Желтые звезды это кратко

Обновлено: 05.07.2024

Сегодня мы кратко расскажем о желтых карликах, которых еще называют желтыми звездами.

Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности.

Они являются звездами основной последовательности, располагаясь примерно в середине на диаграмме Герцшпрунга — Рассела и следуя за более холодными и менее массивными красными карликами.

По спектральной классификации Моргана-Кинана желтые карлики соответствуют в основном классу светимости G, однако в переходных вариациях соответствуют иногда классу К (оранжевые карлики) или классу F в случае с желто-белыми карликами.

Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. При этом температура их поверхности составляет в своем большинстве от 5 до 6 тысяч градусов по Кельвину.

Наиболее ярким и известным нам представителем из числа желтых карликов является наше Солнце. Кроме Солнца, среди ближайших к Земле желтых карликов стоит отметить:

  1. Две компоненты в тройной системе Альфа Центавра, среди которых Альфа Центавра А по спектру светимости аналогично Солнцу, а Альфа Центавра В – типичный оранжевый карлик класса К. Расстояние до обеих компонент составляет чуть более 4-х световых лет.
  2. Оранжевый карлик — звезда Ран, она же Эпсилон Эридана, с классом светимости К. Расстояние до Рана астрономы оценили примерно в 10 с половиной световых лет.
  3. Двойная звезда 61 Лебедя, удаленная от Земли на чуть более 11 световых лет. Обе компоненты 61 Лебедя типичные оранжевые карлики класса светимости К.
  4. Солнцеподобная звезда Тау Кита, удаленная от Земли примерно на 12 световых лет, со спектром светимости G и интересной планетной системой, состоящей минимум из 5 экзопланет.

Эволюция желтых карликов весьма интересна. Продолжительность жизни желтого карлика составляет примерно 10 миллиардов лет.

Как и большинства звезд в их недрах протекают интенсивные термоядерные реакции, в которых в основном водород перегорает в гелий.

После начала реакций с участием гелия в ядре звезды водородные реакции перемещаются все больше к поверхности. Это и становится отправной точкой в преобразовании желтого карлика в красный гигант. Результатом подобного преобразования может служить красный гигант Альдебаран.

С течением времени поверхность звезды будет постепенно остывать, а внешние слои начнут расширяться. На конечных стадиях эволюции красный гигант сбрасывает свою оболочку, которая образует планетарную туманность, а его ядро превратится в белый карлик, который далее будет сжиматься и остывать.

Подобное будущее ждет и наше Солнце, которое сейчас находится на средней стадии своего развития. Примерно через 4 миллиарда лет оно начнет свое превращение в красный гигант, фотосфера которого при расширении может поглотить не только Землю и Марс, но даже и Юпитер.

Желтые карлики — это звезды главной последовательности массой от 0,8 до 1,2 Мс (масс Солнца).

Температура фотосферы (поверхностного слоя) звезд этого класса находится в диапазоне 5000-6000 градусов Кельвина в зависимости от массы и возраста.

Солнце является типичным желтым карликом. Так оно нами воспринимается на Земле. На самом деле, оно ослепительно белое, как излучение электросварки — об этом свидетельствовал советский космонавт Алексей Леонов, первым в истории космонавтики вышедший в открытый космос. Он сначала не задвинул солнцезащитную пленку на скафандр и на мгновение был ослеплен белым лучом Солнца. Атмосфера рассеивает и поглощает коротковолновой спектр сложного белого света, оставшийся видимый свет воспринимается нами как желтый.

История Солнца началась около 4,6 миллиарда лет назад. Предполагается, что мы принадлежим третьему поколению звездных систем в эволюции нашей Вселенной с момента Большого Взрыва. Изотопный анализ показывает, что вещество Солнца и солнечной системы составилось из молекулярного облака, образовавшегося из двух взрывов сверхновых, разбросавших вокруг вещество, содержащее водород, гелий, углерод, азот, кислород, железо и другие элементы. Часть этого вещества обособилось в некое газопылевое облако диаметром в несколько световых лет. Его масса составляла свыше 10^31 кг. Естественно, под действием столь большой массы происходит гравитационное сжатие этого облака. Гравитация согласно Эйнштейну искривляет пространство-время, поэтому частицы сжимающегося вещества перемещаются к центру облака не прямолинейно, а по спирали. Так зарождается вращение этого облака. Согласно закону сохранения импульса с уменьшением радиуса вращения растет его угловая скорость.

Под воздействием собственной гравитации облако сжалось в компактный вращающийся диск, в центре которого сформировалось будущее Солнце - газовый шар протосолнце. Гравитация сжимала протосолнце, тем самым разогревая его, и при температуре порядка 10 миллионов градусов Кельвина в центре системы началась реакция протон-протонного термоядерного синтеза. Аккреция диска прекратилась, когда сила солнечного ветра и центробежная сила вращения диска превзошли силу гравитации притягивания вещества диска к протосолнцу, и солнечный ветер - альфа-частицы, протоны и электроны - разогнал остатки материала по орбитам будущей Солнечной системы. В этой ситуации протосолнце стало Солнцем — звездой главной последовательности. Такова наиболее обобщенная модель зарождения Солнца и солнечной системы.

Солнце имеет несколько различных по свойствам сфер в своей структуре.

Во-первых, это ядро, в котором происходит в настоящее время термоядерный синтез гелия из водорода. Радиус ядра составляет примерно четверть радиуса Солнца, то есть около 170 тысяч километров.

Накопление гелия ведет к постепенному повышению температуры ядра. В настоящее время она составляет 15,7 миллионов градусов Кельвина. В процессе термоядерной реакции количество водорода уменьшается, гелиевые скопления ядра увеличиваются. Параллельно с этим уменьшается водородная реактивная часть объема ядра. Давление в реактивной части ядра от этого растет, что и ведет к повышению интенсивности термоядерного синтеза и его температуры. Расчеты показывают, что через 1,1 миллиард лет тепловое излучение Солнца увеличится на десять процентов, что приведет к росту температуры на поверхности Земли с нынешней средней 15 градусов Цельсия до 47.

Термоядерный синтез, происходящий в ядре, создает положительный энергобаланс, то есть выделяется энергии больше, чем затрачивается. Каждую секунду сгорает 4,26 миллионов тонн водорода, превращаясь в гелий. Так как масса Солнца 2х10^27 тонн, то этого добра хватает на 11 миллиардов лет.

Часть энергии, вырабатываемая в солнечном ядре, теряется практически впустую - в виде излучения нейтрино. Нейтрино не взаимодействует с барионным материалом, поэтому солнечное вещество для него прозрачно. Это излучение просто охлаждает солнечный котел. Кстати это свойство нейтрино и является причиной его открытия. Ученые думали-думали, а куда девается некая часть энергии? По расчетам должно быть столько, а излучается почему-то меньше. Вот и решили, что всему причиной являются некие нейтрино. Сейчас их пытаются изучать и даже найти им практическое применение.

Ну а полезная энергия солнечного ядра, которая дает нам жизнь и прочие блага, излучается в виде фотонов. Фотоны — это кванты электромагнитного излучения. Они различаются по длине волн.

Ядро своей энергией рождает самые высокоэнергичные коротковолновые фотоны — гамма-излучение. Гамма-фотоны из ядра попадают в следующую сферу солнечных недр — радиационную, называемую еще зоной лучистого переноса, толщина которой оценивается примерно в 350 тысяч километров. Это плотная плазма, температура которой составляет от 2 миллионов Кельвинов в наружной части до 7 миллионов Кельвинов во внутренней. Из-за высокой плотности — от 0,2 на поверхности до 20 г/см^3 в глубине — макроскопические конвективные перемещения вещества в этой сфере отсутствуют. Энергия переносится фотонами. В среднем условный фотон проходит эту зону за 170 тысяч лет. Фотон условен потому, что это в общем-то не один и тот же фотон, допустим, с именем А идет и идет через зону лучистого переноса. Он поглощается каким-то атомом плазмы, который от полученной энергии возбуждается и выделяет новый фотон Б и т. д. Происходит что-то вроде цепной реакции поглощений и выделений фотонов. Понятно, что к наружной поверхности зоны лучистого переноса основная часть фотонов доходит с потерями энергии, то есть увеличиваясь в длине волны и становясь уже рентгеновским излучением.

Следующая сфера — конвективная зона толщиной 200 тыс километров. Здесь уже температура и плотность плазмы недостаточна для возможности лучистого переноса энергии. Получив энергию фотонов из предыдущей зоны, вещество плазмы перемещается в наружную часть конвективной зоны к фотосфере, охлаждаясь до 5800 Кельвинов. Соответственно, и длины волн фотонов, которые излучает солнечное вещество из конвективной зоны, доходят до световых диапазонов. Передав энергию фотонов фотосфере, охлажденное вещество плазмы возвращается к поверхности зоны лучистого переноса, чтобы возобновить цикл. Вот так и идет круговорот плазмы в конвекционной зоне — это, собственно, и есть конвекция солнечного вещества.

Следующая зона — фотосфера имеет толщину порядка 100-400 километров. Само название дает понять, что это то, что мы видим на Солнце. Если, конечно, вооружимся солнцезащитным оборудованием. Так называемая эффективная температура фотосферы Солнца составляет 5780 Кельвинов. То есть это та температура, которую получает следующая зона хромосфера от фотосферы.

Хромосфера — относительно прозрачная разреженная зона толщиной от 2 000 до 20 000 километров. В этой сфере происходит разогрев вещества до 20 000 Кельвинов. При затмении Солнца эта сфера видится как красная, отсюда и название.

Также во время затмения мы наблюдаем внешнюю оболочку солнечной атмосферы — корону. Это выбросы солнечного вещества, так называемые протуберансы, порождаемые солнечным ветром и магнитными дугами, выходящими над поверхностью фотосферы. Температура верхней части короны достигает 1 500 000 миллионов Кельвинов. Соответственно отсюда солнечный луч получает рентгеновский диапазон излучения, из-за которого космос за пределами земной магнитосферы опасен для здоровья космонавтов.

Немного о магнетизме Солнца. Движение плазмы в конвективной зоне создает магнитные поля на поверхности фотосферы. Ведь плазма — это ионизированное вещество, движение заряженных частиц создает магнетизм, как известно. На поверхности фотосферы скапливается магнитный потенциал в виде так называемых солнечных пятен — затемненных участков.


Жёлтый карлик — тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000—6000 K . Соответственно своему названию, по результатам фотометрии они имеют жёлтый цвет, хотя субъективно их цвет воспринимается человеком как наиболее чистый белый (более горячие звёзды будут восприниматься человеком как голубоватые или голубые). Основным источником их энергии является термоядерный синтез гелия из водорода. Самым известным жёлтым карликом является Солнце. Другие известные звёзды: Эпсилон Эридана, Альфа Центавра А, Альфа Северной Короны В, Тау Кита.

Температура поверхности жёлтых карликов составляет 5000—6000 K , их спектральные классы G0V—G9V. Характеристика спектра: линии H и K кальция интенсивны; линия 4226 Ǻ и линия железа довольно интенсивны; многочисленные линии металлов; линии водорода слабеют к классу K; интенсивна полоса G [1] .

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран. Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

См. также

Примечания

  1. Куликовский, Пётр Григорьевич. Справочник любителя астрономии. — изд. 4-е. — М. УРСС, 1971. — С. 123. — ISBN 5836003033
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Жёлтый карлик" в других словарях:

Жёлтый карлик (фильм) — У этого термина существуют и другие значения, см. Жёлтый карлик (значения). Жёлтый карлик … Википедия

Жёлтый карлик (значения) — Жёлтый карлик: Жёлтый карлик тип звёзд Жёлтый карлик комедийная мелодрама Дмитрия Астрахана 2001 года … Википедия

Красный карлик — в представлении художника Красный карлик согласно диаграмме Герцшпрунга Рассела, маленькая и относительно холодная звезда главной последовательности, имеющая спектраль … Википедия

Оранжевый карлик — HD 70642, изображение оранжевого карлика программой Celestia. Оранжевый карлик звезда главной последовательности спект … Википедия

Жёлтый (значения) — Жёлтый многозначный термин: Жёлтый цвет цветa с длиной волны от 565 нм до 590 нм. география Жёлтый стратовулкан в южной части полуострова Камчатка. Жёлтый хутор в Питерском районе Саратовской области. Жёлтый посёлок в Федоровском районе… … Википедия

Бурый карлик — Коричневый карлик (меньший объект) вращающийся вокруг звезды Gliese 229, которая расположена в созвездии Зайца около 19 световых лет от Земли. Коричневый карлик Gliese 229B имеет массу от 20 до 75 масс Юпитера. Коричневые или бурые карлики… … Википедия

Желтый карлик — Жёлтый карлик тип звёзд Жёлтый карлик (фильм) … Википедия

Коричневый карлик — (меньший объект) вращающийся вокруг звезды Gliese 229, которая расположена в созвездии Зайца около 19 световых лет от Земли. Коричневый карлик Gliese 229 … Википедия

Любая звезда - желтая, голубая или красная - представляет собой раскаленный газовый шар. Современная классификация светил основывается на нескольких параметрах. К ним относится температура поверхности, размер и яркость. Цвет звезды, видимый ясной ночью, зависит главным образом от первого параметра. Самые горячие светила голубые или даже синие, самые холодные — красные. Желтые звезды, примеры которых названы ниже, занимают среднее положение по шкале температуры. В число этих светил входит и Солнце.

Различия

Тела, нагретые до разных температур, излучают свет с неодинаковой длинной волны. От этого параметра и зависит определяемый глазом человека цвет. Чем короче длина волны, тем горячее тело и тем ближе его цвет к белому и голубому. Справедливо это и для звезд.

желтые и красные звезды

Красные светила самые холодные. Температура их поверхности достигает лишь 3 тысяч градусов. Звезда желтая, как наше Солнце, уже горячее. Ее фотосфера нагревается до 6000º. Белые светила раскалены еще сильнее — от 10 до 20 тысяч градусов. И, наконец, голубые звезды являются самыми горячими. Температура их поверхности достигает от 30 до 100 тысяч градусов.

Общие характеристики

Желтые звезды, названия многих из которых хорошо известны и людям, далеким от астрономии, обнаружены учеными в большом количестве. Они различаются размерами, массой, светимостью и некоторыми другими характеристиками. Общее для таких светил — именно температура поверхности.

Желтый цвет светило может приобретать в процессе эволюции. Однако подавляющая часть подобных звезд располагается на Главной последовательности диаграммы Герцшпрунга-Рассела. Это так называемые желтые карлики, к которым относится и Солнце.

Главная звезда системы

белые желтые звезды

Карликами такие светила называются из-за относительно небольших размеров. Диаметр Солнца в среднем составляет 1,39*10 9 м, масса — 1,99*10 30 кг. Оба параметра значительно превышают аналогичные характеристики Земли, однако в космическом пространстве не являются чем-то из ряда вон выходящим. Существуют и другие желтые звезды, примеры которых приведены ниже, значительно опережающие Солнце по размерам.

Температура поверхности нашего светила достигает 6 тысяч Кельвинов. Солнце относится к спектральному классу G2V. В действительности оно испускает практически чистый белый свет, однако из-за особенностей атмосферы планеты коротковолновая часть спектра поглощается. В результате появляется желтый оттенок.

Особенности желтого карлика

Небольшие по размерам светила характеризуются внушительной продолжительностью жизни. Среднее значение этого параметра — 10 млрд лет. Солнце сейчас располагается примерно на середине жизненного цикла, то есть до схода с Главной последовательности и превращения в красного гиганта ему осталось около 5 миллиардов лет.

Помимо Солнца к желтым карликам относится Альфа Центавра А, Альфа Северной Короны, Мю Волопаса, Тау Кита и другие светила.

Желтые субгиганты

Звезды, похожие на Солнце, после исчерпания водородного топлива, начинают изменяться. Когда в ядре загорится гелий светило расширится и превратится в красного гиганта. Однако эта стадия наступает не сразу. Сначала гореть начинают внешние слои. Звезда уже сошла с Главной последовательности, но еще не расширилась — она находится на стадии субгиганта. Масса такого светила обычно варьируется от 1 до 5 масс Солнца.

Стадию желтого субгиганта могут проходить и более внушительные по размерам звезды. Однако для них эта стадия меньше выражена. Самый известный субгигант на сегодня — это Процион (Альфа Малого Пса).

желтые звезды примеры

Настоящая редкость

Желтые звезды, названия которых приводились выше, относятся к довольно распространенным во Вселенной типам. Иначе дела обстоят с гипергигантами. Это настоящие исполины, считающиеся самыми тяжелыми, яркими и крупными и одновременно обладающими самой короткой продолжительностью жизни. Большинство известных гипергигантов относятся к ярким голубым переменным, однако встречаются среди них белые, желтые звезды и даже красные.

В число таких редких космических тел относится, например, Ро Кассиопеи. Это желтый гипергигант, по светимости в 550 тысяч раз опережающий Солнце. От нашей планеты она удалена на 12 000 световых лет. В ясную ночь ее можно увидеть невооруженным глазом (видимый блеск — 4,52m).

 желтые звезды названия

Сверхгиганты

Гипергиганты — частный случай сверхгигантов. В число последних также входят желтые звезды. Они, по мнению астрономов, являются переходной стадией эволюции светил от голубого к красному сверхгиганту. Тем не менее в стадии желтого сверхгиганта звезда может просуществовать достаточно долго. Как правило, на этом этапе эволюции светила не погибают. За все время изучения космического пространства было зафиксировано только две сверхновых, порожденных желтыми сверхгигантами.

К таким светилам относят Канопус (Альфа Киля), Растабан (Бета Дракона), Бету Водолея и некоторые другие объекты.

звезда желтая

Как видно, каждая звезда, желтая подобно Солнцу, обладает специфическими характеристиками. Однако у всех есть и нечто общее — это цвет, являющийся результатом нагрева фотосферы до определенных температур. Помимо названных, к подобным светилам относят Эпсилон Щита и Бету Ворона (яркие гиганты), Дельту Южного Треугольника и Бету Жирафа (сверхгиганты), Капеллу и Виндемиатрикс (гиганты) и еще множество космических тел. Нужно заметить, что цвет, обозначаемый в классификации объекта, не всегда совпадает с видимым. Происходит это потому, что истинный оттенок света искажается из-за газа и пыли, а также после прохождения через атмосферу. Для определения цвета астрофизики используют аппарат спектрограф: он дает значительно более точную информацию, чем человеческий глаз. Именно благодаря ему ученые могут различить голубые, желтые и красные звезды, удаленные от нас на огромные расстояния.

Читайте также: