Жидкие кристаллы и человеческий организм кратко

Обновлено: 02.07.2024



Не менее важны эти знания для изучения живой клетки. Оказывается, жидкие кристаллы не только разрушители. Многим вполне здоровым, нормальным живым клеткам свойственно жидкокристаллическое состояние. Сложной жидкокристаллической системой является и человеческий мозг. Серое вещество в основном состоит из жидких кристаллов. А в белом веществе и проводящих путях нервной системы жидкие кристаллы играют роль диэлектриков. Они образуют оболочку вокруг нервных волокон — нейронов.

Наш мозг – система жидких кристаллов. Мы живем в мире кристаллов. Кристаллы не только вовне, но и внутри нас: они составляют и вещество мозга, и оболочки нервных клеток, и кровяные шарики —
Наш мозг – система жидких кристаллов


Обычно жидкие кристаллы возникают, когда охлаждаются расплавы или повышается концентрация растворов некоторых веществ с длинными молекулами. При этом само вещество приобретает новые, необычные свойства — другую окраску, температуру плавления и т. д. Жидкие кристаллы не так уж редки. Оказалось, что даже чернила для авторучек имеют при высыхании жидкокристаллическую структуру.
Эти сказочно красивые образования имеют три вида: смектические, или мылообразные, нематические, или нитевидные, и холестерические, то есть сходные по строению со всем известным холестерином.

Стоит лишь немного расстроить хрупкие связи молекул жидких кристаллов, как резко меняются оптические свойства вещества — его окраска, прозрачность. Особенно чутко реагируют рядовые кристаллы на изменения температуры. Охлаждаясь, они становятся фиолетовыми, потом голубыми, желтыми, красными и снова бесцветными. Можно так подобрать смесь жидких кристаллов, что совершенно определенный цвет будет соответствовать определенной температуре.

Замечательные свойства: пластичность и гибкость в сочетании с устойчивостью к внешним воздействиям, чувствительность и тонкость структуры — все это делает жидкие кристаллы незаменимыми элементами живых тканей.
P. S. О чем еще думают британские ученные: А еще нервные клетки человеческого мозга имеют большое влияние на различные аспекты нашей жизни, например, такие как уровень интеллекта, память, воображение, и даже психология отношений между различными людьми порой зависит именно от них.



Коллаген, содержащийся в опорных тканях — костях, сухожилиях и мозге, — близок по структуре к кристаллам нематического типа.
Дезоксирибонуклеиновая кислота (ДНК) — хранитель и передатчик наследственной информации в живом организме — тоже образует жидкие кристаллы так называемого лиотропного типа.
Такая распространенность жидких кристаллов в живом организме не случайна. Они легко поглощают и растворяют различные вещества.


Смектические кристаллы — это ракетообразные молекулы, выстроенные рядами, образующими как бы этажи. Так расположены молекулы в мыльном пузыре, где между строгими рядами внутренней и внешней поверхности беспорядочно плавают в жидкости молекулы мыла. Так же устроены и оболочки нервных волокон живого организма, элементы цитоплазмы, структуры хлоропластов — веществ, связанных с реакцией фотосинтеза у растений.
Нематические кристаллы менее упорядочены. Их длинные оси ориентированы в определенном направлении, как булавки в коробочке. Такую структуру имеют многие смолы и стекла и жизненно важные составные части живого белка — лецитин, керазин, цереброн.

Жидкие кристаллы - графическая визуализация

Жидкий кристалл – это такое фазовое состояние, во время которого вещество одновременно обладает как свойствами жидкостей, так и свойствами кристаллов. То есть они обладают текучестью, и вместе с тем им присуща анизотропия – различие свойств данной среды в зависимости от направления внутри нее (например, показатель преломления, скорость звука или теплопроводность).

Жидкие кристаллы имеют структуру вязких жидкостей, которая состоит из молекул дискообразной формы. Ориентация данных молекул может изменяться при взаимодействии с электрическими полями.

История открытия

И хотя в 1904-м году немецкий физик Отто Леман предоставил ряд научных доказательств в пользу жидких кристаллов в своей одноименной книге, все же долгое время жидкие кристаллы не признавались как отдельные состояния вещества. В 1963-м году американский изобретатель Джеймс Фергюсон нашел применение одному из свойств ЖК – изменение цвета в зависимости от температуры. Американец получил патент на изобретение, которое способно обнаруживать невидимые для глаз тепловые поля. С этого популярность жидких кристаллов начала расти.

Группы жидких кристаллов и их свойства

Жидкие кристаллы обычно разделяют на две группы:

    Термотропные – образовываются вследствие разогрева твердого вещества. Способны существовать в условиях определенной температуры и давления. Их разделяют на три типа, в зависимости от расположения молекул:

порядки разных термотропных ЖК

порядки разных термотропных ЖК

Три типа термотропных жидких кристаллов

Три типа термотропных жидких кристаллов

  1. Лиотропные – образовываются в смесях, состоящих из стержневидных молекул данного вещества и полярных растворителей (например, воды).

Применение жидких кристаллов

ЖК-дисплеи

Устройство ЖК-дисплеев достаточно сложное, однако в общем виде представляет собой набор стеклянных пластин, между которыми расположены жидкие кристаллы (ЖК-матрица), и множество источников света. Пиксель ЖК-матрицы включает в себя пару прозрачных электродов, которые позволяют менять ориентацию молекул жидкого кристалла, а также пару поляризационных фильтров, которые регулируют степень прозрачности и др.

Структура жидкокристаллического дисплея

Структура жидкокристаллического дисплея

Термография

Менее популярное, но более важное применение ЖК – это термография. Термография позволяет получить тепловое изображение объекта, в результате регистрации инфракрасного излучения – тепла. Инфракрасные приборы ночного зрения используются пожарными, в случае задымления помещения, с целью обнаружения пострадавших в пожаре. Также они нашли применение у служб безопасности и военных служб.

Тепловые изображения позволяют обнаруживать места перегрева, нарушения теплоизоляции, или другие аварийные участки при обслуживании линий электропередачи или строительстве.

Применение термографии в обслуживании линий электропередач

Также термография используется при медицинской визуализации, в основном для наблюдения молочных желез. Это позволяет обнаруживать различные онкологические заболевания, вроде рака молочной железы.

Компьютерная термография в медицине

Электронные индикаторы

Электронные индикаторы, создаваемые при помощи жидких кристаллов, реагируют на различные температуры, в результате чего могут проинформировать о сбоях и нарушениях в электронике. К примеру, ЖК в виде пленки наносят на печатные платы и интегральные схемы, а также – транзисторы. Неисправные сегменты электроники легко отличить при наличии такого индикатора.

Помимо этого, ЖК-индикаторы, расположенные на коже пациента, позволяют обнаруживать воспаления и опухоли у человека.

Индикаторы из жидких кристаллов используют и для обнаружения паров различных вредных химических соединений, а также обнаружения ультрафиолетового и гамма-излучения. С применением ЖК разрабатываются детекторы ультразвука и измерители давления.

Алкотестер на основе жидкокристаллического индикатора паров

Алкотестер на основе жидкокристаллического индикатора паров

Помимо прямого применения ЖК в перечисленных выше сферах, следует отметить, что жидкие кристаллы во многом похожи на некоторые клеточные структуры, и иногда присутствуют в них. В силу своих диэлектрических свойств жидкие кристаллы регулируют взаимоотношения внутри клетки, между клетками и тканями, а также между клеткой и окружающей средой. Таким образом, изучение природы и поведения жидких кристаллов может привнести вклад в молекулярную биологию.

жидкие кристалы

Обычно жидкие кристаллы возникают, когда охлаждаются расплавы или повышается концентрация растворов некоторых веществ с длинными молекулами. При этом само вещество приобретает новые, необычные свойства — другую окраску, температуру плавления и т. д. Жидкие кристаллы не так уж редки. Оказалось, что даже чернила для авторучек имеют при высыхании жидкокристаллическую структуру.

Эти сказочно красивые образования имеют три вида: смектические, или мылообразные, нематические, или нитевидные, и холестерические, то есть сходные по строению со всем известным холестерином.

Смектические кристалы

Смектические кристаллы — это ракетообразные молекулы, выстроенные рядами, образующими как бы этажи. Так расположены молекулы в мыльном пузыре, где между строгими рядами внутренней и внешней поверхности беспорядочно плавают в жидкости молекулы мыла. Так же устроены и оболочки нервных волокон живого организма, элементы цитоплазмы, структуры хлоропластов — веществ, связанных с реакцией фотосинтеза у растений.

Нематические кристаллы менее упорядочены. Их длинные оси ориентированы в определенном направлении, как булавки в коробочке. Такую структуру имеют многие смолы и стекла и жизненно важные составные части живого белка — лецитин, керазин, цереброн.

Кристаллы холестерического типа переливаются всеми цветами радуги потому, что они обладают редким свойством: двойным лучепреломлением. Один поляризованный луч отражается, другой проходит через вещество, окрашивая его в разных направлениях по-разному. Стоит лишь немного расстроить хрупкие связи молекул жидких кристаллов, как резко меняются оптические свойства вещества — его окраска, прозрачность. Особенно чутко реагируют рядовые кристаллы на изменения температуры. Охлаждаясь, они становятся фиолетовыми, потом голубыми, желтыми, красными и снова бесцветными. Можно так подобрать смесь жидких кристаллов, что совершенно определенный цвет будет соответствовать определенной температуре. Всякое нарушение однородности материала сопровождается неравномерным распределением тепла, и жидкие кристаллы дают возможность деликатно и безвредно вести контроль за состоянием новорожденных или больных в бессознательном состоянии: с их помощью можно воспроизвести точную карту расположения и выходов к коже кровеносных сосудов — ведь там, где залегает сосуд, температура всегда несколько выше. Жидкокристаллические пленки используют при изучении температурных перепадов в раковых опухолях, различных очагах поражения кожи и в других подобных случаях.

жидкие кристалы

Вообще поведение холестерина в жидкокристаллическом состоянии представляет чрезвычайный интерес для медицины. Выяснением его роли много занимался известный русский патофизиолог профессор Семен Сергеевич Халатов. Он установил, например, что у людей при некоторых заболеваниях резко повышается содержание жидких кристаллов в организме. Отлагаясь в тканях, жидкие кристаллы разрушают клетки.

Не менее важны эти знания для изучения живой клетки. Оказывается, жидкие кристаллы не только разрушители. Многим вполне здоровым, нормальным живым клеткам свойственно жидкокристаллическое состояние. Сложной жидкокристаллической системой является и человеческий мозг. Серое вещество в основном состоит из жидких кристаллов. А в белом веществе и проводящих путях нервной системы жидкие кристаллы играют роль диэлектриков. Они образуют оболочку вокруг нервных волокон — нейронов. Коллаген, содержащийся в опорных тканях — костях, сухожилиях и мозге, — близок по структуре к кристаллам нематического типа.

Дезоксирибонуклеиновая кислота (ДНК) — хранитель и передатчик наследственной информации в живом организме — тоже образует жидкие кристаллы так называемого лиотропного типа.

Такая распространенность жидких кристаллов в живом организме не случайна. Они легко поглощают и растворяют различные вещества. Замечательные свойства: пластичность и гибкость в сочетании с устойчивостью к внешним воздействиям, чувствительность и тонкость структуры — все это делает жидкие кристаллы незаменимыми элементами живых тканей.

P. S. О чем еще думают британские ученные: А еще нервные клетки человеческого мозга имеют большое влияние на различные аспекты нашей жизни, например, такие как уровень интеллекта, память, воображение, и даже психология отношений между различными людьми порой зависит именно от них.

Жидкие кристаллы — это не определённый вид вещества, а комплексное определение состояния некоторых тел. Это значит, что определённые вещества могут при соблюдении условий вести себя и как жидкости, и как твёрдые тела. При написании реферата о жидких кристаллах и их применении можно более глубоко изучить особенности и уникальные свойства этого материала.

Жидкие кристаллы

Что такое текучие материалы

Примерно до конца XIX века считалось, что существует два вида веществ — с твёрдой структурой тела и с текучей. Но в 1888 году был обнаружен ряд странных свойств у холестерилбензоата. Позже, общую закономерность в свойствах некоторых тел обнаружил немецкий физик Отто Леман, экспериментируя со своим проектом. По сути, он и открыл возможность веществ иметь разные свойства в разных состояниях.

Жидкокристаллическое состояние

Если кратко, то жидкокристаллическое состояние выражается в одновременной текучести и вместе с тем, упорядоченным расположением молекул. Однако, жёсткой кристаллической решётки в таких телах нет. Одно из ключевых свойств жидких кристаллов — ориентированный порядок расположения молекул.

В разных фазах и у различных веществ это расположение тоже может меняться. Таким образом, достигается гибкость разработки и широкий спектр применения жидких кристаллов в медицине, промышленности, бытовой технике и электронике.

Виды и категории

Иерархия фаз ЖК сложна и немного запутана. Существует две больших группы:

Лиотропные — двух или более компонентные вещества. Текучее состояние в такой среде обеспечивает какой-либо из видов растворителей, например, вода. А упорядоченность молекул и твёрдое состояние гарантируют свойства основного элемента.

Термотропные в общем случае образуются при нагревании вещества. Они, в свою очередь, могут быть представителями одного из подклассов:

  • нематические;
  • смектические;
  • холестерические.

Нематические жидкие кристаллы

Нематические не имеют жёсткого порядка в строении молекул. Тем не менее, молекулы всегда направлены своими острыми частями в одну сторону и непрерывно скользят вдоль своей длинной оси. По сути, они ведут себя как обычные жидкости.

Смектические ЖК имеют слои, которые могут перемещаться относительно друг друга. Толщина одного слоя равна длине молекул. Такая техника построения молекул придаёт большую вязкость и более высокую плотность, чем у нематической группы. Стоит отметить, что смектические кристаллы делятся ещё на три категории: A, B и С.

Холестерические жидкие кристаллы, как можно понять из названия, содержит в себе производные холестерина, помимо других веществ. Но, по сути, этот тип представляет собой нематические материалы. Только их молекулы расположены таким образом, что представляют собой спирали, которые очень остро реагируют на любое изменение температуры. При этом меняется окрас самого вещества. Эту биологическую функцию можно использовать в медицинских целях, а также там, где необходимо оперативно реагировать на изменения температуры.

Свойства и характеристики

Не менее интересны и тема оптических свойств. Проходя через некоторые виды жидких материалов, свет работает так же, как и в твёрдых. То есть расщепляется на два — необыкновенный и обыкновенный. Направление поляризации первого совпадает с направлением оптической оси кристалла, а второго — перпендикулярно ему. При правильном использовании этой особенности можно с помощью внешних воздействий управлять переходом света через материал.

Жидкие кристаллы под микроскопом

Области применения

Различные свойства и характеристики ЖК позволяют использовать их практически во всех отраслях. Оптические способности активно используются в производстве целой гаммы приборов — от микроскопов до больших экранов мониторов. Природа прохождения лучей через ЖК позволяет управлять ими буквально с любой микросхемы. А малое потребление гарантирует максимальную экономичность. В отличие от плазменных экранов, ЖК-мониторы имеют более сочную картинку и долговечность.

Особенность кристаллов быстро реагировать на малейшее изменение температуры нашла своё практическое применение в медицине. Например, белый свет, проходя через ЖК разлагается в спектр, который будет неоднородным при разных температурах. И по лучам можно определить точную степень изменения температуры тела. Собственно, это же открытие применяется и для контроля за нагревом различных материалов в самых разных отраслях.

Перспективы жидких кристаллов

Монитор жк

Несомненно, открытие уникальных новых свойств уже известных материалов позволило осуществить массу открытий в самых разных областях деятельности человека. Даже читая этот краткий доклад, пользователь, скорее всего, делает это с помощью жидких кристаллов, не подозревая об этом.

Несмотря на то что изучен большой пласт физических свойств элементов, учёные продолжают находить им всё новое применение, совершенствуя приборы и технологии. В журналах и газетах, специализирующихся на химии, физике и прочих естественных науках, продолжают публиковаться всё новые и новые достижения в области материалов с двумя агрегатными состояниями.


Жидкие кристаллы — это состояние вещества, обладающее двумя свойствами: жидкостей и кристаллов. Им также присуща текучесть и анизотропия, т. е. различие свойств в данной среде. Несмотря на их текучесть, они способны сохранять кристаллическое состояние. Благодаря структуре вязких жидкостей, состоящие из молекул дискообразной формы жидкие кристаллы имеют способность меняться при взаимодействии с электрическими полями.

Исторически сложилось так, что жидкие кристаллы имеют два типа плавления, т. е. при одном нагревании кристалл становится прозрачным, при другом — кристалл становиться мутным. Это выяснил в 1888 году Фридерих Рейнитцер. Такие кристаллы не воспринималось их отдельное состояние, т. к. это ломало теорию о существовании лишь трех состояний: жидкого, твердого и газообразного.

Ключевые слова: жидкие кристаллы, свойства, применение, молекулы, электрическое поле, термотропные, лиотропные.

Некоторые ученые провели конференцию, посвященную этой теме, и создали индикаторы, которые работают по принципу, основанному на том, что молекулы этих кристаллов способны поворачиваться в электрическом поле, тем самым могут отражать и пропускать свет. Спустя несколько лет жидкие кристаллы стали получать из дешевого и доступного сырья.

  1. Термотропные получаются из нагретого твердого вещества, зависящие от параметров температур и давления. Они представляют три типа:

— Смектические — определяются тем, что имеют слоистую структуру, где слои способны перемещаться друг с другом. Имеют высокую вязкость, и также с приближением к поверхности плотность слоя меняется.

— Нематические — определяются нитеобразной структурой, где вытянутые в длину молекулы, вращаясь вокруг своих осей, скользят вдоль них.

— Холистерические — образовались за счет того, что состоят в основном из холестерина. Они немного схожи с нематическими, однако отличие все-таки есть — это их расположение молекул. Молекулы образуют спираль, за счет их поворота относительно друг друга. Особенность такое типа в том, что молекулы очень чувствительны и в зависимости от температуры меняют свое положение.

  1. Лиотропные представляют собой смесь из стержневидных молекул данного вещества и полярных растворителей.
  2. Металлотропные представляют собой жидкокристаллические фазы, образующиеся с помощью легкоплавких неорганических веществ, например хлорид цинка, способный легко стекать. К этим структурам добавляют длинноцепочечных молекул приводит к образованию новых фаз с некоторыми ЖК-свойствами, возникающими в зависимости от концентрации неорганической фазы и температуры.

Жидкие кристаллы применяются в различных сферах, таких как ЖК-дисплеи, термография, электронные индикаторы.

ЖК-дисплеи расшифровывается как жидкокристаллические дисплеи. В XXI веке дисплеи присутствуют везде, в любом электронном устройстве, например телефоны, компьютеры, навигаторы, калькуляторы, электронные книги и др.

Жидкокристаллические дисплеи — довольно сложная система, но если взять в общем виде, то она состоит из стеклянных пластинок, между которыми находятся жидкие кристаллы, их можно также назвать жидкокристаллическими матрицами, и множество источников света.

В термографии жидкие кристаллы помогают получать тепловое изображение объекта с помощью инфракрасного излучения. Благодаря инфракрасным приборам можно определить, в каком месте происходит перегрев, нарушение термоизоляции или других различных участков линий электропередачи, теплового потока или строительства.

С помощью жидких кристаллов создаются электронные индикаторы, реагирующие на различие температур, тем самым определить, где произошел сбой систем. Используют жидкие кристаллы, когда наносят их в виде пленки на печатные платы или интегральные схемы. С помощью этих индикаторов можно с легкостью заметить неисправности в работе. Индикаторы, сделанные из жидких кристаллов, применяются для обнаружения различных химических паров, ультрафиолетового и гамма-излучения.

Так как жидкие кристаллы способны обладать текучестью, то основное свойство определяется наличием порядка пространственной ориентации молекул, что позволяет им приблизиться к обычным кристаллам. У жидких кристаллов присутствует фаза полиморфизм. Его изучают такими методами как:

— Микроскопии в поляризованном свете

— Сканирующей дифференциальной адиабатической калориметрии

Эти методы по-своему позволяют узнать различные стороны ЖК фазы, которые затем дадут общую картину фазы в соответствии с условиями ее существования.

Свойствами таких кристаллов является отсутствие жесткой кристаллической решетки. Жидкие кристаллы могут принимать форму сосуда или любой другой емкости, в которую их помещают. Способность осуществлять более сложный ориентационный порядок молекул, в отличие от кристаллов. Такие кристаллы имеют упругость и флексоэлектрический эффект, т. е. возникновение электрической поляризации в телах при их изгибе или любом другом виде неоднородной деформации. Изменение ориентации молекул под действием электрических полей, что открывает возможности их применения в промышленности.

Находятся такие кристаллы в определенном промежутке температур, однако у каждого жидкого кристалла свой определенный промежуток, т. е. у одних интервал (ΔT ≈ 0,01 К), а у других (ΔT ≈ 100 К). Это можно объяснить на примере: если жидкий кристалл нагреть, то он превратится в жидкость или, наоборот, охладить, то он превратится в кристалл. Строение таких кристаллов выглядит как вытянутая сигарообразная форма, концы которой слабо взаимодействуют относительно друг друга, однако боковые поверхности взаимодействуют достаточно сильно и могут удерживать молекулы.

  1. Блинов Л. М. Жидкие кристаллы, Структура и свойства: книга / Блинов Л. М., 2013
  2. Давыдов С. Материаловедение: учебное пособие / Давыдов С., Болдырев Д., Тюрьков М., Попова Л. 2020–424 с.
  3. Гшайдле Р. Технология металлов и материаловедение: учебник / Гшайдле Р. 2019–176 с.
  4. Груздев В. Материаловедение: учебник / Груздев В., Синянский И. 2018–272 с.
  5. Воробьев А. Материаловедение: учебник / Воробьев А., Жуков Д., Кононов Д. 2014- 304 c.

Основные термины (генерируются автоматически): кристалл, молекула, друг друга, жидкий кристалл, индикатор.

Читайте также: