Автоматическое гашение поля реферат

Обновлено: 02.07.2024

Гашение магнитного поля приобретает особое значение при аварийных режимах, вызванных повреждениями внутри самого генератора или на его выводах.

Гашением поля называется процесс, заключающийся в быстром умень-шении магнитного потока возбуждения генератора до величины, близкой к нулю. При этом соответственно уменьшается ЭДС генератора.

Короткие замыкания внутри генератора обычно происходят через электрическую дугу – именно это обстоятельство обусловливает значительное повреждение обмоток статора и активной стали.

Таким образом, при внутренных коротких замыканиях в генераторах необходима не только отключить их от внешней сети, но и быстро погасить магнитное поле возбуждения, что приведет к уменьшению ЭДС генератора и погасанию дуги.

В данной семестровой работе мы подробно обьясним принцип действия АГП в генератре.

Автоматы гашения поля (АГП) синхронных машин

Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбогенераторов и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

В соответствии с ПУЭ в цепи возбуждения каждого синхронного генератора и синхронного компенсатора (за исключением малых машин) устанавливаются устройства для быстрого и безопасного развозбуждения — автоматы гашения поля (АГП). Необходимость в быстром гашении поля возникает, например, при внутренних повреждениях в генераторе. В этом случае из-за продолжающегося по инерции выбега отключенной машины в ее внутренних контурах продолжает наводиться э. д. с., которая поддерживает электрическую дугу в месте короткого замыкания и вызывает большие разрушения меди обмотки и стали статора. Простое отключение цепи возбуждения недопустимо, так как при этом из-за малой емкости Св и большой индуктивности Lв в обмотке возбуждения генератора возникнут опасные для ее изоляции перенапряжения.


(1.1)

АГП предотвращают эти перенапряжения, переключая обмотку возбуждения на гасительное сопротивление, в котором рассеивается энергия поля (рис. 1.1) или на специальную дугогасительную решетку (рис. 1.2) в которую втягивается дуга с дугогасительных контактов автомата; здесь она быстро гаснет, разбиваясь на несколько коротких дуг.


Рис. 1.1 Схема гашения поля с гасительным сопротивлением
1 — синхронный генератор; 2 — обмотка возбуждения; 3 — гасительное сопротивление в цепи ротора; 4 — автомат гашения поля главный; 5 — возбудитель; 6 — автомат гашения поля возбудителя; 7 — гасительное сопротивление.


Рис. 1.2 Схема гашения поля с дугогасительной решеткой

1 — синхронный генератор; 2 — обмотка возбуждения; 3 — возбудитель; 4 — главные контакты АГП; 5 — дугогасительные контакты АГП; 6 — дуг огаснтелькая решетка.
Автоматы гашения поля должны отвечать следующим требованиям: время гашения должно быть возможно малым, а перенапряжения на обмотке возбуждения не должны достигать опасных значений.
Под временем гашения поля подразумевают то время, в течение которого э. д. с. генератора уменьшится до значения, достаточного для естественного погасания дуги в месте короткого замыкания (500 В). При этом следует учитывать, что к э. д. с., создаваемой током возбуждения, добавляется еще э. д. с. от остаточного намагничивания стали ротора (примерно 300 В). Таким образом, процесс гашения можно будет считать законченным, когда э. д. с., создаваемая током возбуждения, снизится до 200 В.
Оптимальные условия для интенсивного снижения тока ротора до нулевого значения обеспечиваются при разряде обмотки возбуждения на нелинейный резистор, сопротивление которого изменяется обратно пропорционально величине тока. Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП:


Перенапряжения на обмотке возбуждения во всяком случае не должны быть выше испытательного напряжения, которое равно 7,5Uвн т. е. составляет в зависимости от номинального напряжения обмотки ротора 1,5-3,5кВ.в цепи возбудителя.


(1.2)


При АГП с гасительным сопротивлением, которое принимается обычно равным 4—5-кратному сопротивлению обмотки возбуждения, процесс гашения протекает по экспоненте (рис. 1.3) с постоянной времени.

Рис. 1.3. Изменение тока ротора iB (а), напряжения ив (б) и э. д. с. статора Eat (в) при гашении поля АГП с гасительным сопротивлением.



(1.3.)
Следует отметить, что время гашения поля Тгаш в мощных турбогенераторах оказывается значительно большим, чем 3Тгаш, вычисленное при обычных параметрах обмотки возбуждения Lв и Конструктивные элементы ротора — массивная бочка, металлические пазовые клинья, бандажные кольца — образуют демпферный контур со значительной постоянной времени. При переходных режимах затухание наведенных токов ротора будет определяться совместно двумя контурами: возбуждения и демпферным. Скорость гашения поля при этом в большой степени зависит от постоянной времени демпферного контура. После прекращения тока в обмотке возбуждения наведенный в демпферном контуре ток еще не затухает полностью и продолжает поддерживать э. д. с. машины.
Таким образом, время гашения поля в турбогенераторе будет больше вычисленного по параметрам только обмотки возбуждения и может составить 6—8 с, что нельзя считать допустимым для мощных блочных генераторов. Поэтому в настоящее время автоматы гашения такого типа применяются только для синхронных генераторов небольшой мощности с электромашинными системами возбуждения, а также для гашения поля возбудителей(рис.1.1).
В цепях же возбуждения крупных машин (более 25—50 МВт) устанавливают АГП нового типа с дугогасительными решетками. Сопротивление дуги, возникающей в этой решетке, растет по мере уменьшения тока, что значительно убыстряет процесс гашения поля. Время гашения поля при использовании АГП этого типа составляет всего 0,5—1,0 с.


Рис. 1.4. Изменение тока ротора при гашении поля АГП с дугогасительной решеткой.


При независимом вентильном возбуждении гашение поля эффективно осуществляется переводом выпрямителя в инверторный режим. Напряжение на вентилях при этом меняет знак, и ток в обмотке возбуждения очень быстро спадает до нуля. Рекомендуется переводить в инверторный режим форсировочную группу вентилей, так как более высокое напряжение этой группы позволяет быстрей погасить поле.
При вентильном самовозбуждении, а также при высокочастотном возбуждении гашение поля переводом выпрямителей в инверторный режим осуществить не удается, так как встречная э. д. с. инвертора в этой схеме падает с напряжением статора. Поэтому в таких случаях необходимо использовать АГП с дугогасительной решеткой.
В цепях возбуждения крупных генераторов (мощностью более 50—100 МВт) из-за чрезмерного возрастания размеров дугогасительной решетки применяется двухполюсная схема АГП, при которой в каждый полюс цепи возбуждения включается отдельный АГП.

Рис.1.5. Конструкция генератора.

На гидрогенераторах с электромашинной системой возбуждения используется также отключение только АГП возбудителя, а не генератора, обмотка возбуждения которого остается включенной на якорь возбудителя.
В цепи ротора турбогенераторов мощностью 150 МВт и выше для защиты их от пробоя перенапряжением, возникающим после погасания дуги в решетке АГП, устанавливаются защитные разрядники, отрегулированные на напряжение срабатывания 1,7 кВ (действующее значение) (рис. 1.6).


Рис. 1.6. Схема защиты обмотки возбуждения от перенапряжений после погасания дуги в дугогасительной решетке АГП
1 — обмотка возбуждения синхронного генератора; 2 — защитное сопротивление; 3 — возбудитель; 4 — дугогасительная решетка. 5 — защитный разрядник.

Все турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.1.7 – 1.8. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.


Рис.1.7. Система независимого возбуждения с возбудителем постоянного тока.

КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

• включение в сеть методом точной синхронизации или самосинхронизации;

• работу в энергосистеме с допустимыми нагрузками и перегрузками;

• форсировку возбуждения по напряжению и по току с заданной кратностью;

• разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;

• гашение поля генератора в аварийных режимах и при нормальной остановке;

Гашением поля называется процесс, заключающийся в быстром уменьшении магнитного потока возбуждения генератора до величины, близкой к нулю. При этом соответственно уменьшается ЭДС генератора.

Гашение магнитного поля приобретает особое значение при аварийных режимах, вызванных повреждениями внутри самого генератора или на его выводах.

Короткие замыкания внутри генератора обычно происходят через электрическую дугу - именно это обстоятельство обусловливает значительное повреждение обмоток статора и активной стали. Это тем более вероятно, что ток IК> при внутреннем повреждении может быть больше тока при коротком замыкании на выводах генератора. В таком случае быстрое гашение поля генератора необходимо, чтобы ограничить размеры аварии и предотвратить выгорание обмотки и стали статора.

Таким образом, при внутренних коротких замыканиях в генераторах необходимо не только отключить их от внешней сети, но и быстро погасить магнитное поле возбуждения, что приведет к уменьшению ЭДС генератора и погасанию дуги.

Для гашения поля необходимо отключить обмотку ротора генератора от возбудителя. Однако при этом вследствие большой индуктивности обмотки ротора на ее зажимах могут возникнуть большие перенапряжения, способные вызвать пробой изоляции. Поэтому гашение поля нужно выполнять таким образом, чтобы одновременно с отключением возбудителя происходило быстрое поглощение энергии магнитного поля обмотки ротора генератора, так чтобы перенапряжения на ее зажимах не превышали допустимого значения.

В настоящее время в зависимости от мощности генератора и особенностей его системы возбуждения используются три способа гашения магнитного поля:

  • замыкание обмотки ротора на гасительное (активное) сопротивление;
  • включение в цепь обмотки ротора дугогасительной решетки быстродействующего автомата;
  • противовключение возбудителя.

В первых двух способах предусматривается осуществление необходимых переключений в цепях возбуждения с помощью специальных коммутационных аппаратов, которые называют автоматами гашения поля (АГП).

При замыкании обмотки ротора генератора на специальное сопротивление процесс гашения магнитного поля сильно затягивается, поэтому в настоящее время наибольшее распространение получил более действенный способ гашения магнитного поля генератора при помощи АГП с дугогасительной решеткой (рис.1).

Схема электрических цепей при гашении поля генератора автоматом с дугогасящей решеткой

Рис.1. Схема электрических цепей при гашении поля
генератора автоматом с дугогасящей решеткой

При коротком замыкании в генераторе реле защиты KL срабатывает и своими контактами отключает генератор от внешней сети, воздействуя на электромагнит отключения YAT выключателя, а также подает импульс на отключение АГП.

Автомат имеет рабочие 2 и дугогасительные 1 контакты, которые при нормальной работе генератора замкнуты. Контакты 3 АГП вводят при отключении автомата добавочное сопротивление RД в цепь возбуждения возбудителя, снижая ток возбуждения последнего. АГП снабжен решеткой из медных пластин 4 при расстоянии между ними 1,5-3 мм.

При отключении автомата сначала размыкаются рабочие контакты, а затем дугогасительные, причем дуга, возникающая на них, затягивается с помощью магнитного дутья в дугогасительную решетку и разбивается на ряд последовательных коротких дуг.

Короткая дуга является нелинейным активным сопротивлением, падение напряжения на котором сохраняется практически постоянным, равным 25-30 В, несмотря на изменение тока в дуге в широких пределах.

Общее падение напряжения на дуге равно:

где UK - напряжение на короткой дуге;
n - число последовательных дуговых промежутков в решетке.

Таким образом, в момент вхождения дуги в решетку автомата напряжение на ней сразу возрастает до UД и практически остается неизменным до погасания дуги.

Число пластин в решетке выбирается таким, чтобы UД превосходило Uf,пот - потолочное напряжение возбудителя. При этом дуга существует, пока имеется запас энергии магнитного поля обмотки возбуждения генератора.

Если пренебречь падением напряжения в активном сопротивлении обмотки ротора, что допустимо для крупных синхронных генераторов, то уравнение переходного процесса примет следующий вид:


(2)

Электродвижущая сила самоиндукции обмотки возбуждения при изменении тока if равна Ldif/dt. Она определит разность потенциалов на обмотке ротора. Чем выше скорость изменения тока dif/dt, тем больше ЭДС самоиндукции. По условию электрической прочности изоляции обмотки ротора эта ЭДС не должна превышать Um. Так как в процессе гашения имеет практически постоянное значение, то уравнение (2) при условии максимальной скорости гашения поля во все время переходного процесса будет иметь вид:

При этом следует иметь в виду, что в течение периода гашения поля Uf практически не изменяется.

Следовательно, в процессе гашения поля генератора разрядом на дугогасительную решетку напряжение на обмотке ротора будет иметь постоянное значение, в пределе равное Um. Ток в обмотке ротора if будет изменяться с постоянной скоростью, так как


(4)

Процесс изменения тока и напряжения в обмотке ротора при гашении магнитного поля

Рис.2. Процесс изменения тока и напряжения
в обмотке ротора при гашении магнитного поля

Время гашения поля с использованием описанной выше схемы составляет 0,5-1 с. Процесс изменения тока в обмотке ротора и напряжения на ее зажимах представлен на рис.2. В данном случае условия гашения поля близки к оптимальным.

При гашении поля, создаваемого небольшим током, дуга в промежутках между пластинами горит неустойчиво, особенно при подходе тока к нулевому значению. Из-за погасания дуги в одном из промежутков обрывается вся цепь тока, что сопровождается перенапряжениями в цепи возбуждения.

Для того чтобы подход тока к нулевому значению был плавным, решетка шунтируется специальным набором сопротивлений 5 (см. рис.1). При такой схеме дуга гаснет не вся сразу, а по секциям, что способствует уменьшению перенапряжений.

В настоящее время отечественные заводы изготовляют АГП данной конструкции на номинальные токи 300-6000 А.

Таблица 1

Технические данные АГП

Технические данные АГП

В табл.1 приведены основные параметры АГП для крупных синхронных машин.

Гашение поля противовключением возбудителя применяется обычно для генераторов с тиристорным возбуждением. При этом (рис.3) отключается автомат гашения поля и главные вентили переводятся в инверторный режим. Магнитное поле подвозбудителя гасится после гашения поля главного генератора за счет инвертирования выпрямителей, питающих его обмотку возбуждения. Если последний процесс будет неуспешным, то поле гасится с помощью сопротивления Rг, включаемого контактом 5. Время гашения поля основного генератора может быть очень малым, но принимается таким как и в предыдущем случае, чтобы избежать чрезмерных перенапряжений в обмотке возбуждения.

Гашение поля при независимом тиристорном возбуждении генератора

Рис.3. Гашение поля при независимом тиристорном возбуждении генератора
1 - АГП, 2 - ввод резервного возбуждения,
3 - главный тиристорный возбудитель,
4 - тиристорный возбудитель вспомогательного генератора,
5 - контакты гашения поля (Rг - сопротивление гашения поля)

При внутренних коротких замыканиях в генераторах необходимо не только отключить их от внешней сети, но и быстро пога­сить магнитное поле возбуждения, что приведет к уменьшению ЭДС гене­ратора и погасанию дуги.

Короткие замыкания внутри генератора обычно происходят через элек­трическую дугу,что приводит к повреждению обмоток статора и активной стали. В таком случае быстрое гаше­ние поля генератора необходимо, чтобы ограничить размеры аварии и предотвратить выгорание обмотки и стали статора.

Для гашения поля необходимо отключить обмотку ротора генератора от возбудителя. Однако при этом вследствие большой индуктивности об­мотки ротора на ее зажимах могут возникнуть большие перенапряжения, способные вызвать пробой изоляции. Поэтому гашение поля нужно выпол­нять так, чтобы, одновременно с отключением возбудителя происходило быстрое поглощение энергии магнитного поля обмотки рото­ра генератора.


Рис. 100. Схема электрических цепей при гашении поля генератора автома­том с дугогасящей решеткой.

G – генератор;

GE- возбудитель;

LG – обмотка возбуждения генератора;

LGE– обмотка возбуждения возбудителя;

АГП – автомат гашения поля;

YAT – электромагнит отключения выключателя;

К L – контакты реле защиты при коротком замыкании;

R Д - добавочное сопротивление.

1 – дугогасительные контакты; 2 - рабочие контакты; 3 – контакты отключения добавочного сопротивления R Д ; 4 – дугогасительная решётка АГП из медных пластин; 5 – крепёж решёток;

В настоящее время наибольшее распространение получил более дей­ственный способ гашения магнитного поля генератора при помощи АГП с дугогасительной решеткой (рис.100).

При коротком замыкании в генераторе реле защиты К L срабатывает и своими контактами подаёт оперативный ток на электромагнит отключения Y АТ выключателя, а также подает оперативный ток на катушку АГП. При этом контакты 1, 2, АГП размыкаются и происходит гашение поля.

Контакты 3 АГП вводят в цепь возбуждения возбудителя добавочное сопротивление, снижая этим ток возбуждения возбудителя.

АГП снабжен решеткой из медных пластин 4 при расстоянии между ними 1,5 - 3 мм.

При отключении АГП сначала размыкаются рабочие контакты 2, а затем дугогасительные 1, причем дуга, возникающая на них, затягивается с помощью магнитного дутья в дугогасительную решетку и разбивается на ряд последовательных коротких дуг, которые затем легко гасятся.

1.Как зависит напряжение генератора от тока возбуждения? Поясните, используя формулы.

3. Что называется возбудителем?

4. Типы возбудителей.

5. Что называется системой возбуждения?

6. Какой ток используется для возбуждения генераторов, переменный или постоянный и почему?

7. Для чего предназначена система АРВ?

8. Нагрузка на генератор увеличилась. Как изменится напряжение на шинах генератора и каким образом можно восстановить его? Для объяснения используйте формулу ЭДС генератора.

9. Нагрузка на генератор уменьшилась. Как изменится напряжение на шинах генератора и каким образом можно восстановить его? Для объяснения используйте формулу ЭДС генератора.

10.Для чего нужна форсировка возбуждения?

11.При каком напряжении на шинах синхронного генератора срабатывает форсировка?

12.В чём заключается принципиальное отличие электромашинной системы возбуждения синхронного генератора от системы самовозбуждения?

13.Напряжение генератора снизилось до 70% Uном, как на это среагирует форсировка возбуждения и почему? Какие действия в схеме она произведёт?

14.Напряжение генератора снизилось до 90% Uном, как на это среагирует форсировка возбуждения и почему? Какие действия в схеме она произведёт?

15.Как защищён синхронный генератор от КЗ в обмотке статора?

16.Почему системы самовозбуждения менее надёжны, чем электромашинные системы независимого возбуждения?

17.Какую роль играет добавочное сопротивление Rд в цепи возбуждения генератора с системой АГП?

18. Как изменится напряжение синхронного генератора при уменьшении сопротивления реостата в цепи обмотке возбуждения возбудителя? Пояснить, используя формулы.

19.Почему при КЗ в обмотке статора нужно гасить магнитное поле возбуждения?

20.Как происходит гашение поля в схеме АГП?

21. Какие свойства дугогасительной решётки АГП используются для гашения дуги?

22.Почему для мощных синхронных генераторов более 300 мВт применяется высокочастотная система возбуждения на тиристорных преобразователях, а не генераторы постоянного тока?

23.В каких случаях срабатывает блок УБФ мощного генератора с высокочастотной системой возбуждения и каков результат его действия?

24.Как изменится ток возбуждения синхронного генератора с системой самовозбуждения при увеличении тока нагрузки генератора и почему?

Тема 7.2. Назначение и виды автоматического регулирования (АРВ).

Назначение АРВ.

Функции автоматического регулирования возбуждения (АРВ) генераторов:

1. Поддержание напряжения на выводах генератора на

2. Распределение реактивной нагрузки между параллельно

3. Повышение устойчивости параллельно работающих

Все АРВ, реагирующие на знак и величину отклоне­ния регулируемого параметра (напряжение или ток) на­зываются регуляторами пропорциональ­ного действия.

Основным назначением автоматических регуляторов воз­буждения (АРВ) является быстрое и значительное увели­чение (форсировка) возбуждения генераторов и синхрон­ных компенсаторов до наибольшей величины, которую обеспечивают системы возбуждения при нарушениях нор­мального режима, сопровождающихся понижением напря­жения или увеличением тока.

Реагируя на небольшие отклонения регулируемого на­пряжения (порядка ±0,5% и меньше), АРВ повышают предел статической устойчивости электростан­ций, т. е. увеличивают ту предельную мощность, которая может быть передана в энергосистему при медленном возрастании нагрузки.

В нормальном режиме АРВ облегчают работу персонала по распределению реактивной нагрузки между параллельно работающими генераторами и по поддержанию требуемого уровня напряжения на шинах электростанций.

Гашением поля называется процесс, заключающийся в быстром уменьшении магнитного потока возбуждения до величины, близкой к нулю.

Эффективная система гашения поля позволяет уменьшить размеры повреждений при замыканиях в генераторе и на его выводах.

Для гашения поля необходимо отключить обмотку ротора от возбудителя. Но быстрое гашение поля может вызвать опасные перенапряжения. Амплитуда возможных перенапряжений при обрыве тока определяется выражением: , где Lв и Св – соответственно индуктивность цепи и паразитная емкость обмотки возбуждения. Таким образом, устройства автоматического гашения поля должны обеспечить возможно быстрый спад тока возбуждения, но при этом должны быть исключены недопустимые уровни перенапряжений.

Процесс гашения поля считается законченным, если амплитуда ЭДС статора снизилось до значения 500 В. При этом напряжении происходит погасание дуги переменного тока. Время гашения поля это такое время, в течение которого ток возбуждения снижается до значения соответствующего ЭДС статора 500В.

В настоящее время применяются три основных способа гашения поля: с помощью дугогасительного сопротивления, с помощью АГП с дугогасительной решеткой, переводом тиристоров в инверторный режим для тиристорных систем возбуждения.



Рис. 1-23. Схема гашения поля с гасительным сопротивлением
1 — синхронный генератор; 2 — обмотка возбуждения; 3 — гасительное сопротивление в цепи ротора; 4 — автомат гашения поля главный; 5 — возбудитель; 6 — автомат гашения поля возбудителя; 7 — гасительное сопротивление в цепи возбудителя
Рис. 1-24. Схема гашения поля с дугогасительной решеткой



1 — синхронный генератор; 2 — обмотка возбуждения; 3 — возбудитель; 4 — главные контакты АГП; 5 — дугогасительные контакты АГП; 6 — дуг огаснтелькая решетка


где £/в.иСп —действующее значение испытательного напряжения обмотки ротора турбогенератора частотой 50 Гц.
При АГП с гасительным сопротивлением, которое принимается обычно равным 4—5-кратному сопротивлению обмотки возбуждения, процесс гашения протекает по экспоненте (рис. 1-25) с постоянной времени
(1-14)



Рис. 1-25. Изменение тока ротора iB (а), напряжения ив (б) и э. д. с. статора Eat (в) при гашении поля АГП с гасительным сопротивлением


Рис. 1-27. Схема защиты обмотки возбуждения от перенапряжений после погасания дуги в дугогасительной решетке АГП
1 — обмотка возбуждения синхронного генератора; 2 — защитное сопротивление; 3 — возбудитель; 4 — дугогасительная решетка? 5 — защитный разрядник

Рис. 1-26. Изменение тока ротора при гашении поля АГП с дугогасительной решеткой
Таким образом, время гашения поля в турбогенераторе будет больше вычисленного по параметрам только обмотки возбуждения и может составить 6—8 с, что нельзя считать допустимым для мощных блочных генераторов. Поэтому в настоящее время автоматы гашения такого типа применяются только для синхронных генераторов небольшой мощности с электромашинными системами возбуждения, а также для гашения поля возбудителей (см. 6 на рис. 1-23).
В цепях же возбуждения крупных машин (более 25—50 МВт) устанавливают АГП нового типа с дугогасительными решетками.

Читайте также: