Биологические и физические процессы и закономерности в живых системах реферат

Обновлено: 05.07.2024

Степень взаимодействия частей системы друг с другом может быть различной. Кроме того, любой предмет или явление окружающего мира, с одной стороны, может входить в состав более крупных и масштабных систем, а с другой стороны — сам являться системой, состоящей из мелких элементов и составных частей. Все предметы и явления окружающего нас мира могут изучаться и как элементы систем, и как целостные системы, а системность является свойством мира, в котором мы живем. Рассматривая строение системы, в ней можно выделить следующие компоненты: подсистемы и части (элементы).

Содержание

Введение………………………………………………………………………….3
1. Биологические системы…………………………………………………….4
2. Виды биологических систем……………………………………………….5
3. Свойства биологических систем……………………………………………7
3.1. Итеративность………………………………………………………….7
3.2. Дискретность…………………………………………………………….7
3.3. Наследственность и изменчивость………………………………….8
3.4. Раздражимость………………………………………………………….8
3.5. Возбудимость…………………………………………………………….9
3.6. Адаптация……………………………………………………………….9
3.7. Способность к самовоспроизведению………………………………9
4. Основные уровни иерархии биологических систем…………………….11
4.1. Молекулярно-генетический уровень……………………………….12
4.2. Клеточный уровень……………………………………………………12
4.3. Онтогенетический уровень. Многоклеточные организмы……….14
4.4. Популяционно-видовой уровень…………………………………….15
4.5. Биоценотический уровень…………………………………………….16
4.6. Биогеоценотический уровень…………………………………………17
4.7. Биосферный уровень………………………………………………….18
Заключение…………………………………………………………………….19
Библиографический список………………………………………………….21

Работа содержит 1 файл

Реферат КСЕ.docx

2. Виды биологических систем……………………………………………….5

3. Свойства биологических систем……………………………………………7

3.3. Наследственность и изменчивость………………………………….8

3.7. Способность к самовоспроизведению…………………………… …9

4. Основные уровни иерархии биологических систем… ………………….11

4.1. Молекулярно-генетический уровень……………………………….12

4.3. Онтогенетический уровень. Многоклеточные организмы……….14

4.4. Популяционно-видовой уровень…………………………………….15

4.5. Биоценотический уровень…………………………………………….16

4.6. Биогеоценотический уровень…………………………………………17

В современной науке в основе представлений о строении материального мира лежит именно системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.

Под системой понимают внутреннее (или внешнее) упорядоченное множество взаимосвязанных элементов, проявляющее себя как нечто единое по отношению к другим объектам или внешним условиям.

Степень взаимодействия частей системы друг с другом может быть различной. Кроме того, любой предмет или явление окружающего мира, с одной стороны, может входить в состав более крупных и масштабных систем, а с другой стороны — сам являться системой, состоящей из мелких элементов и составных частей. Все предметы и явления окружающего нас мира могут изучаться и как элементы систем, и как целостные системы, а системность является свойством мира, в котором мы живем [1]

Рассматривая строение системы, в ней можно выделить следующие компоненты: подсистемы и части (элементы).

Подсистемы являются крупными частями систем, обладающими самостоятельностью. Разница между элементами и подсистемами достаточно условна, если отвлечься от их размера.

В качестве примера можно привести человеческий организм, безусловно, являющийся системой. Его подсистемами являются нервная, пищеварительная, дыхательная, кровеносная и другие системы. В свою очередь, они состоят из отдельных органов и тканей, которые являются элементами человеческого организма. Но мы можем рассматривать в качестве самостоятельных систем выделенные нами подсистемы, в таком случае подсистемами будут органы и ткани, а элементами системы — клетки.

Таким образом, системы, подсистемы и элементы находятся в отношениях иерархического соподчинения [2].

1. Биологические системы

Биологическая система представляет собой совокупность, упорядочение взаимодействующих и взаимозависимых элементов, образующих единое целое, выполняющее определенную функцию и взаимодействующее со средой и другими системами.

Еще Гегель призывал рассматривать природу как систему ступеней, каждая из которых вытекает из другой. Биологические системы — это клетка, ткань, орган, аппарат, система органов, организм, популяция, экосистема.

Особенности биологических систем:

  • биологическая система выполняет определенную функцию (биохимическую, физиологическую)
  • биологическая система обладает свойствами целостности (несводимость свойств системы к сумме свойств ее элементов)
  • биологическая система состоит из подсистем
  • она непрерывно изменяется по сигналам обратной связи (способна к адаптации)
  • обладает относительной устойчивостью, способна к развитию и самовоспроизведению.

Уровень организации живой материи — это относительно гомогенные биологические системы, для которых характерны определенный тип взаимодействия элементов, пространственный и временной масштабы процессов.

Это функциональное место биологической системы в общей системе живой материи. Концепция об уровнях организации живой материи — это концепция о дифференциации живого вещества планеты на дискретные, соподчиненные структурные множества, которая сложилась в середине XX века.

В живой природе биологические системы подчиняются принципу иерархичности: уровни организации образуют сложную пирамиду соподчинения — за каждым структурным уровнем следует очередной уровень, но более высокого ранга. Каждый уровень характеризуется специфическими взаимодействиями компонентов и особенностями взаимоотношений с ниже и вышерасположенными системами [3].

2. Виды биологических систем

Такие системы отличаются большой пластичностью: в силу относительной независимости их элементы способны к разнообразным перестановкам и комбинаторике. Благодаря этим свойствам значительно облегчается приспособление систем к ненаправленно изменяющимся условиям среды. Процессы отбора в них протекают с высокой эффективностью.

При первом способе имеет место закономерное чередование корпускулярного и жесткого типов организации при переходе от низших структурных уровней к более высоким: диплоидный набор хромосом (корпускулярность), взаимоотношения ядра, цитоплазмы и плазмалеммы (жесткие связи), множество клеток одной ткани (корпускулярность), взаимоотношения определенных тканевых структур в органе (жесткие связи), набор органов (корпускулярность), взаимоотношения систем органов (жесткие связи), множество особей одного пола (корпускулярность), взаимодополняемость полов (жесткие связи).

По типу взаимодействия с окружающей средой системы делятся на открытые и закрытые.

Открытыми являются системы реального мира, обязательно обменивающиеся веществом, энергией или информацией с окружающей средой.

Закрытые системы не обмениваются ни веществом, ни энергией, ни информацией с окружающей средой. Это понятие является абстракцией высокого уровня и, хотя существует в науке, реально не существует, так как в действительности никакая система не может быть полностью изолирована от воздействия других систем. Поэтому все известные в мире системы являются открытыми.

По составу системы можно разделить на материальные и идеальные. Биологические системы относятся к материальным системам [4].

3. Свойства биологических систем

Системный подход к биологическим объектам позволил выявить ряд присущих им характерных особенностей. Обмен веществ между элементами (подсистемами) внутри системы и системой и окружающей средой, организованный во времени и в пространстве и сопровождающийся преобразованием элементов системы; рециркуляция веществ на всех уровнях организации системы.

Итеративность - многократное повторение одной и той же операции (размножение организмов, репликация нуклеиновых кислот, циклы биохимических реакций, ферментативный катализ и др.).

Биосистемы состоят из набора относительно автономных структурных единиц различного ранга. Их разнообразные функции обеспечиваются путем комбинации небольшого числа стандартных функциональных блоков - идентичных для большинства организмов молекул и надмолекулярных комплексов.

Дискретность биологических систем во времени заключается в том, что время их существования конечно. Важной особенностью временной организации биологических систем является то, что продолжительность существования составляющих их подсистем и элементов, как правило, значительно различаются. При этом наблюдается следующая закономерность: чем ниже ранг подсистемы (элемента), тем короче время ее (его) жизни.

Однако прекращение существования подсистемы (элемента) как физической единицы не означает более или менее быстрое исчезновение множества элементов, членом которого она (он) является. Их количественный баланс и качественные характеристики поддерживаются сформировавшимися в эволюции специальными механизмами (размножение, физиологическая регенерация и др.), благодаря чему и обеспечивается целостность и преемственность биологических систем во времени.

Наиболее наглядно эта закономерность прослеживается на организменном (онтогенетическом) уровне организации живой природы. Смерть является неизбежным финалом индивидуального развития отдельных особей. Вместе с тем, благодаря их способности к размножению вид, который они представляют, может существовать длительное время. Избыток структурных элементов и связей между ними позволяет повысить надежность биосистем и их устойчивость к повреждающим факторам, а также обеспечить им свойство пластичности - способности легко переходить из одного режима функционирования в другой.

Биофизика – это н., изуч физ и физико-хим. пр-сы, протекающие в биосис. на разных уровнях орг-ции и явл-ся основой физиолог-их актов. Возникновение БФ -это прогресс в физике, вклад внесли математика, химия и биология. БФ – с лекции – это физическая химия; это химическая физика биолог. систем. Первые попытки объяснения биолог. пр-сов связаны с методами сравнения с физич. пр-ми. Напр: м-м нервного проведения – как распростр. волны окисления в медной проволоки в кислоте.

Живые огранизмы – открытая, саморег-ся, самовоспр-ся и разв-ся гетерогенная система, важнейшими функциональными в-вами в которой явл-ся биополимеры: белки и нукл. к-ты сложного атомно-мол-ного строения.

Точки зрения: 1) эволюционисты (редукционисты): все био проц. можно свести к законам физики и химии; 2) антиэволюц. (антиредукционт.): нельзя свести.

Физ. методы достаточно грубые и ведут к разрушению биосист. (напр: воздействие током) => необходимо проникновение ч/з химию.

Методы: 1) Микроэлектронный. Для изуч. биоэлектр-ого потенциала. Принцип: отбир. объект (аксон кальмара). 2) Метод моделирования био мембран. Исп. искусственные мембраны: а) липосомы, б) бислойные био мембраны, в) протеолипосома. Изуч. процесс транспорта и св-ва биомембран. 3) оптические методы, рентгено-структурный анализ с использованием синхротронного излучения, ЯМР- и ЭПР-спектроскопию, 7-резонансную спектроскопию, различные электрометрические методы, микроэлектродную технику, методы хемилюминесценции, лазерную спектроскопию, метод меченых атомов и др. Это исп. для медицинской диагностики и терапии.

Задачи БФ (проблемы):

изучение вопросов связанных с возникнов., обменом, передачей Е в живых сист.

исслед. роли микроскопич. единиц, физ.-хим. структур в функционировании биосистем.

возн. и проведение нервн. импульсов.

проблема авторегуляции (как происх организация живых сист.)

действие ионизирующего излучения (на м-лы, органы, организмы).

фотохимии. процессы. 2 направления: фотосинтез (передача Е), световосприятие.

проблема проницаемости кл. и тканей.

изуч. биолог. мембран: характер молек. мембран; возникнов. потенциала.

изуч. высокомол-ных соединений с т.зр. физики.

изуч. м-мов хранения и передачи насл. инфо.

Молекулярная – изуч. строение и физ-хим св-ва, биофизику молекул.

БФ клетки – изуч. особенности строения и функц-ния кл-ных и тканевых систем.

БФ сложных систем – изуч. кинетику биопроц., поведение во времени разнообразных проц-ов присущих живой материи и ТД биосистем.

История: 1892- начали смотреть на био. с т.зр физики. Прорыв в конце 30х гг – первый институт БФ в СССР (лучистая Е и биосист., возникн. и провед. импульсов, биоэлектричество). 1953 – кафедра БФ в МГУ. 1974 – кафедра БФ в БГУ.

Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.

Живые огранизмы – открытая, саморег-ся, самовоспр-ся и разв-ся гетерогенная система, важнейшими функциональными в-вами в которой явл-ся биополимеры: белки и нукл. к-ты сложного атомно-мол-ного строения.

Первые попытки объяснения биолог. пр-сов связаны с методами сравнения с физич. пр-ми. Напр: м-м нервного проведения – как распростр. волны окисления в медной проволоки в кислоте; мышечное сокращение объяснялось работой пьезо элементов; рост клетки. Первоначально физика проникла в химию - необходимость объяснить как разл. соединения взаимод-ют в организме - физическая химия и химическая физика.

Сущ 2 лагеря современ. физики:

1) Редукционисты: Любой био процесс происх. в жив организме можно свести к суме хим., физ. и механич. процессов. Объяснение сложного ч/з более простое, непонятное ч/з известное. Зная св-ва отдельных элементов, сост. систему и особенности их взаимод-вия, можно вывести все свойства этой системы. Обр. более сложного уровня - это результат усложнения более простых. Иногда: попытки заменить исследова­ние реального объекта его упрощенной моделью. Достижение: предсказание существования планеты Нептун. Но как метод мышления не является универсальным. Неудача в биологии: не могут объяснить с этой т.зр. феномен жизни.

2) Антиредукционисты: Принцип качественной несводимости или био антиред., т.е. невозможность свести законы и принципы, управляющие живой материей к элементарной сумме физико-хим и мех. процессов процесс жизнедеятельности. Т.е. физико-матем. модели не м.б. адекватными, если в них не сод-ся элементы функциональной организации живых систем. Т.е. существует предел, после которого физические представления перестают быть самодостаточ­ным средством познания, а дальше определяющим фактором становятся некоторые био истины, без кото­рых уже не обойтись.

4. Задачи биофизики как фундаментальной и прикладной науки на современном этапе.

1. Определение биофизики как науки

Биофизика как наука начала формироваться ещё в XIX веке. Многие физиологи того периода уже работали над вопросами, которые в настоящее время являются объектами биофизического исследования. Пионером в этой области является выдающийся русский физиолог И.М. Сеченов. Изучая динамику дыхательного процесса с помощью методов физической химии и использую определенный математический аппарат он установил количественные законы растворимости газов в биологических жидкостях. По его предложению такая область исследования стала именоваться молекулярной физиологией. Другой исследователь, известный немецкий физик Гемгольц (H. Hemholz), разрабатывая проблемы термодинамики, предпринимает попытку использования этих законов для пониманию энергетики живых систем. Изучая работу органов зрения, он впервые определил скорость проведения возбуждения по нерву.

В формировании биофизики как биологической науки выдающуюся роль сыграли исследования К.А. Тимирязева в области фотосинтеза, которые явились началом становления фотобиофизики.

Таким образом, биофизика это наука о наиболее простых и фундаментальных взаимодействиях, лежащих в основе биологических явлений.

Теоретическое построение и модели биофизики основаны на физических понятиях энергии, силы, типов взаимодействия, на общих понятиях физической и формальной кинетики, термодинамики, теории информации. Эти понятия отражают природу основных взаимодействий и законов движения материи, что, как известно, составляет предмет физики – как фундаментальной естественной науки. В центре внимания биофизики как биологической науки лежат биологические процессы и явления. Основная тенденция современной биофизики – проникновение на самые глубокие, элементарные уровни, составляющие молекулярную основу структурной организации живого.

2. Развитие и становление биофизики как науки

Развитие и становление биофизики как пограничной науки проходило ряд стадий. Уже на начальных этапах биофизика была тесно связана с идеями и методами физики, химии, физической химии и математики.

Проникновение и применение законов физики для описания различных закономерности живой природы встретило целый ряд трудностей.

Ещё в прошлом веке делались попытки использовать методы и теории физики для изучения и понимания природы биологических явлений. Причём исследователи рассматривали живые ткани и клетки как физические системы и не учитывали того факта, что основную роль в этих системах играет химия. Именно поэтому попытки решать задачи оценки свойств биологического объекта с чисто физических позиций носили наивный характер.

Основным методом этого направления являлись поиски аналогий.

Биологические явления, сходные с явлениями чисто физическими трактовались, соответственно, как физические.

Например эффект мышечного сокращения объясняли по аналогии с пьезоэлектрическим эффектом, на основании только того факта, что при наложении потенциала на кристалл происходило изменение длины кристалла, примерно так же как происходило изменение длины мышцы при сокращении. Рост клеток считали аналогичным росту кристалла. Клеточное деление рассматривали как явление, обусловленное только поверхностно-активными свойствами наружных слоёв протоплазмы. Амебоидное движение клеток уподоблялось изменению поверхностного натяжения и, соответственно, его моделировали движением ртутной капли в растворе кислоты.

Даже значительно позже, в двадцатые годы нашего столетия, детально рассматривали и изучали модель нервного проведения на анализе поведения так называемой модели Лили. Эта модель представляла собой железную проволоку, которая погружалась в раствор кислоты и покрывалась при этом плёнкой окиси. При нанесении на поверхность царапины окись разрушалась, а затем восстанавливалась, но одновременно разрушалась в соседнем участке и так далее. Другими словами, получилось распространение волны разрушения и восстановления, очень похожее на распространение волны электроотрицательности возникающей при раздражении нерва.

Возникновение и развитие в физике квантовой теории привело к попытке объяснить действие лучистой энергии на биологические объекты с позиции статистической физики. В это время появляется формальная теория, которая объясняла лучевое поражение как результат случайного попадания кванта (или ядерной частицы) в особо уязвимые клеточные структуры. При этом совершенно упускались из вида те конкретные фотохимические реакции и последующие химические процессы, которое определяют развитие лучевого поражения во времени.

Ещё сравнительно недавно на основании формального сходства закономерностей электропроводности живых тканей и электропроводности проводников полупроводников пытались применить теорию полупроводников для объяснения структурных особенностей целых клеток.

Это направление, базирующееся на моделях и аналогиях, хотя и может привлечь к работе весьма совершенный математический аппарат, вряд ли приблизит биологов к пониманию сущности биологических процессов. Попытки использования чисто физических представлений для понимания биологических явлений и природы живой материи дали большое количество спекулятивных теорий и ясно показали, что прямой путь физики в биологию не продуктивен, так как живые организмы стоят несравненно ближе к химическим системам, чем к физическим.

Значительно более плодотворным оказалось внедрение физики в химию. Применение физических представлений сыграло большую роль в понимании механизмов химических процессов. Возникновение физической химии сыграло революционную роль. На основе тесного контакта физики и химии возникли современная химическая кинетика и химия полимеров. Некоторые разделы физической химии, в которых физика получила доминирующее значение, стали называться химической физикой.

Именно с возникновением физической химии связано развитие биофизики.

Многие важные для биологии представления пришли в неё из физической химии. Достаточно напомнить, что применение физико-химической теории растворов электролитов к биологическим процессам, привело к представлению о важной роли ионов в основных процессах жизнедеятельности.

С развитием физической и коллоидной химии расширяется фронт работ в области биофизики расширяется. Появляются попытки объяснить с этих позиций механизмы реагирования организма на внешние воздействия. Так большую роль в развитии биофизики сыграла школа Лёба (J. Loeb 1906 г). В работе Лёба были выявлены физико-химические основы явлений партеногенеза и оплодотворения. Конкретную физико-химическую интерпретацию получило явление антагонизма ионов.

Первая мировая война приостановила развитие биофизики как науки.

С.И. Вавилов занимается вопросами предельной чувствительности глаза. В.Ю. Чаговец разрабатывает ионную теорию возникновения биопотенциалов, Н.К. Кольцов обосновывает роль поверхностного натяжения, ионов и рН в морфогенезе.

Школа Кольцова сыграла видную роль в развитии биофизики в СССР. Его ученики широко разрабатывали вопросы влияния физико-химических факторов внешней среды на клетки и их структуры.

Несколько позже (1934) Родионов С.Р. и Франк Г.М. открыли явление фотореактивации, Завойский (1944) метод электронного парамагнитного резонанса.

Основной итог начального периода развития биофизики – это вывод о принципиальной возможности использования в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи.

Важное общеметодическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики),

Применение представлений коллоидной химии к анализу некоторых биологических процессов показало, что в основе протоплазмы различными факторами лежит коагуляция биоколлоидов. В связи с возникновением учения о полимерах коллоидная химия протоплазмы переросла в биофизику полимеров, и, особенно, полиэлектролитов.

Появление химической кинетики также вызвало появление аналогичного направления в биологии. Ещё Аррениус – один из основателей химической кинетики, показал, что общие закономерности химической кинетики применимы к изучению кинетических закономерностей в живых организмах и к отдельным биохимическим реакциям.

Успехи применения физической и коллоидной химии при объяснении ряда биологических явлений нашли отражение и в медицине.

Была выявлена роль коллоидных и ионных явлений в воспалительном процессе. Физико-химическую интерпретацию получили закономерности клеточной проницаемости и её изменений при патологических процессах, то есть физико-химическая (биофизическая патология).

С развитием биофизики в биологию проникли и точные экспериментальные методы исследований – спектральные, изотопные, радиоскопические.

3. Основные разделы биофизики

По решению Международной ассоциации общей и прикладной биофизики, к разделам этой дисциплины относятся:

1. Молекулярная биофизика. Изучает строение и физические свойства молекул, входящих в состав организма (прежде всего белков и нуклеиновых кислот), исследует условия равновесия молекулярных биологических процессов, изменения их течения во времени, термодинамику биологических процессов. Основная проблема заключается в том, чтобы раскрыть природу взаимодействия атомных групп, определяющих конформационные особенности и внутреннюю динамику биологических макромолекул, механизмы взаимодействия электронных и конформационных переходов и этой основе понять механизм функционирования биополимеров в живых системах.

2. Биофизика мембранных процессов или биофизика клетки. Изучает физические и физико-химические особенности клеточных структур, закономерности деления и дифференцировки клеток, а также такие высокоспециализированные функциональные проявления клеток, как генерация возбуждения и биопотенциалы. Эта часть биофизики изучает молекулярную организацию и конформационные свойства биологических мембран, биофизику процесса транспорта веществ через мембрану, электрогенез.

3. Биофизика фотобиологических процессов. Изучает механизмы фотоэнергетических и фоторецепторных систем, выясняет роль и механизмы участия электронно-возбужденных состояний в биологических процессах.

4. Биофизика органов чувств. Изучает функционирование этих систем в физических и биологических аспектах и исследует превращение энергии, которые происходят при восприятии внешних раздражений.

5. Биофизика сложных систем. Изучает проблемы регулирования и саморегулирования сложноустроенных многоклеточных организмов.

4. Задачи биофизики как фундаментальной и прикладной науки на современном этапе

На современном этапе развития биофизики произошли принципиальные сдвиги, связанные, прежде всего с развитием биофизики сложных систем и молекулярной биофизикой. Именно в этих областях, занимающихся закономерностями динамического поведения биологических систем и механизмами молекулярных взаимодействий в биоструктурах, получены общие результаты, на основании которых в биофизике сформировалась собственная теоретическая база.

Современный этап развития биофизики характеризуется тем, что на первый план выступает проблема формулировки исходных теоретических понятий, отражающих фундаментальные механизмы взаимодействия в биологических системах на молекулярном уровне. Вместе с тем специфика биологических систем представляется в своеобразии физических механизмов молекулярных процессов. Принципиальная особенность заключается в том, что характерные параметры элементарных взаимодействий могут изменяться в зависимости от условий их протекания в организме. Например, эффективность скоростей отдельных элементарных актов переноса электрона в реакционном центре фотосинтеза не только изменяются направленно в течение жизненного цикла развития, но и различна у сортов растений, отличающихся по физико-биохимическим показателям и продуктивности. Изучение глубоких биофизических механизмов в связи с физиолого-биохимическими особенностями объекта создают базу и для практического применения биофизических исследований, в частности в медицине.

Так в настоящее время приоритетными считаются исследования в области физико-химической биологии в целом и биофизики в частности следующие вопросы:

1) Изучение структуры и механизмов выражения генов;

2) Разнообразные аспекты клеточной биологии (в том числе хромосомно-генетические исследования, проблемы клеточной дифференцировки и межклеточных взаимодействий);

3) Изучение структуры биополимеров (белков, нуклеиновых кислот, полисахаридов и их комплексов друг с другом и низкомолекулярными лигандами).

Решение этих задач осуществляется как с помощью теоретического анализа, так и с помощью большого набора физических, химических и биологических методов. При этом среди экспериментальных методов ведущая роль принадлежит рентгеноструктурному анализу кристаллов белков, высокоразрешающей ЯМР-спектроскопии белков и полипептидов в растворе и методам микросеквенирования белков.

Без термодинамического подхода к исследованию биологических процессов невозможно правильно рассчитать пищевой рацион для человека.

Изучение скорости биологических процессов позволяет установить закономерности ряда биологических явлений – роста, размножения, метаболизма не только в условиях нормального функционирования организма, но при патологических изменениях – бактериальной интоксикации, действие ионизирующего излучения, аллергии и т.д.

Изучение проницаемости клеток и тканей в биофизическом аспекте позволяют фармакологам и токсикологам установить закономерности всасывания в организме и выведения из организма различных препаратов. Физиологи, патофизиологи и врачи, изучая проницаемость различных веществ могут выяснить изменения водно-ионного обмена, происходящие в организме в норме и в патологии.

Особое значение эти вопросы приобрели в настоящее время в связи с установлением взаимосвязи расстройств водно-солевого баланса с различными патологическими процессами и наиболее часто встречающимися послеоперационными осложнениями.

Биофизические методы (ЭКГ, ЭЭГ, ЭМГ) и проведение электрического тока в живых системах имеют важное значение для ранней диагностики ряда заболеваний, а также для оценки процессов роста, развития, регенерации и жизнеспособности тканей, используемых при трансплантации.

Без соответствующих биофизических исследований нельзя достоверно выявить все проблемы связанные с функционированием органа зрения. слуха, вкусовым ощущениям, нельзя установить все закономерности работы сердца, влияния излучений различной природы.

Гост

ГОСТ

Биофизика: сущность и значение

Биофизика – это наука о самых простых и фундаментальных взаимодействиях, которые лежат в основе биологических процессов. В основании биофизических моделей лежат физические понятия энергии, силы, типы взаимодействия, общие понятия физической и формальной кинетики, термодинамики, теории информации. Данные понятия отображают природу основных физических взаимодействий и законов движения материи. Центром внимания биофизики как биологической науки являются биологические процессы и явления.

Трендом биофизики на современном этапе является проникновение на элементарные уровни молекулярной основы структуры организации живого.

Биофизика является одной из фундаментальных биологических дисциплин. Изучение данной науки позволяет формировать научное мышление современного медицинского работника.

Биофизические методы входят в практику исследовательских лабораторий и стали основанием для методов диагностики заболеваний и их лечения.

Биофизика имеет большое методологическое значение.

Законы физики и химии являются базисом биофизических положений и теорий, которые в свою очередь стали их развитием. На первоначальном этапе развития биофизики главным выводом стал вывод о том, что основные законы физики, как науки о законах движения материи, применимы к области биологии.

Важное методологическое значение для разных областей биологии имеют эмпирические доказательства закона сохранения энергии (первое начало термодинамики), принципы химической кинетики, как основы динамического поведения биосистем, концепции открытых систем и второго начала термодинамики в биосистемах.

Биофизика – это фундаментальная наука, которая исследует свойства биологических объектов с точки зрения физических законов. Объектом исследования этой науки являются физико-химические процессы в живых организмах, которые составляют основу их существования, а также их механизмы.

Готовые работы на аналогичную тему

Биофизику можно считать физикой живых систем разного уровня: молекулы, мембраны, клетки, органа, популяции. Биофизику определяют как науку, которая строит и исследует идеальные системы, являющиеся моделями отображающими основные свойства живого для различных уровней организации.

Биофизика была признана самостоятельной наукой в 50- е годы XX века. Эта наука возникла на стыке биологии, физики и математики.

Биологическая форма движения материи очень сложна, но ее можно представить как совокупность более простых физических и химических форм движения, которые дают новые качественные сочетания.

Биофизика, в совокупности с другими науками, на сегодняшний момент, является теоретической основой биологии.

Предмет и объекты биофизики

Предмет биофизики весьма сложен и многогранен. Для его изложения необходимо использование материалов разных разделов биологии, использования современных методов и представлений физики, математики, химии.

Исследование человеческого организма и процессов, которые нарушают его жизнедеятельность, в первую очередь, составляют предмет биофизики.

Биофизика имеет большой круг объектов изучения. Данная наука рассматривает физические свойства и явления на уровне:

  • сложных систем, таких как организм;
  • отдельных органов;
  • биологических тканей;
  • отдельных клеток;
  • субклеточных структур (например, биологические мембраны);
  • макромолекул (например, белки, нуклеиновые кислоты);
  • электронные структуры молекул;
  • влияния внешних магнитных полей на электрические процессы, протекающие в теле человека.

В состав биофизики входят авиационная и космическая биомеханика.

Методы биофизики

Многие методы, которые используют в биофизике, она позаимствовала из физики и химии. Но следует отметить, что объект исследования и задачи, которые ставятся перед учеными, привели к значительной трансформации первоначальных методов физики и соответствующих им приборов. Например, процедура измерения биологических потенциалов нервных клеток при помощи микроэлектродов и фиксирующей напряжение аппаратуры значительно отличается от методов измерения в физике.

Правильное применение физических законов возможно только при установке определенных границ системы, для которой можно проводить исследования и расчеты. В биофизике могут применяться классические методы измерения физики. Так если используется, например, спектральный анализ, то особенности биологических объектов такие как, широкие полосы поглощения, значительное рассеяние света и другие, заставляют создавать специальные приборы, которые приспособлены для экспериментов в биологии.

Современная биофизика имеет систему специальных методов, которые приспособлены для решения ее задач, например:

  • электрофорез;
  • ультрацентрифунгирование;
  • калориметрия;
  • малоугловое рассеяние света;
  • рентгеноструктурный анализ;
  • нейтроноскопия;
  • спектрофотомерия;
  • рамановская спектроскопия;
  • люминесцентный анализ;
  • ядерный магнитный резонанс и др.

В среде биологических дисциплин биофизика является наиболее точной наукой. Биофизики ориентируются на логичные строгие доказательства каждого положения. Эти доказательства основываются на точных экспериментах. Исследуемые биофизикой явления количественно описываются. Исследования проводятся при помощи современной аппаратуры. Биофизика применяет методы физического и математического моделирования.

Особенности моделирования в биофизике

Модели в биофизике основываются на результатах прямых экспериментов, данных о реальных молекулярных свойствах биологических объектов. Они не могут быть просто перенесены из физики в биологию, как схема похожего процесса.

Значимой особенностью является то, что создание моделей в биофизике требует модификации идей смежных наук. Это равносильно созданию новых понятий в этих науках при применении к анализу биологических процессов.

Содержание биофизики как науки

В содержание биофизики включены:

  • поиск общих принципов биологически значимых взаимодействий на уровне молекул;
  • объяснение природы взаимодействий молекул при использовании законов физики и химии;
  • применение достижений математики для решения биологических задач;
  • разработка обобщенных понятий, соответствующих описываемым биологическим явлениям.

Теоретические основы биофизики включают: вопросы кинетики, термодинамики, математического моделирования биосистем, основ молекулярной (квантовой) биофизики.

К прикладной биофизике относят: биофизику конкретных процессов, которые текут на разных структурных уровнях организации живого.

Читайте также: