Биотехнология дегеніміз не реферат

Обновлено: 05.07.2024

Биотехнология - это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов. Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.

Работа содержит 1 файл

Введение.docx

Биотехнология - это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов.

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.

Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895).

В XXI в. биология выступает лидером естествознания. Это обусловлено прежде всего возрастанием ее практических возможностей, ее программирующей ролью в аграрной, медицинской, экологической и других сферах деятельности, способностью решать важнейшие проблемы жизнедеятельности человека, в конечном счете даже определять судьбы человечества (в связи с перспективами биотехнологий, генной инженерии) и т.п. Одной из важнейших форм связи современной биологии с практикой являются биотехнологии.

Биотехнологии — технологические процессы, реализуемые с использованием биологических систем — живых организмов и компонентов живой клетки. Другими словами, биотехнологии связаны с тем, что возникло биогенным путем. Биотехнологии основаны на последних достижениях многих отраслей современной науки: биохимии и биофизики, вирусологии, физико-химии ферментов, микробиологии, молекулярной биологии, генетической инженерии, селекционной генетики, химии антибиотиков, иммунологии и др. 1

Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.

2.Методы биотехнологии, ее перспективы

Генная и клеточная инженерия – являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.

Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.

Вторая волна – начало 2000-х годов – создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.

Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации – пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.

Учёные также предполагают, что перенос генов поможет снизить аллергию человека к коровьему молоку. Целенаправленные изменения в ДНК коров должны привести также к уменьшению содержания в молоке насыщенных жирных кислот и холестерина, что сделает его еще более полезным для здоровья. Потенциальная опасность применения генетически модифицированных организмов выражается в двух аспектах: безопасность продовольствия для здоровья людей и экологические последствия. Поэтому важнейшим этапом при создании генно-модифицированного продукта должна быть его всесторонняя экспертиза во избежание опасности того, что продукт содержит протеины, вызывающие аллергию, токсичные вещества или какие-то новые опасные компоненты.

С древних времен известны отдельные биотехнологические процессы, используемые в различных сферах практической дея ­ тельности человека. К ним относятся хлебопечение, виноделие, приготовление кисло-молочных продуктов и т. д. Однако биоло ­ гическая сущность этих процессов была выяснена лишь в XIX в., благодаря работам Л. Пастера. В первой половине XX в. сфера приложения биотехнологии пополнилась микробиологическим производством ацетона и бутанола, антибиотиков, органических кислот, витаминов, кормового белка.

С момента создания в 1963 г. Всесоюзного научно-исследо ­ вательского института биосинтеза белковых веществ в на ­ шей стране налаживается крупнотоннажное производство бога ­ той белками биомассы микроорганизмов как корма. В 1966 г. микробиологическая промышленность была выделена в отдель ­ ную отрасль (Главное управление микробиологической промыш ­ ленности при Совете Министров СССР — Главмикробиопром). Имеются ценные разработки по получению новых источников энергии биотехнологическим путем (технологическая биоэнерге ­ тика), отметим большое значение биогаза - заменителя топлива, получаемого из недр земли.

Значительные успехи, достигнутые во второй половине XX в. в фундаментальных исследованиях в области биохимии, био ­ органической химии и молекулярной биологии, создали предпо ­ сылки для управления элементарными механизмами жизнедея ­ тельности клетки, что явилось мощным импульсом для развития биотехнологии. Выяснение роли нуклеиновых кислот в передаче наследственной информации, расшифровка генетического кода, раскрытие механизма индукции и репрессии генов, совершен ­ ствование технологии культивирования микроорганизмов, клеток и тканей растений и животных позволили разработать методы

генетической и клеточной инженерии, с помощью которых можно искусственно создавать новые формы высокопродуктивных орга ­ низмов. Генетическая и клеточная инженерия рассматривается как принципиально новое направление биологической науки, которое сегодня ставят в один ряд с расщеплением атома, прео ­ долением земного притяжения и созданием средств электроники (Ю. А. Овчинников, 1985).

С 1970 г. в нашей стране ведутся интенсивные исследования по селекции культур для непрерывного культивирования в про ­ мышленных целях.

Развитие методов для изучения структуры белков, выяснение механизмов функционирования и регуляции активности фермен ­ тов открыли путь к направленной модификации белков и привели к рождению инженерной энзимологии. Иммобилизованные фер ­ менты, обладающие высокой стабильностью, становятся мощным инструментом для осуществления каталитических реакций в раз ­ личных отраслях промышленности.

Все эти достижения поставили биотехнологию на новый уро ­ вень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами. В современном звучании биотехнология — это промышленное использование биологических процессов и агентов на основе получения высоко ­ эффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами.

Биотехнология — междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук.

Биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов. Многоэтапность процесса обусловли ­ вает необходимость привлечения к его осуществлению самых различных специалистов: генетиков и молекулярных биологов, биохимиков и биооргаников, вирусологов, микробиологов и кле ­ точных физиологов, инженеров-технологов, конструкторов био ­ технологического оборудования и др.

В Комплексной программе научно-технического прогресса стран — членов СЭВ в качестве первоочередных задач биотехно ­ логии определены создание и широкое народнохозяйственное освоение:

— новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста человека, моноклональных антител и т.д.), позволяющих осуществить в здравоохранении раннюю диагностику и лечение тяжелых заболеваний — сердечно-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных;

— микробиологических средств защиты растений от болезней и вредителей, бактериальных удобрений и регуляторов роста растений; новых высокопродуктивных и устойчивых к неблаго ­ приятным факторам внешней среды сортов и гибридов сельско ­ хозяйственных растений, полученных методами генетической и клеточной инженерии;

— ценных кормовых добавок и биологически активных ве ­ ществ (кормового белка, аминокислот, ферментов, витаминов, ветеринарных препаратов и др.) для повышения продуктивности животноводства; новых методов биоинженерии для эффективной профилактики, диагностики и терапии основных болезней сель ­ скохозяйственных животных;

— новых технологий получения хозяйственно ценных продук ­ тов для использования в пищевой, химической, микробиологи ­ ческой и других отраслях промышленности;

— технологий глубокой и эффективной переработки сельско ­ хозяйственных, промышленных и бытовых отходов, использова ­ ния сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

По оценкам специалистов, мировой рынок биотехнологиче ­ ской продукции уже к середине 90-х годов достигнет уровня 130 — 150 млрд. руб. (Ю. А. Овчинников, 1985).

На пути решения поставленных задач биотехнологию подсте ­ регают немалые трудности, связанные с исключительной слож ­ ностью организации живого. Любой биообъект — это целостная система, в которой нельзя изменить ни один из элементов, не меняя остальных, нельзя произвольно перекомбинировать их, придавая организму то или иное желаемое свойство, например бактерии — способность к сверхсинтезу требуемой аминокислоты, сельскохозяйственному растению — устойчивость к фитопатоген-ным грибкам. Любое воздействие на объект вызывает не только желаемые, но и побочные эффекты; перестройка генома сказы ­ вается сразу на многих признаках организма. У человека суще ­ ствуют гены, отвечающие за злокачественное перерождение клеток. Высказывалось немало идей о необходимости превентив ­ ных генетических операций, пока не было установлено, что эти гены необходимы и для нормального роста. Помимо этого, экосистема также представляет собой целостную систему и изме ­ нения каждого из ее компонентов сказываются на остальных компонентах. Не исключено, что плазмида, с помощью которой трансплантирован желаемый ген культурному растению, будет далее передаваться сорнякам. Не будет ли в результате генных манипуляций превращаться в сорняк само культурное растение?

Успехи, достигнутые в области генетической и клеточной инженерии на простейших биологических системах, прокариотных организмах, вселяют уверенность в преодолимость рассмот ­ ренных трудностей. Что касается более сложных систем, а имен ­ но эукариотных организмов, то здесь делаются лишь первые шаги, идет накопление фундаментальных знаний.

Биотехнологические разработки могут внести немаловажный вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.

Для удовлетворения пищевых потребностей необходимо уве ­ личить эффективность растениеводства и животноводства. Имен ­ но на это, в первую очередь, нацелены усилия биотехнологов. Кроме того, биотехнология предлагает как источник кормового (возможно, и пищевого) белка клеточную массу бактерий, гри ­ бов и водорослей.

Во-вторых, повышение цен на традиционные источники энер ­ гии (нефть, природный газ, уголь) и угроза исчерпания их запа ­ сов побудили человечество обратиться к альтернативным путям получения энергии. Биотехнология может дать ценные возобнов ­ ляемые энергетические источники: спирты, биогенные углеводо ­ роды, водород. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельско ­ хозяйственного производства.

В-третьих, уже в наши дни биотехнология оказывает реаль ­ ную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свер ­ тывания крови и иммунной системы, тромболитических фермен ­ тов, изготовленных биотехнологическим путем. Помимо получе ния лечебных средств, биотехнология позволяет проводить ран ­ нюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, моноклональных антител, ДНК/РНК-проб. С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.

В-четвертых, биотехнология может резко ограничить масшта ­ бы загрязнения нашей планеты промышленными, сельскохозяй ­ ственными и бытовыми отходами, токсичными компонентами ав ­ томобильных выхлопов и т. д. Современные разработки нацелены

на создание безотходных технологий, на получение легко раз ­ рушаемых полимеров (в частности, биогенного происхождения: поли- β -оксибутирата, полиамилозы) и поиск новых активных микроорганизмов-разрушителей полимеров (полиэтилена, поли ­ пропилена, полихлорвинила). Усилия биотехнологов направлены также на борьбу с пестицидными загрязнениями — следствием неумеренного и нерационального применения ядохимикатов.

Биотехнологические разработки играют важную роль в добы ­ че и переработке полезных ископаемых, получении различных препаратов и создании новой аппаратуры для аналитических целей.

1. Биотехнология и сельское хозяйство

Биотехнология и растениеводство

В последние годы большое внимание уделяют вирусным за ­ болеваниям растений. Наряду с болезнями, оставляющими види ­ мые следы на культурных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие уро ­ жайность сельскохозяйственных культур и ведущие к их вырож ­ дению.

Биотехнологические пути защиты растений от рассмотренных вредоносных агентов включают: 1) выведение сортов растений, устойчивых к неблагоприятным факторам; 2) химические сред ­ ства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсектициды), нематодами (нематоциды), фитопатогенными грибами (фунгициды), бактериями, ви ­ русами; 3) биологические средства борьбы с вредителями, ис ­ пользование их естественных врагов и паразитов, а также ток ­ сических продуктов, образуемых живыми организмами.

Наряду с защитой растений ставится задача повышения про ­ дуктивности сельскохозяйственных культур, их пищевой (кормо ­ вой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Раз ­ работки нацелены на повышение энергетической эффективности различных процессов в растительных тканях, начиная от погло ­ щения кванта света и кончая ассимиляцией СО 2 и водно-солевым обменом.

Выведение новых сор ­ тов растений. Традицион ­ ные подходы к выведению новых сортов растений — это селекция на основе гибридизации, спонтан ­ ных и индуцированных мутаций. Методы селекции не столь отда ­ ленного будущего включают гене ­ тическую и клеточную инженерию.

В настоящее время выделены и клонированы гены sym, от ­ вечающие за установление симбиотических отношений между клубеньковыми азотфиксаторами и растением-хозяином. Путем переноса этих генов в свободноживущие азотфиксирующие бак ­ терии (Klebsiella, Azotobacter) представляется возможным за ­ ставить их вступить в симбиоз с ценными сельскохозяйственными культурами. Методами генетической инженерии предполагают также повысить уровень обогащения почвы азотом, амплифици-руя гены азотфиксации у Klebsiella и Azotobacter.

Разрабатываются подходы к межвидовому переносу генов asm, обусловливающих устойчивость растений к нехватке влаги, жаре, холоду, засоленности почвы. Перспективы повышения эф ­ фективности биоконверсии энергии света связаны с модифика ­ цией генов, отвечающих за световые и темновые стадии этого процесса, в первую очередь генов cfx, регулирующих фиксацию СО 2 растением. В этой связи представляют большой интерес

разработки по межвидовому переносу генов, кодирующих хлоро ­ филл а/b- связывающий белок и малую субъединицу рибулозо-бис-фосфаткарбоксилазы — ключевого фермента в фотосинтети ­ ческой фиксации СО 2 .

Гены устойчивости к некоторым гербицидам, выделенные из бактерий и дрожжей, были успешно перенесены в растения таба ­ ка. Разведение устойчивых к гербицидам растений открывает возможность их применения для уничтоже ­ ния сорняков непосредственно на угодьях, занятых сельскохозяй ­ ственными культурами. Проблема состоит, однако, в том, что массивные дозы гербицидов могут оказаться вредными для при ­ родных экосистем.

С клонированием клеток связывают надежды на устранение вирусных заболеваний растений. Разработаны методы, позволя ­ ющие получать регенеранты из тканей верхушечных почек расте ­ ний. В дальнейшем среди регенерированных растений проводят отбор особей, выращенных из незараженных клеток, и выбраковку больных растений. Раннее выявление вирусного заболевания, необходимое для подобной выбраковки, может быть осуществ ­ лено методами иммунодиагностики, с использованием моноклональных антител или методом ДНК/РНК-проб. Предпосылкой для этого является получение очищенных препаратов соответ ­ ствующих вирусов или их структурных компонентов.

Клонирование клеток — перспективный метод получения не только новых сортов, но и промышленно важных продуктов. При правильном подборе условий культивирования, в частности при оптимальном соотношении фитогормонов, изолированные клетки более продуктивны, чем целые растения. Иммобилизация растительных клеток или протопластов нередко ведет к повыше ­ нию их синтетической активности. Табл. 6 включает биотехно ­ логические процессы с использованием культур растительных клеток, наиболее перспективные для промышленного внед ­ рения.

Коммерческое значение в основном имеет промышленное про ­ изводство шиконина. Применение растительных клеток, которые являются высокоэффективными продуцентами алкалоидов, терпе ­ нов, различных пигментов и масел, пищевых ароматических до ­ бавок (земляничной, виноградной, ванильной, томатной, сельде ­ рейной, спаржевой) наталкивается на определенные трудности, связанные с дороговизной используемых технологий, низким выходом целевых продуктов, длительностью производственного процесса.

Таким образом, биотехнология открывает широкие перспективы в области выведения новых сортов растений, устойчивых к неблагоприятным внешним воздействиям, вредителям, патогенам, не требующих азотных удобрений, отличающихся высокой продуктивностью.

Таблица 1. Примеры клеточных культур — высокоэффективных проду ­ центов ценных соединений (по О. Sahai, M. Knuth, 1985. К. Hahlbrock. 1986)

Что такое биотехнология: будущее уже наступило

История развития биотехнологии

С древнейших времен биотехнология применялась человеком для изготовления вина, в сыроварении и других вариантах приготовления пищи. Биотехнологический процесс, а именно брожение, использовался еще в древнем Вавилоне для производства пива. Об этом свидетельствуют найденные при раскопках записи на дощечках. Но, несмотря на активное использование этих методов, процессы, лежавшие в основе этих производств, оставались загадкой.

Брожение как биологический процесс - Биотехнология

Луи Пастер в 1867 году говорил, что такие процессы, как сквашивание и брожение, есть ничто иное, как итог жизнедеятельности микроорганизмов. Эдуард Бухнер дополнил эти предположения, доказав, что катализатором является бесклеточный экстракт, который содержит ферменты, вызывающие химическую реакцию.

Позже были сделаны сенсационные по тем временам открытия, которые помогли сформировать данную науку в современном ее понимании:

Годом появления термина стал 1919, после публикации манифеста венгерским агроэкономистом Карлом Эреки. Основываясь на имеющиеся в то время данные, под термином биотехнология подразумевалось применение микроорганизмов для ферментации продуктов питания.

Но, как известно, самые интересные открытия совершаются на стыке знаний, в случае биотехнологии, объединились пищевая и нефтеперерабатывающая промышленность. В 1970 году на практике была опробована технология производства белка из отходов нефтепромышленности.

Что такое биотехнология: термин и основные виды

Биотехнология – наука о способах создания различных веществ с использованием естественных биологических компонентов, будь-то микроорганизмы, животные или растительные клетки. По сути, это манипулирование живыми клетками для получения определенных результатов.

Основными направлениями развития науки являются:

Биоинженерия – дисциплина, направленная на расширение знаний в области медицины (лечение, укрепление здоровья) и инженерии

Биомедицина – узкоспециализированный раздел медицины, который с теоретической точки зрения изучает строение человеческого организма, диагностику патологических состояний и возможности их коррекции. Раздел медицины, занимающийся контролем и лечением биологических систем живых организмов на молекулярном уровне, называется наномедициной.

что такое биотехнология

Гибридизация — процесс получения гибридов (растений, животных). В основе лежит принцип получения одной клетки (устойчивой к тем или иным условиям) путем объединения других клеток.

Сейчас у нас уже есть средства необходимые для того, чтобы прожить достаточно долго до тех пор, пока мы не станем бессмертны. Можно агрессивно применять существующие знания, чтобы кардинально замедлить процессы старения, и оставаться в жизнеспособном состоянии до того момента, когда станут доступны совершенно радикальные терапии по продлению жизни с помощью био- и нанотехнологий.

Ray Kurzweil (изобретатель, футуролог)

Наука Биотехнология

Особого внимания заслуживает клонирование. Под этим процессом понимают появление нескольких генетических идентичных организмов путем бесполого (в том числе вегетативного) размножения. На сегодняшний день были клонированы не только растения, но и несколько десятков видов животных (овцы, собаки, кошки, лошади). О фактах клонирования человека пока нет данных, хотя, по мнению ученых, с технической стороны – к процессу все готово. Именно эти разработки стали самыми противоречивыми и обсуждаемыми мировой общественностью. Дело не только в вероятности получения неполноценных людей, но и в этической и религиозной стороне вопроса.

Сфера применения

Принципы биотехнологических процессов внедряют в производство всех отраслей:

  • пищевая промышленность. Производство алкоголя, аминокислот, ферментов безвредным для окружающей среды способом, называется белой биотехнологией.
  • химическая или фармацевтическая. Это направление еще называют красной биотехнологией. Биотехнологи разрабатывают усовершенствованные лекарственные препараты, вакцины и сыворотки против болезней, которые ранее считались неизлечимыми. В западных странах и в частности в Австрии наука пользуется большой популярностью и активно используется для диагностики различных заболеваний (биосенсоры, чипы ДНК).
  • переработка и утилизация отходов (биоремедиация). Методы серой биотехнологии используются для санации почв, очистки канализационных стоков и отработанного воздуха.
  • сельское хозяйство. Зеленая биотехнология позволяет ученым создавать образцы культурных растений, которые способны противостоять болезням и грибкам, с высоким уровнем урожайности вне зависимости от климатических условий (во время засухи). Кроме того, ученые научились использовать определенные ферменты, которые превращают целлюлозные отходы сельского хозяйства в глюкозу, а после в топливо.

Сфера применения Биотехнологии

Основной целью клеточной инженерии является культивирование животных и растительных клеток. Открытия в области клеточной инженерии позволили контролировать и регулировать продуктивность, качество, устойчивость к заболеваниям новых форм и линий животных и растений.

Инвестиции и развитие

И для осуществления этой задумки нужны десятки и сотни экспериментов, опыты и дорогостоящее оборудование. Не каждый инвестор готов идти только за идеей, рискуя своими вложениями. Но ведь не все верили и в мобильную связь, а сегодня она повсюду.

На данный момент число крупных компаний, занимающихся биотехнологическими разработками, невелико. К таковым относятся:

  • Illumina (генетические исследования, анализы, технология ДНК-микрочипов),
  • Oxford Nanopore (разработка и продажа продукции для взаимодействия с ДНК),
  • Roche (фармацевтическая компания),
  • Editas Medicine (адаптацией лабораторных методик редактирования генов к широкомасштабному применению в больницах),
  • Counsyl (предложила недорогой метод автоматизированного анализа ДНК для последующего использования данных в лечении).

биотехнология

По мнению экспертов, наиболее привлекательным направлением для инвестиций в биотехнологию являются компании, занимающиеся секвенированием. Это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК. Расшифровка ДНК данных (секвенирование), дает возможность идентифицировать участки, которые отвечают за наследственные заболевания, и устранять их. Как только процесс будет доведен до совершенства, люди смогут не лечить симптомы, а избавляться от болезни. Это перевернет наше представление о диагностике, и принесет большие дивиденды тем, кто сумеет рассмотреть потенциал компании еще на этапе идеи.

Биотехнология: добро или зло?

Уже сегодня население планеты сталкивается с проблемой нехватки продуктов питания, и если численность людей продолжит расти, то в ближайшем будущем ситуация может стать критической. Знания о том, что такое биотехнология и как ее применять, помогают получать максимальные результаты урожайности, вне зависимости от внешних факторов. И эти достижения нельзя сбрасывать со счетов. Кроме того, неоспоримым доказательством пользы науки является изобретение антибиотиков, которые позволили контролировать, а в некоторых случаях и полностью искоренять, сотни болезней.

Биотехнология генная инженерия

Но далеко не все оценивают науку однозначно. Существуют опасения, что отсутствие контроля может привести к необратимым последствиям. Например, уже сегодня продукты биотехнологии, такие как стероиды для спортсменов, становятся причиной для преждевременных сердечных патологий. В погоне за созданием супер-человека, победившего старость и болезни, общество рискует потерять свое естество.

Мы не остались жить в пещерах. Мы не остаемся в пределах нашей планеты. С помощью биотехнологии, генетического секвенирования, мы даже не собираемся ограничиваться рамками самой биологии.
Jason Silva (оратор, философ, телезвезда).

Развитие биотехнологии стало таким стремительным, что мировые государства столкнулись с проблемой отсутствия контроля на правовом уровне. Это стало причиной приостановления многих проектов, поэтому пока о клонировании человека и победе над смертью говорить преждевременно, и два конфронтационных лагеря могут беспрепятственно поддаваться философским размышлениям.

В последние десятилетия биотехнология всё глубже проникает в жизнь человека. Открытия в этой области вызывают жаркие споры, но технический прогресс неизменно идет вперед, используя уникальные знания, разработки и технологии. Биотехнология применяется человеком на протяжении многих веков, но именно сегодня появился максимальный интерес к этому направлению науки.

Биотехнология

История возникновения

С древнейших времен знания в области биотехнологии применялись человеком в сыроварении, для изготовления вина и других продуктов. Впервые брожение, а это классический пример биотехнологии, использовалось для производства пива в Древнем Вавилоне несколько тысяч лет назад. Однако в последующем на протяжении многих столетий уникальные разработки, знания и технологии были утеряны. Лишь в XIX веке начали целенаправленно изучать этот раздел науки.

Что такое биотехнология

Считается, что основоположником биотехнологии является Луи Пастер, в 1867 году изучавший процессы брожения и сквашивания, которые возникали при жизнедеятельности различных микроорганизмов. Исследования продолжил Эдуард Бухнер, занимающийся научной работой в области информатизации и химических реакций бесклеточных экстрактов. В конце XIX — начале XX вв. были сделаны многочисленные сенсационные открытия, сформировавшие биотехнологию в её современном понимании:

  1. Монах из Австрии Грегор Мендель в 1865 году описал передачу наследственности, изучая растительные гибриды.
  2. Уолтер Саттон и Теодор Бовери в 1902 году выдвинули предположение, что наследственность всех биологических видов связана напрямую с хромосомами.

Термин биотехнология появился в 1919 году, когда венгерский экономист Карл Эреки опубликовал свой манифест, в котором под этим разделом науки понималось использование микроорганизмов для процедуры ферментации продуктов. Во второй половине XX века после объединения нефтеперерабатывающей и пищевой промышленности был сделан существенный скачок в исследовании этой дисциплины. Ученые научились синтезировать белок из продуктов нефтепереработки, используя в последующем такие синтетические компоненты в качестве заменителей органики.

Основные виды и термины

Биотехнология — это наука создания различных веществ путем использования биологически естественных компонентов. Фактически это манипулирование животными и растительными клетками для получения нужных результатов.

Всё о биотехнологии

Сегодня, в век компьютерных технологий, биотехнология сделала существенный шаг вперёд. На различных факультетах в университетах и в лабораторных условиях проводятся многочисленные изыскания, основная цель которых заключается в том, чтобы создать действенные лекарства и существенно упростить жизнь человека. Основными направлениями, задачами и темами этой науки являются:

  • биомедицина;
  • биоинженерия;
  • гибридизация.

Перспективы биотехнологии

В биоинженерии изучают различные области медицины, а также влияние клеток и наследственных факторов с генами на развитие заболеваний. Это направление позволяет не только разработать суперсовременные технологии лечения различных патологий, но и предупреждает возникновение тяжелых болезней, которых можно было избежать путем редактирования ДНК.

Специализация биомедицина — это узкоспециализированный раздел медицинских знаний, объектом которого являются патологические состояния, строение тела человека и возможности коррекции различных болезней. В эту дисциплину также включается наномедицина, в которой жизнедеятельность биологических видов изучается на молекулярном уровне.

В гибридизации исследуют возможность создания гибридов животных и растений, получая устойчивые к различным условиям клетки. Этот раздел науки позволяет замедлить процессы старения, продлевая жизнь с помощью нано- и биотехнологий.

Высшим достижением биотехнологии считается генная инженерия, под которой понимают совокупность технологий и знаний получения ДНК и РНК. Это управление генами живых существ и растений, что позволяет получать заданные свойства у клеток. Например, ученые со специальностью биология планируют с помощью технологии исправления генома человека решать проблемы с различными онкологическими заболеваниями.

Виды биотехнологии

Также к этому разделу науки относится клонирование, что позволяет за счет использования специальных технологий получать идентичные генетические организмы, выведенные вегетативным бесполым размножением. На сегодняшний день клонированы были не только растения, но и десятки видов животных, в том числе лошади, кошки, собаки и овцы. Технологически возможно даже копирование человека, однако нормативная база и нравственные аспекты не позволяют людям этой профессии заниматься такой работой.

Возможные сферы применения

В далеком прошлом биотехнология казалась еще одной наукой, которая навсегда поселится в лабораторных кабинетах и никогда не будет иметь практического применения. Однако сегодня биотехнология, ее направления, технологии и знания активно присутствуют и применяются в повседневной жизни. Методы биотехнологии внедряются в следующих отраслях:

На что нацелена биотехнология

  • в фармацевтике и химической сфере;
  • в пищевой промышленности;
  • в утилизации и переработке отходов;
  • в сельском хозяйстве.

В фармацевтике эту сферу науки часто называют красной биотехнологией. Специалисты разрабатывают различные эффективные сыворотки, вакцины и усовершенствованные лекарственные препараты, которые позволяют бороться с болезнями, в прошлом считавшимися неизлечимыми. На западе активно используются возможности биотехнологии в диагностике заболеваний с помощью чипов ДНК и биосенсоров. С помощью таких маркеров можно сдавать анализы на онкологию и наследственные патологии.

В пищевой промышленности биотехнология активно используется при производстве аминокислот, алкоголя, различных безвредных ферментов. Этот раздел науки часто называют белой биотехнологией, что объясняет ее экологичность и натуральность происхождения.

Биотехнология в сельскохозяйственной индустрии

В сельском хозяйстве зелёные биотехнологии позволяют селекционерам получать различные гибридные культурные растения, отличающиеся высокой урожайностью, способные противостоять грибкам и болезням. Также ученые научились эффективно перерабатывать отходы сельского хозяйства, в том числе жмых и зелёную массу, в эффективное топливо.

Под серой биотехнологией, которая изучает утилизацию и переработку отходов, понимают очистку стоков, санацию почв и улучшение качества воздуха. Сегодня, когда экология в больших городах оставляет желать лучшего, именно с помощью таких современных знаний и высокотехнологичного оборудования удается решить проблемы с парниковыми газами, тяжёлыми металлами и другими отравляющими соединениями.

Развитие и инвестиции

Биотехнологию сложно назвать молодой дисциплиной, но эта наука сегодня находится лишь в начале своего развития. Учёные считают, что возможности и направления, которые открываются благодаря новым знаниям, являются бесконечными. Загвоздка лишь в поддержке и должном финансировании. Любое исследование — это многие годы изысканий, использование мощности суперсовременных компьютеров и существенные финансовые затраты, а перспективы конкретных разработок могут быть туманны.

Основными инвестиционными участниками этого направления являются сами биотехнологи и инженеры, которые занимаются изыскания в этой области. Ученые предлагают не конечный продукт, а идею с возможными методами её реализации. Для претворения в жизнь таких задумок нужны сотни экспериментов, дорогостоящее оборудование и постоянные опыты.

Неудивительно, что многие инвесторы просто не рискуют вкладываться в идею, опасаясь потерять миллионы долларов. К тому же официальная зарплата у биологов крайне высока, особенно на западе. В настоящее время на рынке биотехнологических разработок работают около десятка по-настоящему крупных компаний:

Инвестиции в биотехнологию

Разновидности биотехнологии

  1. Illumina специализируется на технологии ДНК-чипов, исследует генетические анализы и тесты на различные заболевания.
  2. Oxford Nanopore исследует продукцию и занимается разработкой взаимодействия с ДНК.
  3. Roche — это крупная фармацевтическая компания, которая ежегодно инвестирует в биотехнологии сотни миллионов долларов.
  4. Counsyl является держателем патента автоматизированного анализа ДНК, который используется для диагностики различных патологий.
  5. Editas Medicine исследует проблемы адаптации методик лабораторного редактирования геномов и использования полученных результатов в медицинской практике.

Перспективной технологией в медицине является так называемое секвенирование, то есть изучение последовательности нуклеотидов, находящихся в ДНК. Полностью расшифровав такие данные, можно определить участки молекулы дезоксирибонуклеиновой кислоты, которые отвечают за наследственные заболевания. В последующем на основании имеющейся информации медики могли бы предотвращать развитие опасных неизлечимых патологий. Как только такой процесс дойдёт до совершенства, появится возможность полностью избавиться от болезней, которые даже ещё не появились у конкретного человека.

Добро и зло

Единого мнения о том, что же такое биотехнология — добро или зло, на сегодняшний день нет. Кто-то утверждает, что это попытка вмешаться в естественный процесс и повлиять на природу, тогда как другие уверяют, что будущее человечества именно за такими знаниями. В последние десятки лет население Земли неизменно увеличивается, поэтому без применения биотехнологии в промышленном сельском хозяйстве появилась бы проблема тотального голода.

Также с помощью биотехнологии удаётся найти лекарство от различных тяжелых заболеваний, которые в прошлом считались неизлечимыми. Неоспоримым доказательством пользы этой науки является изобретение антибиотиков, с помощью которых удается излечивать сотни различных болезней. Общеизвестно, что проще предупредить различные тяжёлые недуги, чем в последующем пытаться лечить их с помощью операций и лекарств. Биомедицина создаёт эффективные способы диагностики, которые позволяют определить склонность к тем или иным заболеваниям еще до их возникновения в организме человека.

Факты о биотехнологии

И всё же необходимо понимать, что потребуется качественный контроль за подобными исследованиями в области биотехнологии и их внедрением в повседневную жизнь. В первую очередь это касается моральных аспектов клонирования, возможности выращивать донорские органы или же изменять геномы и клетки ДНК, нарушая естественный ход природы и создавая тем самым суперчеловека.

В последние годы биотехнология развивается стремительно, при этом многие государства сталкиваются с проблемой отсутствия или недостаточного контроля за такими исследованиями на правовом уровне. В итоге было приостановлено множество проектов, поэтому говорить о победе над смертью или успехах в клонировании человека в настоящее время преждевременно.

Читайте также: