие дифференцировки CD4+ клеток либо в Th1, либо в Th2.

ДК участвуют во всех типах специфических иммунных реакций, в том числе и в противоопухолевом иммунитете [8]. Способность активировать клеточное звено иммунитета и высокая эффективность передачи антигена позволяет выделить ДК среди других АПК в качестве потенциальной мишени для противоопухолевой терапии.

Рисунок 5 | Этапы иммунотерапии с использованием ДК (подробности в тексте) [9].

Небольшое количество ДК можно получить непосредственным выделением из периферической крови пациента, однако их количество и фенотип могут быть неподходящими для эффективной иммунотерапии [11, 12]. Кроме того, ДК могут быть получены из клеток-предшественников, экспрессирующих CD34+, которые изолируют из костного мозга, периферической или пуповинной крови [13, 14]. Однако стандартным и наиболее эффективным методом является получение ДК из моноцитов периферической крови пациента, в связи с простотой метода и большим количеством получаемых клеток [9, 10]. Ряд исследований показал высокую эффективность ДК, полученных из моноцитов при иммунотерапии злокачественных опухолей [15–17].

Зрелые ДК вводят в организм пациента внутрикожно, внутривенно, в лимфатические узлы или напрямую в опухолевый очаг [10].

Внедрение вакцин на основе ДК в клиническую практику началось в середине 90-х годов. Это были вакцины на основе ДК моноцитарного происхождения, культивированных со специфичными антигенами меланомы, такими как MART-1/Melan A и gp100 [20–22]. Кроме того, испытывались вакцины против В-клеточной лимфомы, миеломы, острого миелобластного лейкоза, рака предстательной железы и гепатоцеллюлярной карциномы (ГЦК) [20, 23–27]. Результаты исследований показали безопасность и иммуногенность вакцин на основе ДК. В случае ГЦК и меланомы удалось добиться активации CD8+-лимфоцитов не позднее 7 дня от начала терапии. В большинстве исследований принимали участие пациенты на поздних стадиях опухолевого процесса, однако у 10 % удалось добиться стойкой ремиссии заболевания. Кроме моноцитарных ДК, клинические испытания прошли вакцины на основе ДК, полученных из CD34+-клеток, а также плазмоцитоидные ДК. В обоих случаях вакцины обладали клинической эффективностью и были безопасны [28, 29].

Читайте также: