Цепи с сосредоточенными и распределенными параметрами реферат

Обновлено: 02.07.2024

Если электрическая цепь содержит хотя бы один элемент с распределенными параметрами, то эта цепь называется цепью с распределенными параметрами. В противном случае цепь с сосредоточенными параметрами.

Элемент с сосредоточенными параметрами – это такой элемент, размеры которого не влияют на физические процессы в нем. К элементам с распределенными параметрами относятся линии передач, антенны. Если размеры элемента влияют на физические процессы, то это элемент с распределенными параметрами. В основном большинство элементов будем считать элементами с сосредоточенными параметрами.

Все высказанные выше определения достаточно условны. Один и тот же элемент в той или иной степени описания процесса на нем может быть отнесен к линейным или нелинейным, с распределенными или сосредоточенными параметрами.

В дальнейшем мы будем изучать линейные цепи с сосредоточенными параметрами.

Электрическая схема

Графическое изображение электрической цепи называется электрической схемой. На электрических схемах различают 3 элемента:

1. Ветвь – это последовательное соединение элементов, по которым протекает один и тот же ток.

2. Узел – это место электрической схемы, где сходится 3 и более ветвей.

3. Контур – это замкнутый участок цепи.


Число независимых контуров – это минимальное количество контуров, из которых может быть составлена рассматриваемая схема.

Обозначим - число ветвей, - число узлов, - число независимых контуров, которое определяется по формуле .

Положительные направления токов, падений напряжений и э.д.с.


Обычно при анализе электрических цепей произвольно выбирается положительное направление токов в ветвях. Затем в зависимости от выбранных положительных направлений токов определяются положительные направления падений напряжений на элементах. Рассмотрим отдельные элементы.

Это значит , - потенциалы точек а и b.

Падение напряжений – это разность потенциалов, т.е. , . То же самое будет на катушке индуктивности и конденсаторе.

Таким образом, положительное направление падения напряжения на пассивных элементах совпадает с положительным направлением тока через них.


Рассмотрим активный элемент – источник э.д.с.

, - потенциалы точек а и b.Тогда , .

Таким образом, положительное направление падения напряжения на источнике э.д.с. противоположно положительному направлению э.д.с.


Пример:

Анализ значимости грамотного распределения параметров электрических цепей вдоль длины отдельных участков. Характеристика соединительного кабеля, как цепи с распределенными параметрами. Применение дифференциальных уравнений с распределенными линиями.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.07.2013
Размер файла 86,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Электрические цепи с распределенными параметрами

1. Общие определения

Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков. В большинстве практических случаев распределением параметров вдоль длины пренебрегают и представляют электрическую цепь эквивалентной схемой с сосредоточенными схемными элементами R, L и C.

Однако существует большой класс электрических цепей, для которых пренебрежение распределением параметров вдоль длины приводит к существенным погрешностям при их расчёте и становится неприемлемым.

Из курса физики известно, что электромагнитное поле распространяется вдоль электрической цепи не мгновенно, а с конечной скоростью х, проходя всю длину цепи l за время:

Если за время ?t режимные параметры в цепи (u, Я) изменяются незначительно и этим изменением можно пренебречь, то для такой цепи пренебрегают распределением параметров вдоль длины и замещают ее схемой с сосредоточенными элементами.

Если за время ?t режимные параметры в цепи (u, Я) изменяются на заметную величину, которую необходимо учитывать в расчете, то такие цепи считаются с распределенными параметрами и расчет их проводится уже с учетам распределения параметров вдоль их длины.

Воздушная линия электропередачи длиной l = 50 км работает на частоте ѓ = 50 Гц.

Скорость волны х=300000 км/с.

Таким образом, фазовый сдвиг для волн напряжения и тока вначале и в конце линии составляет всего 3,6 о , чем можно пренебречь и считать такую линию как цепь сосредоточенными параметрами.

Пример 2. Линия электропередачи длиной l=500 км: ѓ = 50 Гц, х=300000 км/с.

Фазовый сдвиг для волн напряжения и тока в начале и конце линии составляет 36 о .

Расчет режима в такой линии без учета распределения параметров по длине привел бы к существенным ошибкам, поэтому такую линию следует считать как цепь с распределенными параметрами.

Соединительный кабель от комнатной антенны до входного гнезда телевизора имеет длину l=2 м, телевизионный канал работает на частоте:

Соединительный кабель следует рассматривать как цепь с распределенными параметрами.

При синусоидальном режиме цепи критерием необходимости учета распределения параметров по длине может служить соотношение между длиной линии l и длиной волны . Если l 100 км.

Одни и те же электрические цепи в зависимости от формы воздействующего напряжения в одних случаях принимаются с распределенными параметрами, а в других - с сосредоточенными параметрами. Например, обмотки силовых трансформаторов при расчете установившихся режимов в них на частоте ѓ=50 Гц считаются цепями с сосредоточенными параметрами, но при расчете переходных процессов, возникающих в результате коммутации или атмосферных разрядов те же обмотки считаются цепями с распределенными параметрами.

Если параметры цепи распределены равномерно по ее длине, то цепь называется, однородной, если неравномерно - то неоднородной. В курсе ТОЭ рассматриваются только однородные цепи.

2. Дифференциальные уравнения цепи с распределенными параметрами

Рассмотрим двухпроводную однородную линию, физические параметры которой равномерно распределены по ее длине - активное сопротивление пары проводов на единицу длины [Ом/м], определяется по известной формуле:

Зависит от материала провода (г) и от ее температуры:

- индуктивность пары проводов на единицу длины линии [Гн/м], определяется как отношение сцепления потока к току:

- является отображением магнитного поля линии в ее схеме замещения, зависит от магнитных характеристик среды (м) и геометрических размеров линии;

- активная проводимость между проводами на единицу длины линии [См/м], является следствием несовершенства изоляции между проводами, зависит от электрических параметров среды (г) и геометрических размеров линии;

- емкость между проводами на единицу длины линии [Ф/м], определяется как отношение заряда к напряжению:

- является отображением электрического поля линии в ее схеме замещения, зависит от электрических характеристик среды () и геометрических размеров линии.

Удельные параметры линии зависят от физических параметров самих проводов и окружающий их среды, поэтому они получили название физических или первичных.

Разделим всю линию на элементарные участки длиной dх и рассмотрим один из таких участков, находящийся на расстоянии х от начала линии. Схема замещения участка будет иметь вид рисунке ниже. Здесь u и i - напряжение и ток в начале рассматриваемого участка.

В конце участка напряжение и ток получают приращения:

Функции напряжения и тока (u, i) зависят от двух параметров t и x, они изменяются в пространстве и во времени, поэтому дифференциальные уравнения для схемы замещения следует составлять в частных производных.

После упрощения получим:

По закону Ома и 1-му закону Кирхгофа:

В приведенном выражении пренебрегаем слагаемыми второго порядка малости, содержащими . По 1-му закону Кирхгофа для узла:

После упрощения получим:

3. Решение уравнений линии с распределенными параметрами в установившемся синусоидальном режиме

Пусть напряжение и ток в линии с распределенными параметрами изменяются по синусоидальному закону:

Заменим в дифференциальных уравнениях линии синусоидальные функции и и их производные:

В уравнениях (1) и (2) приняты обозначения:

- комплексное сопротивление линии на единицу длины [Ом /м].

- комплексная проводимость линии на единицу длины [См /м].

Дифференцируем уравнение (2) по переменной х и делаем в него подстановку из (1):

Решаем дифференциальное уравнение 2-го порядка (3) классическим методом. Характеристическое уравнение и его корни:

Решение для искомой функции в общем виде:

- безразмерная комплексная величина, названная коэффициентом (постоянной) распространения, - комплексные постоянные интегрирования, которые определяются через граничные условия, т. е. через значения искомых функций U(x), I(x) в заданной точке линии, например в ее начале (х=0) или в ее конце (x=l).

Из уравнения (1) находим:

- волновое или характеристическое сопротивление линии.

Таким образом, решения для искомых функций U(x) и I(x) имеют вид:

Волновое сопротивление и постоянная распространения получили название вторичных параметров линии.

Выразим постоянные интегрирования и через граничные условия начала линии.

- подставим эти значения в уравнения (4) и (5):

Совместное решение этих уравнений позволяет определить постоянные интегрирования:

Подставим полученные значения постоянных интегрирования в решения для искомых функций (4) и (5):

Полученные уравнения используются при расчетах цепей с распределенными параметрами в установившемся синусоидальном режиме.

Если принять х=l ,то получим значения параметров режима в конце линии:

Выразим постоянные интегрирования через граничные условия конца линии. Для этой цели в полученных ранее решениях (4) и (5) заменим переменные х на ly из условия x=ly, где l - длина всей линии, а y - расстояние от конца линии до рассматриваемой точки:

- есть некоторые новые постоянные интегрирования.

- подставим эти значения в найденные уравнения, получим:

Совместное решение этих уравнений позволяет определить постоянные интегрирования:

Подставляем значение постоянных в решение для искомых функций:

Полученные уравнения используются при расчете цепей с распределенными параметрами в установившемся синусоидальном режиме.

Если принять y=l, то получим значение параметров режима в начале линии:

двухпроводной интегрирование синусоидальный

Подобные документы

Знакомство с моделью двухпроводной линии передачи. Характеристика цепей с распределенными параметрами. Рассмотрение способов решения телеграфных уравнений. Особенности линий передачи электрических сигналов. Анализ эквивалентной схемы участка линии.

презентация [192,5 K], добавлен 20.02.2014

Уравнения линии с распределенными параметрами. Эффект непрерывного изменения тока и электрического напряжения вдоль линии. Продольное активное сопротивление единицы длины линии. Применение законов Кирхгофа. Линии синусоидального тока без потерь.

реферат [801,3 K], добавлен 21.12.2013

Схема линий с распределенными параметрами. Телеграфные уравнения для синусоидального сигнала. Расчет постоянной сопротивления, мощности и коэффициента полезного действия линии. Напряжение и ток длинной линии без потерь. Длина электрической волны.

контрольная работа [535,8 K], добавлен 27.06.2013

Характеристика длинных линий, соизмеримых с длиной электромагнитной волны; распределение их индуктивности, емкости, активного сопротивления. Установившийся гармонический режим однородной линии. Бегущие волны; свойства падающей и отраженной волн тока.

презентация [234,0 K], добавлен 28.10.2013

Первичные и вторичные параметры электрической линии. Формы записи токов и напряжений. Волны и виды нагрузки в длинной линии без потерь. Распределение действующих значений напряжения и тока вдоль линии. Коэффициент стоячей волны, векторные диаграммы.

Электрические цепи, в которых индуктивность L, емкость С, активное сопротивление R сосредоточены в катушке, конденсаторе и резисторе называются цепями с сосредоточенными параметрами.

Однако имеются электрические цепи, в которых индуктивность, емкость и активное сопротивление распределены по длине цепи, например, в линиях передачи электромагнитных колебаний (в двухпроводных линиях, в фидерах, в волноводах). Такие цепи называются цепями с распределенными параметрам или длинными линиями.

Одна и та же цепь может вести себя как система с сосредоточенными или распределенными параметрами в зависимости от частоты (длины волны) сигнала, который действует в данной цепи.

38. Варистосторы, терморезисторы, тензорезисторы, фоторезисторы, мемристоры.


Варистор — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода.


Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC.

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению R d:


, где U и I — напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора — отрицательная величина.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях— для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений(например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Термистор— полупроводниковый резистор, сопротивление которого существенно убывает с ростом температуры.

Терморезистор изготовляют в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок.

Их размеры могут варьироваться в пределах от 1—10 мкм до 1—2 см.

Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.

Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.


Тензорезистор — резистор, сопротивление которого изменяется в зависимости от его деформации.

С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов, тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.


Фоторезистор


Фоторезистор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

Для изготовления фоторезисторов используют полупроводниковые материалы с шириной запрещенной зоны, оптимальной для решаемой задачи. Так, для регистрации видимого света используются фоторезисторы из селенида и сульфида кадмия, Se. Для регистрации инфракрасного излучения используются Ge, Si, PbS. Полупроводник наносят в виде тонкого слоя на стеклянную или кварцевую подложку или вырезают в виде тонкой пластинки из монокристалла. Слой или пластинку полупроводника снабжают двумя электродами и помещают в защитный корпус.

Важнейшие параметры фоторезисторов:

1_ интегральная чувствительность — отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);

2_ порог чувствительности — величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.


Мемристор — пассивный элемент в микроэлектронике, способный изменять свое сопротивление в зависимости от протекавшего через него заряда (интеграла тока за время работы).

Цепями с распределенными параметрами называются идеализированные электрические цепи, процессы в которых описываются дифференциальными уравнениями в частных производных. Это связано с тем, что если длина волны λ электромагнитных колебаний соизмерима с размерами цепи l, то токи и напряжения в этой одномерной цепи являются функциями двух переменных – времени t и координаты xu(t, x), i(t, x).

Исторически первыми в качестве одномерных цепей с распределенными параметрами стали представлять так называемые длинные линии, т.е. двухпроводные линии передачи сигнала от источника к нагрузке (рис. 6. 1), длина которых l значительно превышает длину волны λ передаваемых электромагнитных колебаний. Поэтому часто эти цепи называют длинными линиями или линиями. При этом будем полагать, что конструктивные данные линии (материал и диаметр ее проводов, их взаимное расположение) и ее параметры сохраняются неизменными по длине линии. Такие длинные линии называются однородными.

Задача анализа цепей с распределенными параметрами обычно сводится к определению законов (характера) изменения токов и напряжений вдоль цепи и к исследованию частотных и временных характеристик цепи. С этой целью следует рассмотреть электрическую модель отрезка линии малой длины Δx = dx. Эта модель с достаточной точностью исследования может быть представлена электрической цепью с сосредоточенными параметрами (рис. 6.2). Всю линию можно представить как цепи с бесконечно большим числом малых по величине пассивных элементов, распределенных равномерно по ее длине.

На основании физических рассуждений можно составить следующую эквивалентную схему отрезка (рис. 6.2).

При прохождении тока вокруг проводника образуется внешнее магнитное поле, которое можно моделировать индуктивностью L0. Она препятствует прохождению тока. Вместе с этим проводник обладает сопротивлением материала R0. Следовательно, эти элементы должны быть соединены последовательно.

Проводники объединены конструктивно диэлектриком, который обладает конечной резистивной проводимостью G0. Между проводниками линии создается разность потенциалов. Следовательно, вокруг проводников существует электрическое поле, накопление которого моделируется емкостью С0.

Элементы L0, C0, R0, G0 называются параметрами линии (отрезка линии). Однако каждый отрезок линии имеет конечную длину Dx, поэтому вводятся понятия погонных параметров:

используя уравнения (6.11)

Если учесть, что и и принять при x = l Úx = Úн и Ìx = Ìн, то система уравнений (6.11) примет вид

Разрешая эту систему уравнений относительно напряжения Ú1 и тока Ì1, получим

Используя уравнения (6.29), получим выражение входного сопротивления

Рассмотрим некоторые частные режимы работы линии.

1. При согласованном включении линии (Zн = Zв) из (6.30) получим, что

2. Если выходные зажимы линии замкнуты накоротко (Zн = 0), то формула (6.30) упрощается:

3. В случае разомкнутых выходных зажимов (Zн = ∞)

4. Когда линия нагружена на произвольное сопротивление, не равное волновому (ZнZв), можно пользоваться для расчетов не только формулой (6.30), но и более удобной. Для этого разделим числитель и знаменатель в (6.30) на ch γl:

Линия без потерь

Вторичные параметры и уравнения передачи. Реальная линия всегда обладает потерями. Однако в ряде случаев удобно считать линию идеальной, т. е. не имеющей потерь: R1 = G1 = 0. Такая идеализация оправдана для коротких по длине линий, работающих на сверхвысоких частотах (фидеров, элементов радиотехнических устройств, полосковых линий и др.), где выполняются условия R1 0 амплитуды убывают в сторону нагрузки). Сдвиг фаз между напряжением ux и током ix равен нулю, поэтому энергия бегущей волны носит активный характер. Следовательно, в режиме бегущих волн передача энергии в линии производится только в одном направлении – от источника энергии к нагрузке. Вся энергия, предаваемая падающей волной, потребляется нагрузкой. Этот режим используется для передачи сигнала от источника в нагрузку.

Режим стоячих волн. Как было сказано ранее, что если модуль коэффициента отражения линии │p(x)│ ≡ 1, т. е. амплитуды отраженной и падающей волн во всех сечениях линии одинаковы, то в линии устанавливается специфический режим, называемый режимом стоячих волн. Это равенство амплитуд возможно только в линии без потерь (α = 0) т. е. │pн│ = 1.

Анализируя выражение (6.23) , можно убедиться, что │pн│ = 1 только в трех случаях: Zн = 0, либо Zн = ∞, либо Zн = jx.

Следовательно, режим стоячих волн может установиться только в линии без потерь при коротком замыкании или холостом ходе на выходе, а также если сопротивление нагрузки имеет чисто реактивный характер.

Короткое замыкание линии КЗ. При Zн = 0 напряжение в конце линии равно нулю Úн = 0. Уравнения передачи (6.34) для данного режима принимают вид:

Если положить для простоты начальную фазу тока в конце линии равной нулю φiн = 0, то мгновенные значения напряжения и тока в любой точке линии описываются выражениями:

Выражения (6.37) показывают, что при коротком замыкании на выходе линии амплитуды напряжения и тока изменяются вдоль линии по периодическому (гармоническому) закону

принимая в отдельных точках линии максимальные значения Umax =R0Iн, Iн = Imax и обращаются в нуль в некоторых других точках (рис. 6.6).

Точки, в которых амплитуда (мгновенные значения) напряжения (тока) тождественно равны нулю, называются узлами напряжения (тока).

Характерные точки, в которых амплитуда (мгновенные значения) напряжения (тока) принимают максимальное значение, называются пучностями напряжения (тока). Как видно из рис. 6.6, узлы напряжения соответствуют пучностям тока и, наоборот, узлы тока соответствуют пучностям напряжения.

Координаты узлов напряжения определяются из условия sinβxk = 0, откуда при β = 2π/π

xk = kπ/β = kλ/2,

где k = 0, 1, 2, …, а координаты пучностей напряжения – из условия cosβxk = 0, откуда

xk = (2n + 1)π/2β = kλ/2 = (2n + 1)λ/4,

где n = 0, 1, 2, ….

Пучности возникают в тех сечениях линии, в которых падающая и отраженная волны напряжения (тока) совпадают по фазе и, следовательно, суммируются, а узлы располагаются в сечениях, где падающая и отраженная волны напряжения (тока) находятся в противофазе и, следовательно, вычитаются.

Мгновенная мощность в узлах напряжения и тока в любой момент времени равна нулю.

Таким образом, в режиме стоячих волн энергия вдоль линии не распространяется и на каждом участке линии происходит только обмен энергией между электрическим и магнитным полями. Этот режим не используется для передачи сигнала от источника в нагрузку.

Напряжение ux и ток ix в короткозамкнутой линии согласно (6.37) сдвинуты по фазе на 90 о . Это свидетельствует о том, энергия стоячей волны имеет реактивный характер, т. е. входное сопротивление линии чисто реактивное.

Из (6.36) следует, что входное сопротивление в произвольной точке x линии равно (расстояние x от конца линии)

Из выражения (6.38) следует, что резистивная составляющая комплексного входного сопротивления отрезка линии без потерь а режиме КЗ на выходе равна нулю, а реактивная составляющая

xвх кз = R0tgβx = R0tg(2πx/λ)

является периодической функцией электрической длины x/λ и может принимать любые значения от – ∞ до ∞ (рис. 6.8).


При x = 0, λ/2, λ, 3λ/2, … величина βx = (2π/λ)x = 0, π, 2π, 3π, … и входное сопротивление Zвх кз = 0. При x = λ/4, 3λ/4, 5λ/4, … величина βx = (2π/λ)x = π/2. и входное сопротивление Zвх кз = ±j∞.

При 0 ’ , при которой его входное сопротивление равнялось бы заданному сопротивлению Zн(jω). Заменим индуктивность Lн отрезком КЗ линии (рис. 6.11, б). Эта замена позволяет применить теорию КЗ линии и сразу же построить кривые распределения напряжения и тока в линии, нагруженной на индуктивность (рис. 6.11, в). На рис.6.11, г приведен график входного сопротивления линии, включенной на индуктивность. Оно имеет реактивный характер в любом сечении линии.

В случае, когда линия нагружена на емкость Cн можно поступить так же, как при индуктивной нагрузке.

Включение линии на произвольное комплексное сопротивление, не равное волновому. Положим для определенности, что сопротивление нагрузки Rн>R0. Коэффициент отражения на основании (6.23)│p=(RнR0)/(Rн+R0)

Читайте также: