Автоматизация осушки газа на укпг реферат

Обновлено: 30.06.2024

АСУТП осушки газа предназначена для:
1. сбора и обработки информации о состоянии технологических параметров, исполнительных механизмов и технологического оборудования;
2. управления исполнительными механизмами в автоматическом режиме, а также организации человеко-машинного интерфейса для автоматизированного режима управления;
3. ведения базы данных реального времени, а также архивации и хранения истории состояния объекта с требуемого момента времени;
4. обнаружение, сигнализация и регистрация отклонений параметров от установленных границ;
5. анализ срабатывания блокировок и защит;
6. формирования предупредительных сигнализаций оперативному персоналу.

Целями создания системы являются:
1. обеспечение режимов работы УКПГ на основе применения комплексных и оптимизационных алгоритмов, надежной работы технологического оборудования;
2. обеспечение бесперебойной подачи вырабатываемого продукта требуемого качества;
3. обеспечение эффективной загрузки технологического оборудования;
4. обеспечение локализации и оперативного управления в нештатных ситуациях;
5. минимизация потерь при возникновении нештатных ситуаций;
6. обеспечение высокой экологической безопасности производства.

Автоматизация процесса осушки газа на установке комплексной подготовки газа

Абсорбционная осушка - широко применяемый технологический процесс подготовки газа к транспорту на установке комплексной подготовки газа. В состав основных технологических объектов УКПГ газа абсорбционным методом входят:
1. газопровод подключения УКПГ к промысловому газопроводу;
2. здание переключающей аппаратуры (ЗПА);
3. дожимная компрессорная станция (с цехом очистки газа) второй очереди;
4. установка осушки газа;
5. установка регенерации абсорбента;
6. дожимная компрессорная станция первой очереди;
7. газоизмерительная станция (ГИС).

На первом этапе осушки газа необходимо его тщательно очистить от твердых примесей и агрессивных компонентов (например, от минерализованной воды), так как они способствуют быстрому износу дорогостоящего технологического оборудования, вызывают нарушения в условиях нормальной эксплуатации установок. Поэтому сепарация природного газа является одним из важнейших технологических процессов на УКПГ. Следующим в технологической цепи подготовки газа основным процессом при подготовке газа к транспорту является процесс его осушки. Абсорбционный процесс осушки газа представляет собой разделение бинарных или многокомпонентных газовых смесей, осуществляемое путем избирательного поглощения отдельных компонентов смеси жидким поглотителем - абсорбентом в результате контакта неравновесных потоков газа и абсорбента. Физическая сущность процесса абсорбции заключается в том, что упругость паров поглощаемого вещества над абсорбентом меньше, чем парциальное давление этого вещества в газе. Благодаря этому поглощаемое вещество и влага из газа переходят в поглотитель.

Эксплуатационные показатели установок осушки газа зависят от многих факторов, таких как рабочие давления и температуры в установке, состав газа при входе на установки, концентрация регенерированного абсорбента и т.д. Исходя из вышесказанного, в промысловых условиях для эффективной организации процесса осушки газа целесообразно его провести при максимальном давлении и минимальной температуре. Для точного измерения технологических параметров здесь необходимо использовать высокоточные манометры и датчики давления, термометры и датчики температуры. При этом нельзя упускать из виду, что температура поступающего в аппарат абсорбента не должна превышать температуру газа больше, чем на 6-8 °С, так как это приводит к увеличению его потерь, и не должна быть ниже температуры газа, так как это может привести к вспениванию абсорбера и, как следствие, к захлебыванию тарелок, увеличению перепада давления в колонне.

Автоматизация процесса осушки газа на установке комплексной подготовки газа

В промысловых условиях абсорбционные установки осушки подвержены различным внешним воздействиям, что и вызывает необходимость управления ими. Основная задача управления состоит в обеспечении заданной степени осушки газа при минимальных энергетических и материальных затратах и соблюдении ограничений на технологические параметры процесса. Процесс осушки газа на газовом промысле осуществляют, в шестнадцати параллельно работающих абсорберах, входы и выходы которых подключены к коллекторам. Опыт эксплуатации их показывает, что, несмотря на одинаковые конструктивные характеристики аппарата, их гидравлические сопротивления различны. Это приводит к неравномерной нагрузке аппаратов и уменьшению общей эффективности их работы. Поэтому задача автоматического управления заключается не только в поддержании требуемой точки росы осушенного газа, но и в обеспечении равномерного распределения потоков газа между абсорберами.

Для обеспечения надежной осушки газа в переменном (по расходу газа) режиме необходимо поддерживать максимальный расход ДЭГ, постоянную его концентрацию, а также постоянную температуру контакта фаз (под максимальным понимается такой расход абсорбента, который при максимальной нагрузке аппарата по газу и постоянной концентрации гликоля обеспечивает заданную степень осушки газа). Такая система управления обеспечивает инвариантность влажности газа по отношению к его расходу.

Основными факторами технологического процесса являются:
1. температура и давление в абсорбере;
2. уровень насыщенного ДЭГа в абсорбере;
3. расход и температура регенерированного ДЭГ;
4. температуры точки росы (влагосодержание) осушенного газа;
5. регулирование уровня пластовой воды в абсорбере.

Выход некоторых параметров за границы установленные технологическим регламентом может привести к возникновению аварийной ситуации (выходу из строя или разрушению технологических аппаратов). Опасные отклонения особенно важных параметров необходимо сигнализировать и предотвращать. Структура АСУТП должна соответствовать магистрально-модульному принципу построения с сетевой организацией обмена информацией между устройствами и иметь распределенное программное обеспечение и базу данных, доступную (с заданными ограничениями) всем абонентам промышленной сети. Сетевая организация АСУТП должна обеспечить подключение системы к сети УКПГ, организованной на базе сети Ethernet.

АСУТП должна быть двухуровневой. Под двухуровневой системой понимается система, в которой все реализуемые задачи программно и аппаратно разделяются на два уровня. Нижний уровень реализует задачи непосредственного управления объектом. Верхний уровень реализует задачи интерфейса оператора. Связь между нижним и верхним уровнями должна осуществляться преимущественно кодовым способом посредством специализированных промышленных сетей большой производительности, обеспечивающих полный цикл обмена данными между компонентами в пределах одной секунды. Обмен информацией должен осуществляться автоматически.

АСУТП должна иметь возможность организации связи со смежными АСУ. Распределенная система управления (РСУ) и противоаварийная защита (ПАЗ) должны функционировать как независимые структуры, имеющие раздельные каналы получения информации и выход на исполнительные механизмы. Система ПАЗ должна строиться на автономно функционирующих средствах микропроцессорной техники и обеспечивать гарантированную реализацию аварийной сигнализации и алгоритмов защитных блокировок технологических процессов в критических ситуациях.

Автоматизация процесса осушки газа на установке комплексной подготовки газа

АСУТП должна обеспечивать работу объекта автоматизации в круглосуточном режиме с количеством рабочих дней не менее 360. АСУТП должна быть ориентирована на работу в реальном времени, т.е. быть предсказуемой и обеспечивать выполнение всех функций точно в срок. РСУ и ПАЗ должны иметь программную и аппаратную диагностику исправности сетей, станций, модулей и блоков, входных и выходных электрических цепей. В РСУ и ПАЗ должна быть предусмотрена возможность замены неисправных модулей и блоков в оперативном режиме.

АСУТП должна иметь гибкую структуру, быть наращиваемой, легко адаптироваться к изменениям характеристик технологических процессов во времени, обеспечивать модификацию алгоритмов решения задач и наборов, участвующих в них переменных, конфигурирование схем регулирования и управления, допускать расширение объема информационных задач и задач управления. Кроме аппаратурного резерва РСУ и ПАЗ должны обладать временной и функциональной избыточностью (степень загруженности контроллеров, запас емкости памяти и свободных функциональных блоков и т.д.).

Для обеспечения нормального функционирования АСУТП и предотвращения несанкционированного вмешательства в ход технологического процесса должна быть предусмотрена защита информации от несанкционированного доступа. Защита должна быть обеспечена с помощью ключей и программных паролей. АСУТП должна автоматически вести учет пользователей с регистрацией информации о начале и окончании работы, а также о действиях операторов-технологов в процессе работы. Эти данные должны быть защищены от возможного вмешательства и изменения после их регистрации. Временный отказ технических средств или потеря электропитания не должны приводить к разрушению накопленной или усредненной во времени информации.

Автоматизация процесса осушки газа на установке комплексной подготовки газа

Просто нажмите на кнопку нужного Вам сервиса и данная статья будет сохранена.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Кафедра автоматизации технологических процессов и производств Дипломный проект

Автоматизация процесса осушки газа на установке комплексной подготовки газа № 9 Уренгойского газоконденсатного месторождения Студент гр. АГ 07-01Д.В. Бережной

канд. техн. наук, доц.Э.А. Шаловников

по технологическому, техническому

и специальному разделам

канд. техн. наук, доц.Э.А. Шаловников Уфа РЕФЕРАТ Дипломный проект 104 с., 24 рисунка, 17 таблиц, 11 использованных источников, 1 приложение.

УКПГ, АБСОРБЦИОННАЯ ОСУШКА ГАЗА, АБСОРБЕР, ДЭГ, РАСХОДОМЕР ПЕРЕМЕННОГО ПЕРЕПАДА ДАВЛЕНИЯ, КОРИОЛИСОВЫЙ РАСХОДОМЕР, РАСХОД РДЭГ, ПЕРЕДАТОЧНАЯ ФУНКЦИЯ ОБЪЕКТА, ПАРАМЕТРЫ РЕГУЛЯТОРА

Объектом исследования является кориолисовый расходомер для учета расхода РДЭГ в абсорбер.

В процессе исследования рассмотрена технология осушки природного газа и существующие средства измерения расхода РДЭГ в абсорбер.

Цель работы - усовершенствование существующей системы автоматизации абсорбционной установки осушки газа.

В результате исследования произведен анализ и выбор средства измерения расхода РДЭГ в абсорбер и предложена замена основного расходомера переменного перепада давления (диафрагмы) на кориолисовый расходомер. Так же были рассчитаны коэффициенты передаточной функции регулятора расхода РДЭГ в абсорбер.

Технико-экономические показатели подтверждают повышение экономических выгод от внедрения кориолисового расходомера.

Эффективность работы заключается в повышении точности определения расхода РДЭГ в абсорбер.СОДЕРЖАНИЕОпределения, сокращения и обозначения

. Технологический процесс на абсорбционной установке осушки газа…

.1 Краткое описание технологических объектов УКПГ

.2 Назначение цеха осушки газа

.3 Сепарация газа от капельной жидкости и механических примесей

.5 Характеристика используемого абсорбента

.6 Описание технологического процесса осушки газа

.1 Выбор и обоснование предмета поиска

.2 Регламент патентного поиска

.3 Результаты поиска

.4 Анализ результатов патентного поиска

. Автоматизация абсорбционной установки осушки газа на УКПГ

.1 Основные задачи автоматизации

.2 Назначение и цели создания автоматизируемой системы управления технологическими процессами

.3 Структура комплекса технических средств АСУТП

.4 Информационное обеспечение системы управления

.5 Структура программного обеспечения

.6 Описание системы ПАЗ

.7 Описание функциональной схемы автоматизации абсорбционной установки осушки газа

.8 Приборы и средства автоматизации абсорбционной установки осушки газа

. Анализ и выбор средства измерения расхода ДЭГ. Расчет коэффициентов передаточной функции регулятора расхода ДЭГ на линии подачи ДЭГ в абсорбер

.1 Анализ возможных средств измерений расхода ДЭГ на абсорбционной установке осушки газа и рекомендации по их использованию

Начиная со второй половины ХХ в. газовая промышленность становится наиболее быстро развивающейся отраслью топливно-энергетического комплекса. Продукция этой отрасли обеспечивает потребность всей промышленности (около 45% общего народнохозяйственного потребления), тепловой электроэнергетики (35%), коммунального бытового хозяйства (более 10%). Газ – самое экологически чистое природное топливо и ценное сырье для производства химической продукции. За последние десятилетия мировое потребление природного газа росло более высокими темпами по сравнению с другими видами энергии.

Оглавление

Введение
Теоретическая часть
Методы осушки
1. Абсорбционный метод
1.1 Основы процесса
1.2 Физическая и химическая абсорбция
1.3 Применение абсорбционной очистки
1.4 Недостатки и преимущества абсорбционного метода очистки газов
2. Адсорбционный и хемосорбционный метод
2.1 Основные понятия
2.2 Активные угли
2.3 Силикагели
2.4 Алюмогели
2.5 Цеолиты
2.6 Иониты
Заключение
Список использованной литературы

Файлы: 1 файл

Реферат.docx

  1. Введение
  2. Теоретическая часть
  3. Методы осушки

1. Абсорбционный метод

1.1 Основы процесса

1.2 Физическая и химическая абсорбция

1.3 Применение абсорбционной очистки

1.4 Недостатки и преимущества абсорбционного метода очистки газов

2. Адсорбционный и хемосорбционный метод

2.1 Основные понятия

2.2 Активные угли

  1. Заключение
  2. Список использованной литературы

Начиная со второй половины ХХ в. газовая промышленность становится наиболее быстро развивающейся отраслью топливно-энергетического комплекса. Продукция этой отрасли обеспечивает потребность всей промышленности (около 45% общего народнохозяйственного потребления), тепловой электроэнергетики (35%), коммунального бытового хозяйства (более 10%). Газ – самое экологически чистое природное топливо и ценное сырье для производства химической продукции. За последние десятилетия мировое потребление природного газа росло более высокими темпами по сравнению с другими видами энергии. В России, имеющей свыше 40% прогнозных топливных ресурсов планеты, доля природного газа в топливно-энергетическом балансе страны за последние 50 лет увеличилась с 1 до 50%. В настоящее время энергетическая стратегия России, несмотря на снижение общего объема добычи газа, предусматривает дальнейшее увеличение его удельного веса в производстве первичных энергоресурсов.

Интенсивные темпы развития газовой промышленности обусловлены высоким уровнем развития ее подотраслей – добычи, подготовки, транспорта и системы распределения (газоснабжения). В последние годы введены в эксплуатацию гигантские газовые и газоконденсатные месторождения с высокопроизводительными установками комплексной подготовки газа (УКПГ) к транспорту, расположенные в районах Сибири и Крайнего Севера.

Помимо использования природного газа в качестве топлива, он находит применения в различных областях промышленности. Эффективно используется газ в сельском хозяйстве. Система газового инфракрасного отопления с применением жидкого газа создает благоприятные микроклиматические и зоологические условия на животноводческих фермах. Жидкий газ используется в сушилках с газовыми горелками или инфракрасными излучателями для сушки зерна, фруктов и т.д. Газ используют в теплицах при выращивании ранних овощей. Газ, сгорая в теплице, не только поддерживает необходимую температуру, но и повышает содержание углекислоты внутри теплицы, что значительно увеличивает урожайность огурцов, помидоров, а также ускоряет их созревание. Большие возможности для химической промышленности открылись с появлением газа. Путем различных способов переработки из газа получают синтетические материалы и пластмассы, органические кислоты, каучук, лекарственные и моющие вещества, минеральные удобрения и ядохимикаты, водород, этилен и ацетилен, окись углерода, спирты и красители.

В связи с возрастающим спросом на природный газ необходимы конструктивные решения, направленные на усовершенствование подотраслей газовой промышленности (добычи, подготовки, транспорта и системы газораспределения), что позволит рационализировать поставку газа на внутрироссийские нужды и на экспорт для дальнейшего улучшения энергетической и экономической эффективности. Также необходимы разработки, связанные с увеличением количества извлекаемых полезных компонентов из добываемого природного газа. Разумеется, все эти действия не должны противоречить экологическим нормам.

Природный газ, поступающий из скважин, содержит механические примеси (песок, пыль), которые увеличивают абразивный износ газовых тракторов компрессоров, а углеводородный конденсат, пары воды и свободную влагу с растворенными в ней солями – они вызывают трудности (главным образом – коррозию, образование гидратов или льда, что является причиной возникновения пробок в нем) при транспортировки газа по трубопроводу.

Для удаления механических примесей используются сепараторы различных конструкций. Для предотвращения конденсации воды из газа при его охлаждении и образовании гидратов одним из наиболее важных звеньев в процессе подготовки газа транспорту является искусственная осушка, с помощью которой добиваются состояния газа, когда его точка росы ниже, чем температура транспортировки.

По своему классификационному признаку методы осушки газов подразделяются на три основные группы:

В основе лежит искусственное охлаждение газов, компримирование их, а также сочетание компримирования с охлаждением. Осуществляются следующими способами:

  • вымораживанием влаги из газа с использованием низких температур атмосферы;
  • охлаждением газа с дополнительным компримированием и без него;
  • инжекцией химических веществ в газовый поток промысловых газосборных трубопроводов с последующим улавливанием продуктов гидратации на сепарационных и центральных установках;
  • низкотемпературной сепарацией (т.е. охлаждением природного газа с последующим разделением газоконденсатной смеси в сепараторе на жидкую и газовую фазы).

Химическая реакция между водой и химическими веществами может быть столь полной, что образующиеся при этом продукты гидратации будут иметь чрезвычайно низкую упругость водяных паров. Имеются химические реагенты, обеспечивающие практически полную осушку газа. Однако эти реагенты очень трудно или вообще невозможно регенерировать, что делает их непригодными для использования в качестве промышленных осушителей. Они широко применяются при лабораторном определении влажности газов.

Основаны на поглощении влаги различными поглотителями (сорбентами) и делятся на две основные группы: адсорбция (с применением твердых сорбентов) и абсорбция (с применением жидких сорбентов).

1. Абсорбционный метод

1.1 Основы процесса

Абсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода и других сернистых соединений, оксидов азота, паров кислот (НСI, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители).

Абсорбционный метод реализует процессы, происходящие между молекулами газов и жидкостей. Если отсутствует взаимодействие между распыливающейся жидкостью и орошаемым газом, то эффективность поглощения компонентов из паровоздушной смеси определяется только равновесием пар-жидкость.

Скорость поглощения газа жидкостью зависит от:

а) диффузии поглощаемых веществ из газового потока к поверхности соприкосновения с поглощающей жидкостью;

б) перехода газовой частицы к поверхности жидкости;

в) диффузии абсорбированных веществ в промывной жидкости, где устанавливается равновесие;

г) химической реакции (если она имеет место).

Абсорбционная очистка применяется как для извлечения ценных компонентов из газового потока и возврата их снова в технологический процесс для повторного использования, так и для поглощения из выбросных газов вредных веществ с целью санитарной очистки газов. Обычно рационально использовать абсорбционную очистку, когда концентрация примесей в газовом потоке превышает 1%(об). В этом случае над раствором существует определенное равновесное давление поглощаемого компонента, и поглощение происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления его над раствором. Полнота извлечения компонента из газа при этом достигается только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего извлекаемого вещества.

1.2 Физическая и химическая абсорбция

Принято различать физическую и химическую абсорбцию (хемосорбцию). При физической абсорбции молекулы удаляемого газа компонента не вступают в химическое взаимодействие с молекулами поглощающей жидкости. Однако процесс поглощения газов жидкостями разделяется на физическую и химическую абсорбцию условно. На самом деле это сложное физико-химическое явление.

В качестве абсорбента в принципе может быть использована любая жидкость, в которой извлекаемая из газового потока примесь достаточно растворима. Но для эффективного использования жидкий поглотитель должен обладать высокой поглощающей способностью, хорошей избирательностью по отношению к поглощаемому веществу, термохимической устойчивостью, малой летучестью, хорошей способностью к регенерации, небольшой вязкостью и невысокой стоимостью, а также не оказывать коррозионного действия на аппаратуру. Следует отметить, что универсальной жидкости, которая удовлетворяла бы всем приведенным требованиям не существует. В каждом отдельном случае подбирают абсорбент, который наиболее полно удовлетворяет ряду требований.

При физической абсорбции в качестве абсорбента чаще всего используют воду, а также органические растворители и минеральные масла, не реагирующие с извлекаемым из газа веществом. При химической абсорбции применяют водные растворы щелочей и химических окислителей (перманганата калия, гипохлорита натрия, броматов, перекиси водорода и других), а также водные растворы моно- и диэтаноламина, аммиака, карбоната натрия и калия, трикалийфосфата.

Одним из параметров, определяющих выбор адсорбента, является способность примесей, содержащихся в отработанных газах, растворяться в данном абсорбенте.

1.3 Применение абсорбционной очистки

Абсорбционная очистка - непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Применение абсорбционного метода очистки обусловлено высокой интенсивностью абсорбционных процессов, позволяющей создавать высокопроизводительные газоочистные установки, возможностью применения метода для очистки газов, содержащих и вредные газы, и пыль, и, наконец, наличием огромного опыта эксплуатации абсорбционного оборудования в различных технологических процессах и в первую очередь в химической технологии.

1.4 Недостатки и преимущества абсорбционного метода осушки газов

Абсорбционный метод очистки газов не свободен от определенных недостатков, связанных, прежде всего, с громоздкостью оборудования. Этот метод достаточно капризен в эксплуатации и связан с большими затратами. К недостаткам абсорбционного метода следует отнести также образование твердых осадков, что затрудняет работу оборудования, и коррозионную активность многих жидких сред. Однако, не смотря на эти недостатки, абсорбционный метод еще широко применяется в практике газоочистки, так как он позволяет улавливать наряду с газами и твердые частицы, отличается простотой оборудования и открывает возможности для утилизации улавливаемых примесей

2. Адсорбционный и хемосорбционный метод

2.1 Основные понятия

Адсорбционные методы используют для очистки газов с невысоким содержанием газообразных и парообразных примесей. В отличие от абсорбционных методов они позволяют проводить очистку газов при повышенных температурах.

Целевой компонент, находящийся в подвергаемой очистке газовой фазе, называют адсорбтивом, этот же компонент в адсорбированном состоянии — адсорбатом.

Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции поглощаемые молекулы газов и паров удерживаются силами Ван-дер-Ваальса, при хемосорбции— химическими силами.

В качестве адсорбентов используют пористые материалы с высокоразвитой внутренней поверхностью. Последние могут иметь синтетическое или природное происхождение.

Внутренняя структура наиболее распространенных на практике промышленных адсорбентов характеризуется наличием 'различных размеров и форм пустот или пор, среди которых различают макро-, переходные (мезо-) и микропоры. Суммарный объем последних в единице массы или объема адсорбента определяет в решении задач газоочистки как скорость (интенсивность) поглощения целевого компонента, так и адсорбционную способность (величину адсорбции) твердым поглотителем этого компонента.

Суммарный объем микропор обычно не превышает 0,5 см 3 /г. Их размеры условно ограничены величиной эффективного радиуса rэф=1,5*10 -9 м и соизмеримы с rэф адсорбируемых молекул. Характерной особенностью адсорбции в микропорах в этой связи является заполнение их объема адсорбируемыми молекулами.

Переходные поры характеризуются величинами эффективных радиусов от 1,5*10 -9 до 2*10 -7 м. В отличие от микропор в них возможна слоевая моно- или полимолекулярная адсорбция, так как адсорбционные силы здесь не перекрывают всего объема пор ввиду небольших полей их действия. Завершение заполнения объема переходных пор происходит при определенных условиях по механизму капиллярной конденсации, вызываемой понижением давления пара адсорбируемого вещества над вогнутым под действием сил поверхностного натяжения мениском жидкости в порах (капиллярах). Отнесенная к единице массы удельная поверхность переходных пор промышленных адсорбентов обычно находится в интервале 10 — 400 м 2 /г.

Макропоры промышленных адсорбентов обладают размерами эффективных радиусов, превосходящими 2*10 -7 м. Удельная поверхность этой разновидности пор обычно составляет лишь 0,5 -


Описание технологических процессов разных методов осушки газа от влаги; рассмотрение регенерации адсорбентов и абсорбентов; выделение преимуществ и недостатков данных методов.

Ключевые слова: осушка газа, абсорбция, адсорбция, регенерация, реагенты, схема осушки газа.

Keywords: gas drying, absorption, adsorption, regeneration, reagents, gas drying scheme.

Выбор способа осушки газа является важнейшим при проектировании разработки месторождения. Выбор подразумевает определение расходов на технологическое оборудование, на реагенты-поглотители и общие затраты на осушку газа. На данный момент существует два основных метода осушки газа: абсорбция (осушка жидкими поглотителями) и адсорбция (осушка твердыми поглотителями).

Сущность адсорбционной осушки газа заключается в поглощении порами твердых поглотителей молекул воды. Процесс осушки проходит в аппаратах периодического действия с неподвижным слоем адсорбента.

В качестве адсорбентов применяются в основном:

− Активированный оксид алюминия;

Наиболее распространенным адсорбентом является силикагель.

Для того, чтобы уменьшить сопротивление движения газа адсорбенты должны быть изготовлены в виде гранул. Температура регенерации адсорбентов обычно равна 160–180 ᵒС.

Процесс адсорбционной осушки газа является более простым по сравнению с абсорбцией. На первом этапе газ проходит через сепаратор, где идет отделение механических примесей и капельной влаги. Затем газ поступает в аппарат с адсорбентом (в технологической схеме таких аппаратов должно быть минимум два), где адсорбент поглощает влагу из газа. Далее уже осушенный газ идет далее по технологической линии или в газопровод. Другой аппарат в это время находится в регенерации. Часть осушенного газа, предварительно нагретого в теплообменнике, поступает в низ аппарата для регенерации осушителя. После этого газ вновь проходит через теплообменник, где уже охлаждается, поступает в сепаратор, а затем поступает в поток влажного газа.

Вторым методом осушки газа является абсорбционная осушка. Данный метод подразумевает использование жидких поглотителей влаги. В качестве абсорбентов чаще всего используют диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ), поэтому рассмотрим в качестве поглотителя именно гликоли.

Принцип осушки газа абсорбентом заключается в последовательном проходе газа через сепаратор и абсорбер. В сепараторе от газа отделяются механические примеси и капельная жидкость. Далее газ поступает в нижнюю часть абсорбера и движется вверх, где контактирует со встречным потоком гликоля, при этом происходит поглощение абсорбентом из газа влаги. Затем осушенный газ движется дальше по технологической схеме, а насыщенный поглотитель поступает на регенерацию. Процесс регенерации является довольно сложным, поэтому мы выделим лишь основные этапы и аппараты регенерации.

После абсорбера насыщенный гликоль поступает в выветриватель, где происходит разделение абсорбента и остатков газа. Затем гликоль проходит теплообменник, в котором он нагревается из-за теплообмена с регенерированным гликолем. Далее нагретый гликоль последовательно проходит колонну регенерации (десорбер) и испаритель. В десорбере происходит массо- и теплообмен с потоком пара, который движется к верху колонны. В испарителе гликоль нагревается до заданной температуры и из него выпариваются остатки влаги. Потом уже регенерированный абсорбент поступает в рабочую емкость, предварительно охлажденный в теплообменнике. Из рабочей емкости абсорбент поступает вновь в абсорбер.

Заключение

На данный момент широко применяется метод абсорбционной осушки газа, так как адсорбция сложнее поддается автоматизации, поэтому является более затратной. Также жидкие поглотители имеют хорошую растворимость в воде, низкую стоимость, хорошую антикоррозионность, простоту регенерации.

Основные термины (генерируются автоматически): осушка газа, метод осушки газа, осушенный газ, адсорбционная осушка газа, газ, рабочая емкость, технологическая схема.

Абсорбционная осушка газа с помощью диэтиленгликоля (ДЭГ) заключается в следующем:

Диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ) обладают малой вязкостью, неагрессивны в коррозионном отношении, очень слабо растворяют природные газы и имеют низкую упругость паров, что облегчает их регенерацию.

Недостатком этого метода осушки являются унос абсорбента и относительная сложность его регенерации.

Рис. 2.2. Абсорбер


Рис. 2.3. Десорбер


Рис. 2.4. Испаритель


Метод низкотемпературной сепарации широко применяется для: осушки газа; выделения конденсата из газа газоконденсатных месторождений на установках НТС; получения индивидуальных компонентов газа; выделения из природного газа редких газов; сжижения газов и т.д. Низкотемпературный способ разделения газов позволяет в зависимости от глубины охлаждения извлекать от 80 до 100% тяжёлых углеводородов и осушать газ при транспортировке однофазного компонента до необходимой точки росы по влаге и углеводородам. На практике применяют низкотемпературную сепарацию (НТС), при которой получают относительно невысокие перепады температур как за счёт использования пластового давления (путём дросселирования газа), так и искусственного холода (холодильных машин).


Рис. 2.6. Технологическая схема НТС на газосборном пункте

Принципиальная технологическая схема НТС изображена на рис. 2.6. Сырой газ из скважины поступает на установку комплексной подготовки, где после предварительного дросселирования (или без него) направляется в сепаратор первой ступени 3 для отделения от капельной жидкости. Затем газ направляется в теплообменник 5 для охлаждения газом, поступающим в межтрубное пространство из низкотемпературного сепаратора 7. Из теплообменника газ поступает через эжектор 6 или штуцер в низкотемпературный сепаратор 7, в котором за счёт понижения температуры в теплообменнике и на штуцере (эжекторе) выделяется жидкость. Осушенный газ поступает в теплообменник 5, охлаждает продукцию скважины и направляется в промысловый газосборный коллектор. Нестабильный конденсат и водный раствор ингибитора (например, диэтиленгликоля ДЭГ), предотвращающий гидратообразование, из сепаратора первой ступени 3 поступают в конденсатосборник 4 и далее в ёмкость 10. Здесь происходит разделение конденсата и водного раствора ДЭГа. Затем конденсат через теплообменник 9 подаётся в поток газа перед низкотемпературным сепаратором, а водный раствор ДЭГа направляется через ёмкость 11 и фильтр 12 для очистки от механических примесей в регенерационную установку 13, после чего регенерированный гликогель из установки с помощью насоса 19 подаётся в шлейфы для предотвращения образования гидратов в них. Поток нестабильного углеводородного конденсата и водного раствора ДЭГа направляется в разделительную ёмкость 15 через межтрубное пространство теплообменника, где охлаждает нестабильный конденсат, поступающий из ёмкости 10 для впрыскивания в газовый поток. Водный раствор гликоля через фильтр поступает в установку регенерации 14, после чего насосом 19 подаётся в газовый поток перед теплообменником 5. Конденсат из разделительной ёмкости 15 направляется через межтрубное пространство теплообменника 18 в деэтанизатор.Установка деэтанизации состоит из тарельчатой колонны, печи 17 и теплообменника 18. Заданная температура в нижней части деэтанизатора поддерживается с помощью теплообменника 18, в котором стабильный конденсат (нижний продукт деэтанизатора), подогретый в печи 17 до температуры 433°К, отдаёт тепло насыщенному конденсату, поступающему из ёмкости 15. Охлаждённый стабильный конденсат подаётся в конденсатопровод. По схеме предусматривается также ввод части холодного нестабильного конденсата на верхнюю тарелку стабилизатора. В этом случае деэтанизатор работает в режиме абсорбционно-отпарной колонны.

Если предусматривается транспортировка конденсата в железнодорожных цистернах, то стабилизация его производится в ректификационной колонне, работающей в режиме либо частичной, либо полной дебутанизации. Газ выветривания (дегазации) из ёмкости 15 и газ деэтанизатора 16 через штуцер поступает в общий поток. Если давление недостаточно, то предусматривается компрессор 8. Газ дегазации из ёмкости 10 также возвращается в общий поток. Периодический контроль за дебитами газа и жидкости осуществляется с помощью сепаратора 1, на выкидной линии которого установлены замерная диаграмма и конденсатосборник-разделитель 2 со счётчиками. Если на устье скважины температура газа достаточно велика и на его пути до газосборного пункта гидраты не образуются, то схема подготовки газа упрощается. В случае, если требуются дополнительные источники холода, на установке НТС для обеспечения требуемой точки росы, в схеме вместо штуцера устанавливают турбодетандер, использование которого даёт эффект по снижению температуры, большей в 3-4 раза, чем при обычном дросселировании. В этом случае технологическая схема предусматривает сепаратор второй ступени для отделения жидкости от газа, поступающего в турбодетандер.

Возможны модификации данной технологической схемы. В частности, дополнительно к теплообменнику 5 устанавливают воздушный или водяной холодильник, что позволяет последовательно увеличивать поверхность теплообменника по мере снижения пластового давления и поддерживать постоянную температуру сепарации в установках НТС.

Эффективность работы НТС любого типа существенно зависит от технологического режима эксплуатации скважины. Оптимальным давлением сепарации на газоконденсатном месторождении принимается давление максимальной конденсации, которое для каждого состава газа определяется экспериментально. Для обеспечения однофазного движения газа по магистральным трубопроводам температура сепарации выбирается с учётом теплового режима работы магистрального газопровода.

На установках НТС возможна осушка газа с применением ингибиторов гидратообразования. В этом случае, газ с промыслов подаётся в поршневой компрессор и сжимается до давления 4,5МПа. В межступенчатых холодильниках газ охлаждается до температуры 308÷313°К с выделением воды. Для предупреждения гидратообразования в теплообменники и охладитель форсунками впрыскивается 75÷80%-ный раствор ДЭГ.

На установках НТС в качестве источника холода применяют турбодетандеры. Мощность, развиваемую на выходе турбодетандера, используют в компрессоре турбодетандерного агрегата (ТДА) для дожатия очищенного и подогретого в теплообменнике газа. Газ при выходе из установки комплексной подготовки газа (УКПГ) должен быть охлаждённым, что целесообразно делать совмещением процессов подготовки и охлаждения газа в одной установке.

Адсорбционный способ осушки газа заключается в применении веществ (адсорбентов), способных поглощать вещества из объёмной фазы (адсорбаты). Скоростью адсорбции называют число молекул, адсорбирующихся или десорбирующихся за единицу времени. Время, в течение которого молекула адсорбента находится на поверхности адсорбента, называют временем адсорбции. Способность адсорбента поглощать вещество тем больше, чем больше его поверхность. Установки адсорбционной осушки имеют обычно два-четыре адсорбера. Влажный газ поступает в сепаратор для удаления механических примесей, капельной влаги, жидких углеводородов и направляется в адсорбер. Осушенный газ из адсорбера поступает в магистраль. Часть сырого отсепарированного газа подаётся впечь для подогрева, а затем в адсорбер с увлажнённым осушителем для регенерации последнего.

Горячий газ после регенерации осушителя охлаждается в холодильнике и направляется в сепаратор для отделения влаги, удалённой из осушителя.

Для осушки газа в промышленных условиях применяют силикагель, алюмогель, флорит, природные цеолиты (шабазит, морденит и др.). Цеолиты обладают большими преимуществами перед другими осушителями: глубокой степенью осушки, высокой влагоёмкостью при низкой относительной влажности и повышенной температуре газа, прочностью при наличии капельной влаги, избирательной адсорбционной способностью.

Читайте также: