Антибиотики в биотехнологии реферат

Обновлено: 06.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Получение антибиотиков.

Антибиотики вырабатываются микроорганизмами в результате совместного действия продуктов 10 - 30 генов, что усложняет использование генно-инженерных подходов для управления их синтезом. Однако данная проблема разрешима в тех случаях, когда синтез антибиотиков определяется мультиферментными комплексами, кодируемыми одним опероном (например, в случае антибиотиков пептидной природы). Это открывает новые перспективы в биотехническом получении антибиотиков. Внедрение соответствующих генов из одного микроорганизма в клетки другого близкородственного может приводить к получению “гибридного” антибиотика, обладающего новыми свойствами. Этот подход был успешно применен в 1988 г. биохимиком Михаэлем Хопвудом в США. При объединении генов биосинтеза актинородина и медермицина был получен новый антибиотик, получивший название “медерродин”. В другом случае этот же автор создал штамм, продуцирующий “гибридный” антибиотик дигидрогранатиродив. Высокая продуктивность штаммов микроорганизмов иногда достигалась за счет увеличения в клетках количества копий генов биосинтеза антибиотика. Таким образом, удалось, например, существенно увеличить выход актинородина.

Широко применяют антибиотики в медицине, сельском хозяйстве (для лечения, а также для улучшения роста и развития молодняка), в пищевой промышленности (консервирующие средства). В 1987 г. за рубежом стоимость всех антибиотиков, использованных в качестве антибактериальных препаратов, составила 3,5 млрд. долл.; ожидается, что в 1992 г. она достигнет 4,2 млрд. долл.

В борьбе с болезнетворными бактериями вместо антибиотиков иногда используют другую бактерию - антагонист патогенного штамма. Примером может служить дикий патогенный штамм бактерии Streptococcus mutans, разрушающий зубную эмаль и дентин. При введении в ротовую полость мутантного штамма этого же вида выделяется белковый продукт, губительный для дикого штамма. В данном случае бактерии-антагонисты выступают в роли биостерилизаторов. Описаны аналогичные способы защиты сельскохозяйственных растений. В частности, это относится к инфекционному заболеванию рассады томатов, вызываемому почвенными бактериями Fusarium oxysporum. Заболевание связано с действием фузаровой кислоты, продуцируемой этими бактериями. В качестве биостерилизатора в этом случае используют клетки Pseudomonas solanactarum, способные накапливать фузаровую кислоту и этим снижать ее токсичное воздействие на томаты.

Создание микроорганизмов-продуцентов.

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, производство которых необходимо. Для биотехнологии нужны высокопродуктивные штаммы микроорганизмов. Их создают методами селекции - направленного отбора спонтанных или индуцированных (химическими мутагенами или радиацией) мутантов. Получение таких штаммов занимаются иногда многие годы. В результате селекции производительность продуцентов удается увеличить в сотни или тысячи раз. Например, в работе с Penicillium методами селекции выход пенициллина был увеличен в конце концов, примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Отбору высокопроизводительных штаммов предшествуют тонкие манипуляции селекционера с генетическим материалом исходных штаммов. При этом используют весь спектр естественных способов рекомбинирования генов, известных у бактерий: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) была успешно использована при создании штамма Pseudomonas putida, способного утилизовать углеводороды нефти. Очень часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериальных вирусов - бактериофагов) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся не в основной хромосоме, а в плазмидах. Путем амплификации удается увеличить число этих плазмид в клетках и существенно повысить производство антибиотиков.

Еще один подход в генетико-селекционной работе - получение генетических рекомбинантов путем слияния разных штаммов бактерий, лишенных стенок (протопластов). Так, слиянием протопластов двух штаммов Streptomyces был сконструирован новый высокоэффективный штамм-продуцент рифампицина С: мутанты Nocardia mediterranei, в которых не синтезировался рифампицин, после слияния сформировали штаммы, продуцирующие три новых рифампицина. Слияние протопластов позволяет объединять генетические материалы и таких микроорганизмов, которые в естественных условиях не скрещиваются.

Биотехнологическое получение антибиотиков.

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).

Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.

До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.

Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.

Сегодня медицина шагнула значительно вперед по сравнению уже с прошлыми десятилетиями. Ее развитие не стоит на месте, так как приходится изобретать все новые лекарства, более доступные аналоги дорогих лекарств и т.д.

Не последнее место в этой науке занимаются антибиотики, которые научились производить всего около двухсот лет назад, к одним из которых сегодня относится широко распространенный пенициллин.

В современной жизни антибиотики играют важную роль, т.к. у некоторых инфекций начинает проявляться к ним резистентность, либо появляются новые штаммы.

Для различных наука удобно использовать свою классификацию. Для биологов – это классификация по биологическому происхождению, для химиков – по химическому строению, для врачей – по спектру биологического воздействия.

Бывают антибиотики широкого спектра действий, когда могут воздействовать на много различных инфекций, и узкого – воздействие на небольшую часть. Например, антибиотики, воздействующие на граммположительные инфекции, могут не воздействовать на граммотрицательные.

Существуют различные способы производства антибиотиков. В данной курсовой рассмотрим биотехнологический метод их производства.

1 РОЛЬ БИОТЕХНОЛОГИИ В СОВРЕМЕННОЙ ФАРМАЦИИ

Современный провизор должен знать биотехнологию в рамках своей профессии, работая на отечественном рынке лекарственных средств, тесно интегрированным с мировым производством лекарственных препаратов.

Номенклатура лекарственных препаратов, полученных на основе биообъектов в силу объективных причин имеет тенденцию к своему расширению [1, с.3].

Биотехнология использует либо продуценты - микроорганизмы, растения, высшие животные, либо использует изолированные индивидуальные ферменты. Фермент иммобилизируется (закрепляется) на нерастворимом носителе, что позволяет его использовать многократно.

Современная биотехнология использует такие достижения, как искусственные культуры клеток и тканей. Особое достижение биотехнологии - это генноинженерные продуценты, микроорганизмы, имеющие рекомбинантные ДНК. Ген четко изолируется и вводится клеткам микроорганизма. Этот микроорганизм будет продуцировать вещество, структура которого закодирована во введенном гене [1, с.5].

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).

Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.

До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.

Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.

Классификация


  • β-лактамные;

  • полиеновые;

  • амфениколы;

  • гликопептиды;

  • линкосамиды;

  • макролиды;

  • тетрациклины;

  • противоопухолевые.

  • энергетического обмена;

  • цитоплазматической мембраны;

  • биосинтеза пептидогликанов клеточной стенки;

  • биосинтеза нуклеиновых кислот;

  • отдельных этапов процессов трансляции.

Первая задача при поиске продуцентов антибиотиков — выделение их из природных источников. Вместе с тем для этих целей широко применяется метод изменения генома выделенного продуцента антибиотика путем мутагенеза и генной инженерии.

В основу большинства приемов выделения продуцентов положен принцип выделения чистой культуры микроба и непосредственного испытания его по отношению к используемым тест-организмам.

Большинство сапрофитных бактерий хорошо развивается на богатых по составу натуральных средах (мясопептонный агар, картофельный агар, сусло-агар и др.) при рН около 7,0 и температуре 30–37 °С. В этих же условиях развиваются актиномицеты и некоторые грибы, но для них они менее благоприятны, чем для бактерий.

Актиномицеты растут медленнее, чем бактерии; они могут использовать такие источники питания, которые не очень хорошо усваиваются бактериями. Для выделения актиномицетов рекомендуются среды, приведенные в табл. 1. Значение рН среды после стерилизации устанавливается в пределах 6,8–7,1.

Мицелиальные грибы предпочтительнее развиваются на средах с несколько пониженным значением рН (4,5–5,0), на которых плохо растут многие бактерии и актиномицеты. Для выделения мицелиальных грибов можно рекомендовать среды, приведенные в табл. 2.

К числу наиболее существенных факторов, оказывающих влияние на проявление антибиотических свойств микроорганизмов, относятся состав среды, ее активная кислотность, окислительно-восстановительные условия, температура культивирования, методы совместного выращивания двух или большего числа микроорганизмов и другие факторы.


  • мясопептонная среда, в состав которой одновременно с мясным экстрактом и пептоном входят хлорид натрия, фосфат калия, иногда глюкоза или сахароза; используется обычно в лабораторной практике;

  • картофельные среды с глюкозой и пептоном, часто используемые в лаборатории для культивирования многих видов актиномицетов и бактерий;

  • среды с кукурузным экстрактом, соевой мукой, бардой и другими веществами, в состав которых входят сульфат аммония, карбонат кальция, фосфаты, глюкоза, сахароза, лактоза или иные углеводы и ряд других соединений; среды успешно применяются в промышленности, т. к. являются дешевыми и обеспечивают хорошее развитие микроорганизмов с высоким выходом антибиотиков.

Источниками углерода могут быть органические кислоты, спирты, углеводы, сочетания различных углеродсодержащих соединений (табл. 3).

Таблица 3. Влияние источника углерода на рост B. brevis subsp. G.B. и биосинтез грамицидина (48 ч культивирования)


Источник углерода

Антибиотик, мкг/мл

Биомасса, мг/100 мл

Глюкоза

300

220

Галактоза

250

300

Мальтоза

250

250

Сахароза

0

140

Лактоза

0

160

Крахмал

250

160

Глицерин

1000

460

Маннит

0

100

Этанол

0

12

Янтарная кислота

350

180

Пировиноградная кислота

0

95

Уксусная кислота

25

80

Молочная кислота

250

160

При промышленном получении ряда антибиотиков в качестве источников углерода нередко применяют картофельный крахмал, кукурузную муку или другие растительные материалы. Однако не все продуценты обладают достаточно активными амилазами, способными осуществлять гидролиз крахмалсодержащего сырья. Предварительное осахаривание крахмалсодержащих материалов с помощью ферментов значительно облегчает использование микроорганизмами этих материалов.

Источники азота оказывают большое влияние на образование микроорганизмами антибиотических веществ. Обычно в средах для культивирования микроорганизмов источником азота служат соли азотной (реже азотистой) кислоты, аммонийные соли органических и неорганических кислот, аминокислоты, белки и продукты их гидролиза. Многие микроорганизмы успешно используют и окисленные формы азота, некоторые из них нуждаются именно в нитратном источнике азота (Streptomyces auranticus, S. subtropicus и некоторые другие). Ряд актиномицетов иногда усваивают лучше нитраты, чем аммонийные соли; они могут использовать даже нитриты, если их вносят в среду в небольших количествах (не более 50 мг NaNO2 / 1 л среды). При этом усвоение нитритов тесно связано с источником углерода; например в присутствии глицерина нитриты потребляются гораздо лучше, чем в присутствии глюкозы. Использование аммония и некоторых органических источников азота плесневыми грибами улучшается в присутствии небольших количеств (0,1–0,2 %) некоторых дикарбоновых (янтарной и фумаровой) кислот. В ряде случаев для накопления антибиотика необходимо присутствие и аммонийного, и нитратного источника азота (биосинтез пенициллина).

Обычно наиболее благоприятным для микроорганизмов является соотношение C : N = 20. Однако для образования антибиотика такое соотношение не всегда оптимально. Поэтому для каждого продуцента необходимо подбирать соответствующее соотношение углерода и азота.

Источниками минерального питания служат фосфор, сера и другие макро- и микроэлементы.

Большинство микроорганизмов легко используют в качестве источников фосфора ортофосфаты. Отдельные виды наряду с этим потребляют и фитаты (соли инозитфосфорных кислот).


  • высокочувствительные продуценты, для которых оптимальная концентрация фосфора в среде составляет менее 0,01 % (продуценты нистатина, тетрациклинов, флоримицина, ванкомицина);

  • продуценты средней чувствительности, для которых оптимальная концентрация фосфора составляет 0,010–0,015 % (продуценты стрептомицина, эритромицина, циклосерина, неомицина);

  • малочувствительные продуценты, для которых оптимальная концентрация фосфора составляет 0,018–0,020 % (продуценты новобиоцина, грамицидина, олеандомицина).

Кроме того, для биосинтеза антибиотиков необходимы и отдельные микроэлементы. Так, продуцент альбомицина S. subtropicus образует антибиотик при значительной концентрации железа в среде. Железо необходимо для образования хлорамфеникола и других антибиотиков.

Биосинтезу ряда антибиотических веществ (хлорамфеникола, стрептомицина, пенициллина и др.) способствуют ионы цинка.

Стимулирующее влияние на биосинтез гентамицина, курамицина А, фософономицина оказывают ионы кобальта.

Ионы галогенов входят в состав некоторых тетрациклиновых антибиотиков и хлорамфеникола.

Влияние рН среды. Многие бактериальные организмы, синтезирующие антибиотики, лучше развиваются при рН около 7,0, хотя некоторые, например молочнокислые стрептококки, продуцирующие низин, лучше развиваются в среде при рН = 5,5÷6,0.

Большинство актиномицетов хорошо развиваются при начальных значениях рН среды в пределах от 6,7 до 7,8; в большинстве случаев жизнеспособность актиномицетов при рН ниже 4,0–4,5 подавлена.

Температура. Для большинства бактериальных организмов температурный оптимум развития лежит в диапазоне 30–37 °С. Для продуцента грамицидина С (B. brevis) оптимальная температура для развития и биосинтеза равна 40 °С.

Актиномицеты, как правило, культивируются при температуре 26–30 °С, хотя некоторые виды стрептомицетов могут развиваться как при пониженных (от 0 до 18 °С), так и при повышенных (55–60 °С) температурах.

Для большинства мицелиальных грибов оптимальная температура составляет 25–28 °С.

Аэрация. Большинство изученных продуцентов антибиотиков являются аэробами. Для биосинтеза многих антибиотиков (пенициллин, стрептомицин и др.) максимальное их накопление происходит при степени аэрации, равной единице, при которой через определенный объем среды за 1 мин продувается такой же объем воздуха.

В процессе развития продуцента антибиотика в промышленных условиях потребность организма в кислороде меняется в зависимости от стадии развития, вязкости КЖ и других факторов. На определенных стадиях могут возникнуть ситуации, связанные с кислородным голоданием продуцента. В этих условиях следует принимать дополнительные меры, например, повышение концентрации окислителя добавлением пероксида водорода.

Стадии развития продуцентов

В условиях глубинной культуры процесс развития организма и синтеза антибиотика проходит в две фазы.

В первой фазе развития культуры или, как ее иногда называют, тропофазе (фаза сбалансированного роста микроорганизма), наблюдается интенсивное накопление биомассы продуцента, связанное с быстрым потреблением основных компонентов среды и с высоким уровнем поглощения кислорода.

Во второй фазе развития, именуемой идиофазой (фаза несбалансированного роста микроорганизма), накопление биомассы замедлено или даже уменьшено. В этот период продукты метаболизма микроорганизма лишь частично используются на построение клеточного материала, они в основном направляются на биосинтез антибиотика. Обычно максимум продукции антибиотика в среде наступает после максимума накопления биомассы.

Интенсифицировать антибиотикообразование можно путем совместного культивирования продуцента антибиотика с другими специально подобранными видами микроорганизмов.

В частности, штаммы продуцента трихотецина (Trichothecium roseum) наибольшую биологическую активность проявляют при совместном развитии с микроскопическими грибами рода Penicillium; выход антибиотика повышается в этом случае в несколько раз.

Увеличение образования бацитрацина происходит в том случае, если продуцент антибиотика B. subtilis культивируется совместно с Pseudomonas sp.

Повышение биосинтеза леворина культурой S. levoris наблюдается при совместном культивировании актиномицета с дрожжеподобным грибом Candida tropicalis.

При совместном культивировании двух мутантных штаммов Streptomyces noursei, потерявших способность к биосинтезу нистатина, антибиотик образуется в том же количестве, что и при развитии исходного активного штамма (табл. 4).

Таблица 4. Образование нистатина при совместном выращивании двух неактивных штаммов St. noursei (4-е сутки)


Штамм актиномицета

Образование нистатина

В культуральной жидкости, ед./мл

В мицелии, ед./мг

Штамм № 149

0

0

Штамм № 368

0

0

Штамм № 149 + штамм № 368

310

100

Исходный штамм актиномицета (контроль)

350

80

Методы культивирования продуцентов антибиотиков. Наиболее перспективным методом выращивания микроорганизмов — продуцентов антибиотиков признан метод глубинного культивирования с использованием периодических процессов.

В зависимости от того, где сосредоточено антибиотическое вещество, применяют соответствующие методы его извлечения.

Если антибиотик находится в КЖ, его выделяют методами экстракции, используя для этого не смешивающийся с водой растворитель, осаждают в виде нерастворимого соединения или сорбируют ионитами.

Из клеток микроорганизмов антибиотик выделяют экстрагированием органическими растворителями. Если антибиотик содержится и в КЖ, и в клетках продуцента, то сначала его переводят в фазу, из которой наиболее целесообразно извлекать целевое вещество.

Отделение раствора от биомассы и взвешенных частиц проводят методами фильтрации или центрифугирования.

Очистка антибиотика (отделение от примесей) осуществляется методами экстракции, ионообменной сорбции и осаждения. После химической очистки антибиотик высушивают, для чего применяют лиофильную сушку, высушивание в распылительной сушилке, высушивание во взвешенном слое или в вакуум-сушильных аппаратах.

Введение
Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей, другие - в медицинских целях.
В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов,липидов, Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40-х годах, когда наладили производство пенпциллинов методами ферментациинуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.
После установления высоких лечебных свойств первого антибиотика — пенициллина сразу жевозникла задача организации производства его в больших количествах. На первом этапе промышленное получение этого препарата носило примитивный, экономически нерентабельный характер. Выращивание продуцента антибиотика осуществлялось на средах, находящихся в небольших сосудах при поверхностном культивировании гриба. Процесс развития гриба продолжался 8—10 суток. Такой способ культивирования гриба при большойзатрате труда давал низкий выход антибиотика, и себестоимость препарата была очень высокой. Безусловно, такое получение антибиотика не могло удовлетворить запросы медицины. В результате был предложен метод глубинного выращивания гриба в ферментерах или танках — при продувании воздуха и перемешивании культуральной жидкости. [1]
Из данного примера можно сделать вывод, что биотехнологияантибиотиков весьма сложное, но в тоже время необходимое производство. Технологию получения антибиотиков нужно совершенствовать, а совершенствование невозможно без изучения основных стадий получения антибиотиков, а также анализа всех процессов, происходящих на них.
1. Технология получения антибиотиков
1.1 Общие сведения о производстве антибиотиков
Успехи антибиотической отрасли промышленности икачество выпускаемой продукции определяются уровнем основных стадий технологического процесса. Промышленное получение антибиотиков — это сложная многоступенчатая биотехнологическая система, состоящая из ряда последовательных стадий.
1) Стадия биосинтеза антибиотика. Это основная биологическая стадия сложного процесса получения антибиотического вещества. Главная задача на этой стадии —создание оптимальных условий для развития продуцента и максимально возможного биосинтеза антибиотика.
Высокая результативность стадии зависит от уровня биосинтетической активности продуцента антибиотика, времени его максимального накопления, стоимости сред для культивирования организма, в том числе стоимости применяемых предшественников, а также общих энергетических затрат на процессы, связанные сразвитием продуцента антибиотического вещества.
2) Стадия предварительной обработки культуральной жидкости, клеток (мицелия) микроорганизма и фильтрации. Эффективность стадии во многом определяется составом среды для выращивания продуцента антибиотика, характером его роста, местом основного накопления биологически активного вещества (в культуральной жидкости или внутриклеточно).
3) Стадия выделения иочистки антибиотика. На этой стадии в зависимости от свойств антибиотика, его химического строения и основного места накопления антибиотического вещества применяются различные методы выделения и очистки. В качестве основных методов используются следующие: экстракция, осаждение, сорбция на ионообменных материалах, упаривание, сушка.
Особенность этой технологической стадии определяется тем, что напервом этапе работы приходится иметь дело с небольшой концентрацией (не более 1%)антибиотика в обрабатываемом растворе, тогда как на последующих этапах концентрация антибиотического вещества увеличивается до 20—30%. Все это требует применения различных емкостей и различных объемов используемых реагентов.
4) Стадия получения готовой продукции, изготовление.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

Антибиотики в биотехнологии

. ветеринарной медицины и биотехнологии | Биотехнология в медицине | Класс.

7 Стр. 2 Просмотры

Биотехнология антибиотиков.

. БИОТЕХНОЛОГИЯ АНТИБИОТИКОВ. Термин «антибиотики – против.

Антибиотики

. и наименование антибиотика |Механизм действия |Спектр действия | | |I. Β-лактамные.

2 Стр. 44 Просмотры

Антибиотики

. Патологическое горевание - это горевание, которое не может прийти к своему завершению. В основе этой.

48 Стр. 49 Просмотры

Антибиотики

. кандидамикоза тетрациклины сочетают с противогрибковым антибиотиком нистатином.

Читайте также: