Бетоны для защиты от радиоактивного излучения реферат

Обновлено: 02.07.2024

В связи с развитием ядерной энергетики и все более широким использованием атомной энергии в научных исследованиях, промышленности, сельском хозяйстве, здравоохранении необходимо обеспечить защиту обслуживающего персонала и окружающей территории от опасных радиоактивных воздействий.

Вложенные файлы: 1 файл

Бетон.docx

Бетон для защиты от радиации

В связи с развитием ядерной энергетики и все более широким использованием атомной энергии в научных исследованиях, промышленности, сельском хозяйстве, здравоохранении необходимо обеспечить защиту обслуживающего персонала и окружающей территории от опасных радиоактивных воздействий.

Естественные радиоактивные вещества и искусственно получаемые радиоактивные изотопы воздействуют на живую ткань посредством испускаемых ими при распаде а-, р-, у- лучеи и нейтронов. а-Лучи (потоки ядер гелия) и р-лучи (потоки электронов) обладают сравнительно небольшой проникающей способностью. Значительно опаснее у-лучи, представляющие собой поток фотонов, и нейтронное излучение. у-Лучи имеют скорость света и обладают большой проникающей способностью. Закон ослабления у-излучения, проходящего через вещество, состоит в следующем: при последовательном увеличении толщины слоя вещества на одну и ту же величину интенсивность излучения уменьшается в одном и том же определенном отношении. Так называемый слой половинного ослабления уменьшает интенсивность излучения в 2 раза. Два таких слоя ослабят излучение в 4 раза, и каждый последующий слой будет дополнительно ослаблять излучение вдвое. Исходя из этого (с учетом некоторых других факторов) рассчитывается толщина защитного ограждения, необходимая для ослабления излучения до допускаемой нормами интенсивности. Толщина слоя половинного ослабления у-излучения зависит от плотности вещества-поглотителя: чем тяжелее материал, тем меньше толщина ограждения. Незаряженные частицы нейтроны также обладают большой проникающей способностью. Не взаимодействуя с заряженными частицами атомов на расстоянии (как а- и р-частицы), они замедляются только при соударениях. Наибольший эффект поглощения энергии нейтронов имеет место при соударении их с частицами близкой к ним массы, например с ядрами водорода — протонами. В этом случае энергия нейтрона распределяется примерно поровну между двумя столкнувшимися частицами, т. е. нейтрон при каждом соударении значительно тормозится. При соударении с тяжелыми ядрами нейтрон отражается при сравнительно малой потере скорости. Поэтому в отличие от излучения наибольшее замедление нейтронов имеет место в веществах, содержащих легкие элементы, особенно водород. Веществом-замедлителем может служить, в частности, вода.

Основным материалом для одновременной защиты от у- и нейтронного излучения являются особо тяжелые и гидратные бетоны. Поскольку гидраты, задерживающие поток нейтронов, содержатся в цементном камне, основное назначение тяжелых заполнителей — поглощение у-лучей.

В качестве заполнителей применяются барит, железные руды, металлолом.

Барит — сернокислый барий (BaS04) — весьма распространенный в природе минерал белого цвета. Его плотность — около [4500 кг/м3, предел прочности при сжатии — около 50 МПа. Плотность бетона на баритовом заполнителе достигает 3800 кг/м3.

Магнетит, или магнитный железняк,— слабоокисленная железная руда (Fe304) с плотностью около 4500. 5000 кг/м3 и пределом црочности при сжатии до 200 МПа. Плотность бетона на песке и щебне из магнетита составляет около 4000 кг/м3.

Гематитовые руды содержат красный железняк (Fe203). Плотность гематита — до 4300 кг/м3, а бетона на его основе — до 3500 кг/м3.

Лимонит, или бурый железняк, содержит гидроксид железа (2Fe203-3H20), т. е. может быть средством защиты как от у-лучей, так и от нейтронов. Плотность лимонита — около 3500 кг/м3, лимонитового бетона — 2600. 2800 кг/м3, т. е. лимонитовый бетон лишь немного тяжелее обычного, однако связанной воды в нем может быть вдвое больше.

Для получения особо тяжелых бетонов плотностью 5000. 7000 кг/м3 применяют чугун ( плотность около 7500 кг/м3) в виде дроби, крошки и скрапа (крупного лома), а также сталь (плотность около 7800 кг/м3) в виде обрезков, отходов от штамповки, дробленой стружки.

Необходимо учитывать воздействие нейтронного излучения на свойства заполнителей. Во-первых, при поглощении нейтронов ядрами атомов возможно вторичное у-излучение. Это особенно характерно для железа. Поэтому железный лом и руды не всегда могут быть использованы. В этом отношении предпочтителен барит, не дающий вторичного у-излучения. Во-вторых, нейтроны при столкновении с ядрами атомов могут нарушить их равновесное положение в кристаллической решетке. При этом возможно изменение объема и свойств заполнителей. Например, при облучении кварца нейтронами происходит его аморфизация, сопровождающаяся значительным анизотропным расширением, что может привести к разрушению бетона. Данное явление следует учитывать не только при проектировании составов защитных бетонов, но также обычных конструкционных, жаростойких и теплоизоляционных бетонов, применяемых при строительстве ядерных установок. Крупность заполнителей для защитных бетонов определяется массивностью бетонируемой конструкции и принимается максимально возможной. Зерновой состав заполнителей подбирают с таким расчетом, чтобы как можно больше насытить бетон тяжелым заполнителем; чем тяжелее получится бетон, тем меньшей может быть толщина ограждения. В этом случае предпочтительны прерывистые зерновые составы заполнителей, позволяющие получить бетон наибольшей плотности. Бетонные смеси на особо тяжелых заполнителях в значительной степени подвержены сегрегации, расслоению. Поэтому большое значение имеет плотность и вязкость растворной части бетона. При прерывистом зерновом составе заполнителя иногда применяют раздельное бетонирование методом восходящего раствора.

Бетон предназначается для конструкций биологической защиты атомных электростанций, предприятий по производству и переработке изотопов и т. п.

Защитная конструкция энергетических ядерных реакторов может иметь различную форму, но чаще применяется цилиндрическая (рис. 103). Из активной зоны идет поток нейтронов и у-лучей.


Рис. 103. Вертикальный бетонный цилиндрический корпус реактора АЭС со сферической внутренней поверхностью (по А. Н. Кемеровскому): 1 — арматурные тросы, осуществляющие предварительное напряжение бетонного корпуса; 2 — парогенераторы; 3 — тепловая защита; 4 — активная зона; 5 — загрузочные трубы; 6 — станционное оборудование; 7 — ребра (з которых закреплена наружная спиральная предварительно напряженная арматура); 8 — газодувка

Нейтронный поток включает быстрые, промежуточные и тепловые нейтроны. Поглощение нейтронов в графите, стали и бетоне сопровождается образованием захватного у-излучения, которое учитывается в расчетах защиты (рис. 104).


Рис. 104. Схема защиты реактора (по А. Н. Комаровскому): а — активная зона; 6 — графит; в — стальной корпус; г — бетон

Защитные свойства бетонов определяются в основном плотностью (объемной массой бетона )и содержанием связанной воды, являющейся замедлителем нейтронов. Для биологической защиты наряду с тяжелым бетоном применяют особо тяжелые бетоны с объемной массой 2500 — 6000 кг/м3. Гидратные бетоны содержат повышенное количество связанной воды (более 3% по массе). В борсодержащих бетонах бор входит в состав вяжущего, заполнителей или специальных добавок.

Материалы, применяемые для сооружения бетонной защиты, должны обеспечить возможно большую объемную массу бетона и определенное содержание водорода — обычно в виде воды, связанной с вяжущим.

Цементы. Применяют портландцемент или шлакопортландцемент, который выделяет при гидратации немного тепла и поэтому хорошо зарекомендовал себя в массивных защитных конструкциях. В качестве заполнителей используют тяжелые природные или

искусственные материалы. Для особо тяжелого бетона применяют

в качестве заполнителя близкие по своим свойствам железные руды — магнетит (Fe304) и гематит с содержанием железа не менее 60%. Бурый железняк (лимонит) Fe203-nH20 позволяет значительно повысить содержание связанной воды в гидратном бетоне. Баритовые руды (или барит), содержащие около 80% сульфата бария применяют в качестве мелкого и крупного заполнителя.

Металлический крупный заполнитель получают из отходов металлообрабатывающих заводов, мелким заполнителем служит кварцевый или лимонитовый песок, а также чугунная дробь. Свинцовая дробь дорогая и ее применяют при малой толщине защиты для заделки отверстий в конструкциях, когда требуется бетон с повышенными защитными свойствами. Объемная масса бетона на металлическом заполнителе достигает 6000 кг/м3.

Бетон должен иметь заданную марку по прочности и относительно низкий модуль упругости, что позволяет снизить величину растягивающих напряжений во внешней зоне защиты, вызываемых односторонним нагревом. Кроме того, бетон, расположенный у активного корпуса реактора, должен обладать достаточной стойкостью к воздействию излучений, быть огнестойким и жаростойким даже при температурах, возможных при аварийном режиме реактора. Для массивных конструкций желательна меньшая теплота гидратации цемента и минимальная усадка бетона (для предотвращения температурных и усадочных трещин), а также небольшая величина коэффициента температурного расширения.

Механические свойства особо тяжелых магнетитового, гематитового, лимонитового и баритового бетонов близки. Особо тяжелый бетон имеет марки по прочности Ml00, М200 и МЗОО, при этом марки на осевое растяжение составляют Р10, Р20.

В качестве дополнительной характеристики бетона, которую учитывают в расчете толщины защиты, подбирают количество связанной воды <В), исходя из того, что она связывается цементом или входит в состав заполнителя (лимонита, серпентина).

В табл. 35 приведены примерные составы особо тяжелого бетона на разных заполнителях.

Арена


ООО "Арена"
г. Ижевск, ул. Маяковского 13
Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Телефон: (3412) 51-22-73
Факс: (3412) 51-22-73

Примечание

Нормы и стандарты по бетонному строительству в Европе переживают перелом. В переходный период параллельно действуют как старые, так и новые нормы. Данная спецификация основывается на стандарте.
Текст, выделенный в данной спецификации курсивом, указывает на изменения, обозначенные в новом поколении норм и стандартов.
В соответствии с DIN 1045 тяжелый бетон (плотность в сухом состоянии > 2,8 кг/м или плотность бетона, высушенного в печи > 2,6 кг/дм3) используется для:

- защиты от излучения (медицина, дефектоскопия, таможня, исследования, атомные электростанции),
- балластировки (строительные машины, корабли, защита фундамента от выталкивающей подъемной силы, трубопроводы),
- сейфы и
- звукоизоляция

С целью защиты от радиационного облучения законодатели установили максимальные значения допустимых доз облучения. Бетон для защиты от радиации (называемый также экранирующий бетон) служит для ослабления воздействия опасного излучения. В таблице 1 представлено действие защиты, образуемой бетоном. Подтверждение ослабления излучения не является задачей инженера-бетонщика; специалист по радиационной защите должен предоставить необходимые параметры для проектирования бетона с учетом конструктивных характеристик (например, толщина строительного элемента):
- плотность жесткого бетона,
- содержание химически связанной воды,

Таблица 1: Действие бетона для защиты от радиации

Источники
излучения
(примеры)

Требования к качеству бетона для защиты от радиации

рентгеновски приборы, линейный ускоритель

- обычный бетон с pR ≥ 2,4 кг/дм 3 и толщиной около 300 мм

альфа-
излучение
бета-излучение

- толщина бетона должна быть в мм

ядерные
реакторы,
радионуклиды,
ядерные
взрывы

- высокая плотность и/или

- высокое содержание химически связанной воды

- добавки в виде бора, кадмия или гафния

Таблица 2: Заполнители (зернистые заполнители) и добавки в тяжелый бетон и бетон для защиты от радиации

Группы веществ (имеющиеся размеры зерен)

Плотн
ость
зерна
кг/дм 3

Содерж
ание
железа
Весовой
процент

Кристаллиз
ационная
вода
Весовой
процент

Содерж
ание
бора
Весовой
процент

Химические
элементы
(Основные
составляющие)

Ориентировоч ная цена Обычная надбавка = 1

(обычный зернистый заполнитель)

Стальной гранулят ( 3

1) Строительные элементы, защищенные от высыхания, и массивные конструкции в возрасте минимум 3 месяца
2) Высокие значения получаются при водоцементном отношении > 0,5 для
- быстро твердеющего цемента
- цемента с высоким содержанием C3S и более крупной мелкодисперсной взвесью
- количество добавок с высокой вероятностью захвата нейтронов,
- химико-минералогический состав заполнителей (зернистых заполнителей)
Другие требования к бетону могут вытекать из
- термических нагрузок,
- механического и химического разрушения,
- экономических ограничений

Для защиты от радиации используются тяжелый бетон с плотностью в сухом состоянии от 2,8 до 6,0 кг/дм3 (от 2,6 до 6,0 3 «-* кг/дм ), а также обычный бетон, причем в медицинской технике конструктивные элементы должны иметь толщину до 2 м.

1. Исходные вещества

Цемент

Можно использовать цемент в соответствии с DIN EN 197-1 и DIN 1164 при условии соблюдения правил применения цемента (DIN 1045-2 устанавливает области использования цемента в зависимости от классов экспозиции строительных элементов). Для создания массивных элементов может использоваться цемент с нормальным начальным твердением или низкотермичный цемент.

Заполнители (зернистые заполнители) и добавки

Обзор заполнителей (зернистых заполнителей) и добавок, используемых при изготовлении тяжелого бетона и бетона для защиты от радиации, представлен в таблице

2. Свинец и камни, содержащие свинец, не подходят для использования при приготовлении бетона, так как они могут привести к нарушениям в процессе схватывания, при этом не образуется достаточной связи сцепления с цементным камнем.
Предпочтительным является использование зерен заполнителя, имеющих приплюснутую форму. Для удобоукладываемости и получения высокой плотности бетона его гранулометрический состав должен находиться в зоне кривой A/B. Если поставляемые зернистые заполнители не соответствуют заполнителям, обычно используемым в бетонном строительстве, то необходимо использовать смесь с уменьшенным содержанием мелкодисперсной взвеси (таблица 3). Заполнители (зернистые заполнители) должны соответствовать требованиям стандарта DIN 4226. Если производитель бетона получает тяжелый заполнитель (тяжелый зернистый заполнитель) от поставщика, не подлежащего контролю качества (подтверждению соответствия) согласно DIN 4226, то производитель должен предоставить свидетельство о составе и однородности бетонной смеси, а также в случае необходимости, анализ, проведенный компетентными лабораториями.

Разрешено использовать тяжелые заполнители, удовлетворяющие следующим основным условиям:

- должны быть обеспечены необходимый гранулометрический состав, плотность зерен, содержание кристаллизационной воды и химический состав,
- свойства заполнителей (зернистых заполнителей) не должны оказывать отрицательного влияния на прочность и плотность бетона,
- износ, обусловленный хранением заполнителей (зернистых заполнителей), а также смешиванием и укладкой бетонной смеси, должен быть незначительным,
- структура поверхности компонентов заполнителя (зернистого заполнителя) не должна снижать сцепление в строительном растворе, и соответственно, бетоне,
- заполнитель (зернистый заполнитель) не должен содержать компонентов, отрицательно влияющих на бетон и разрушающих стальную арматуру,
- минимальный предел прочности на сжатие должен составлять 80 Н/мм2 (опытные данные).

Можно использовать установленные нормой или разрешенные добавки.

Присадки
Необходимо использовать только установленные нормой или разрешенные присадки. Так как нельзя исключить возникновение химической реакции между присадками и тяжелыми заполнителями (тяжелыми зернистыми заполнителями), необходимо проводить испытания на определение пригодности, специально провести проверку изменения схватывания и твердения.
Химические реакции, приводящие к повреждению бетона и возникающие между природным тяжелым заполнителем (природным тяжелым зернистым заполнителем) и пластификаторами, разжижителями и замедлителями, не известны.
Арматурная сталь
Можно использовать все виды арматурной стали в соответствии с DIN 488. При динамической нагрузке (удары, взрывы) к предельному удлинению и обратному изгибу могут предъявляться повышенные требования.

2. Состав бетонной смеси

Содержание учитываемой связной воды (водорода)
В настоящее время не существует общепризнанных данных о связывании воды в цементном камне и заполнителях (зернистых заполнителях). В таблице 4 представлены ориентировочные данные по содержанию учитываемой связной воды (водорода) в цементном камне при различных условиях хранения и эксплуатации. Более детальные данные требуют проведения трудоемких экспериментальных исследований в соответствии с каждым отдельным случаем.
В таблице 2 представлено учитываемое содержание кристаллизационной воды в заполнителях (зернистых заполнителях) в обычных климатических условиях. При рабочей температуре от 80 °C заполнители (зернистые заполнители) теряют влагу в зависимости от температуры и времени воздействия. Заполнители (зернистые заполнители), содержащие лимонит, в целом сохраняют достаточно высокое содержание кристаллизационной воды до рабочей температуры 150 °C, заполнители (зернистые заполнители), содержащие серпентин, до температуры 350 °C.

Плотность бетонной смеси

Путем определения плотности свежеприготовленной бетонной смеси pb,h (Pc,h) с учетом ее производственного распределения можно регулировать плотность жесткого бетона pb (pc), имеющую решающее значение при его проектировании: Pb,h = Pb + 1,645 • s + w - wzs Для предварительной оценки можно использовать формулу s = 0,01 • pb

Предел прочности при сжатии

Используя названные заполнители (зернистые заполнители) можно получить классы прочности B 25 и B 35 (C 20/25, C 25/30 и C 30/37), необходимые для тяжелого бетона и бетона для защиты от радиации. Главными факторами, оказывающими влияние на прочность, являются так же, как и в обычном бетоне, водоцементное отношение, прочность цемента и количество пор уплотнения. При использовании искусственных и содержащих кристаллизационную воду заполнителей (зернистых заполнителей) могут возникать отклонения в процессе твердения по сравнению с обычным бетоном.

Свойства свежеприготовленной бетонной смеси

Объем пор в свежеприготовленной бетонной смеси даже при хорошем уплотнении составляет 1,5 % от общего объема, а при использовании искусственных заполнителей (промышленно произведенных зернистых заполнителей) объем пор может повышаться до 3 %.
Содержание воды, необходимое для получения определенной консистенции, соответствует содержанию воды в обычном бетоне, при использовании искусственных заполнителей (промышленно произведенных зернистых заполнителей) возможны отклонения. Необходимо удерживать содержание воды на низком уровне, так как иначе снизится плотность бетона, увеличится усадка, и будут образовываться трещины.
При наличии мягкой и текучей консистенции и различной плотности заполнителей (плотности зернистых заполнителей) существует опасность расслоения.

Проектирование бетонной смеси

При проектировании бетонной смеси действуют такие же условия, что и для обычного бетона, при этом необходимо учитывать различную плотность заполнителей (плотности зернистых заполнителей).
Для пояснения можно посмотреть следующий пример:
- Необходимые свойства: B 25 (C20/25), внутренний элемент (XC 1) Pb = 3 200 кг/м 3 Консистенция KP (C 2, F 2)
Пористость свежеприготовленной бетонной смеси p = 2,0 % по объему Рабочая температура 3

- Согласно диаграмме: в/ц отношение = 0,59 w = 165 кг/м 3 z = 280 кг/м3
- Объемная доля заполнителя:
Vg = 1 - z/pz - w/1 000 - p
Vg = (1 - 280/3 000 - 165/1 000 - 0,02) м 3 /м 3 Vg = 0,72 м 3 /м 3
- Массовая доля заполнителя с учетом плотности свежеприготовленной бетонной смеси:
Pb,h = Pb + 1,645 s + w - wzs
pb,h = 3 200 + 1,645 • 0,01 • 3 200 + 165 - (0,2 • 280 + 30)

Pb,h = 3 300 кг/м 3 g = pb,h - z - w g = 3 300 - 280 - 165 g = 2 880 кг/м 3
- Распределение общей массы по обоим заполнителям с обоими уравнениями: g = g1 + g2
V g = g1/Pg,1 + g2/Pg,2 g1 = (Vg • pg,1 • pg,2 -g • pg,1) / (pg,2 - pg,1) g1 = (0,72 • 4 200 • 2 700 - 2 880 • 4 200) / (2 700 - 4 200) g1 = 2 620 кг/м 3 g2 = g-g1 = 2 880 - 2 620 g2 = 260 кг/м 3
Заполнители должны быть разделены в соответствии с необходимым гранулометрическим составом на отдельные фракции.
Ориентировочные данные представляют также рецептуру уже изготовленных деталей, таблица 5.

3 Производство и укладка Опалубка и леса

При повышенной плотности свежеприготовленной бетонной смеси необходимо определить соответствующие размеры опалубки и лесов. Целесообразным является применение временной стяжки элементов опалубки, так как в целом сложно закрыть анкерные отверстия с помощью раствора бетона для защиты от радиации. Необходимо подтвердить пригодность стяжки элементов опалубки и распорок.

Бетон для защиты от радиоактивных излучений предназначается для конструкций биологической защиты атомных электростанций, предприятий предприятий по производству и переработке изотопов и т.п.
Защитная конструкция энергетических ядерных реакторов может иметь различную форму, но чаще применяется цилиндрическая (рис. 1). Из активной зоны идет поток нейтронов и ϒ-лучей.

Рисунок-1. Вертикальный бетонный цилиндрический корпус реактора АЭС со сферической внутренней поверхностью (по А. Н. Кемеровскому):


1 — арматурные тросы, осуществляющие предварительное напряжение бетонного корпуса; 2 — парогенераторы; 3 — тепловая защита; 4 — активная зона; 5 — загрузочные трубы; 6 — станционное оборудование; 7 — ребра (з которых закреплена наружная спиральная предварительно напряженная арматура); 8 — газодувка

Нейтронный поток включает быстрые, промежуточные и тепловые нейтроны. Поглощение нейтронов в графите, стали и бетоне сопровождается образованием захватного ϒ-излучения, которое учитывается в расчетах защиты (рисунок-2).Защитные свойства бетонов определяются в основном плотностью (объемной массой бетона ) и содержанием связанной воды, являющейся замедлителем нейтронов.

Для биологической защиты наряду с тяжелым бетоном применяют особо тяжелые бетоны с объемной массой 2500 — 6000 кг/м³. Гидратные бетоны содержат повышенное количество связанной воды (более 3% по массе). В борсодержащих бетонах бор входит в состав вяжущего, заполнителей или специальных добавок.

Материалы, применяемые для сооружения бетонной защиты, должны обеспечить возможно большую объемную массу бетона и определенное содержание водорода — обычно в виде воды, связанной с вяжущим.

Цементы. Применяют портландцемент или шлакопортландцемент, который выделяет при гидратации немного тепла и поэтому хорошо зарекомендовал себя в массивных защитных конструкциях. В качестве заполнителей используют тяжелые природные или искусственные материалы. Для особо тяжелого бетона применяют в качестве заполнителя близкие по своим свойствам железные руды — магнетит (Fe3О4) и гематит с содержанием железа не менее 60%.

Рисунок-2. Схема защиты реактора (по А. Н. Комаровскому):

а — активная зона; 6 — графит; в — стальной корпус; г — бетон

Бурый железняк (лимонит) Fe2О3· nH20 позволяет значительно повысить содержание связанной воды в гидратном бетоне. Баритовые руды (или барит), содержащие около 80% сульфата бария (BaSO4), применяют в качестве мелкого и крупного заполнителя.

Металлический крупный заполнитель получают из отходов металлообрабатывающих заводов, мелким заполнителем служит кварцевый или лимонитовый песок, а также чугунная дробь. Свинцовая дробь дорогая и ее применяют при малой толщине защиты для заделки отверстий в конструкциях, когда требуется бетон с повышенными защитными свойствами. Объемная масса бетона на металлическом заполнителе достигает 6000 кг/м3.

Бетон должен иметь заданную марку по прочности и относительно низкий модуль упругости, что позволяет снизить величину растягивающих напряжений во внешней зоне защиты, вызываемых односторонним нагревом. Кроме того, бетон, расположенный у активного корпуса реактора, должен обладать достаточной стойкостью к воздействию излучений, быть огнестойким и жаростойким даже при температурах, возможных при аварийном режиме реактора. Для массивных конструкций желательна меньшая теплота гидратации цемента и минимальная усадка бетона (для предотвращения температурных и усадочных трещин), а также небольшая величина коэффициента температурного расширения.

Механические свойства особо тяжелых магнетитового, гематитового, лимонитового и баритового бетонов близки. Особо тяжелый бетон имеет марки по прочности Ml00, М200 и МЗОО, при этом марки на осевое растяжение составляют Р10, Р20.

В качестве дополнительной характеристики бетона, которую учитывают в расчете толщины защиты, подбирают количество связанной воды (В1), исходя из того, что она связывается цементом или входит в состав заполнителя (лимонита, серпентина).Требуемое количество связной воды вычисляют по формуле : B1≥Hϒб/11,1, где Н-необходимое содержание водорода в бетоне ,% по массе;ϒб-объемная масса бетона, т/м³; 11,1-содержание водорода в воде,%.

В таблицу-1 приведены примерные составы особо тяжелого бетона на разных заполнителях.

Таблица -1. Примерные составы и объемная масса особо тяжелого бетона

Защитные свойства бетона характеризуются толщиной слоя половинного ослабления (b½),вычисляемый по формуле :b½=0,693λ, где λ-длина релаксации, см, численно равная толщине слоя данного мкатериала, ослабляющего поток излучения в ε раз, то есть в 2,718 раза.

Читайте также: