Вычисление определителей 2 и 3 порядка кратко

Обновлено: 06.05.2024

Определители и их свойства. Перестановкой чисел 1, 2. n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12. n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ обозначает подстановку, в которой 3 переходит в 4, 1 → 2, 2 → 1, 4 → 3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

где индексы q1, q2. qn составляют некоторую перестановку из чисел
1, 2. n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1) q, где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ или detA = (детерминант, или определитель, матрицы А).

Свойства определителей

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых ai j = bj + cj (j = 1. n), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором Mi j элемента ai j определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента ai j определителя d называется его минор Mi j, взятый со знаком (-1) i + j . Алгебраическое дополнение элемента ai j будем обозначать Ai j. Таким образом, Ai j = (-1) i + j Mi j.

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

или j- го столбца

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Формула вычисления определителя третьего порядка.



Для облегчения запоминания этой формулы:



Пример 2.4. Не вычисляя определителя , показать, что он равен нулю.

Решение. Вычтем из второй строки первую, получим определитель , равный исходному. Если из третьей строки также вычесть первую, то получится определитель , в котором две строки пропорциональны. Такой определитель равен нулю.

Пример 2.5. Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:


.


Пример 2.6. Вычислить определитель

в котором все элементы по одну сторону от главной диагонали равны нулю.

Решение. Разложим определитель А по первой строке:

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

И так далее. После n шагов придем к равенству A = а11 а22... ann.

Пример 2.7. Вычислить определитель .

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.



.

Числа а11, а12, а21, а22 называются элементами определителя (они же элементы матрицы А).

Элементы а11, а22 составляют главную диагональ, а элементы а21, а12 – побочную диагональ.

Пусть дана квадратная матрица 3-го порядка:


.

Определение. Определителем 3-го порядка, соответствующим матрице А, называется число D, которое определяется выражением:


Элементы а11, а22, а33 – расположены на главной диагонали, элементы а13, а22, а31 – на побочной диагонали.

Вычисление определителей 2-го и 3-го порядка

Определитель 2-го порядка вычисляется по определению:


.


Для вычисления определителя 3-го порядка можно воспользоваться следующими правилами:


,


Вычислить .


,




Пример 3


Вычислить определитель по правилу треугольника: .

Решение


Свойства определителей

Рассмотрим свойства определителей на примере определителя 3-го порядка.


.


Определение. Минором некоторого элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, на пересечении которых стоит этот элемент. Обозначение минора .

Пример 4


Минор элемента а12: .

Определение. Алгебраическим дополнениемлюбого элемента определителя называется минор этого элемента, взятый со своим знаком, если сумма номеров строки и столбца, на пересечении которых стоит этот элемент, есть число четное, либо с противоположным знаком, если эта сумма есть число нечетное. Обозначение алгебраического дополнения Аij.

Пример 5


Свойство 1.Определитель равен сумме произведений элементов какого-нибудь столбца (или строки) на их алгебраические дополнения.

Пример 6

Вычислим определитель, разложив его по элементам 1-ой строки:


.

Свойство 2. Величина определителя не изменится, если каждую его строку заменить столбцом с тем же номером.

Свойство 3. Перестановка двух столбцов или двух строк определителя равносильна его умножению на (–1).

Свойство 4.Общий множитель всех элементов одного столбца или одной строки определителя можно вынести за знак определителя.

Свойство 5. Если все элементы какой-либо строки или какого-либо столбца равны нулю, то определитель равен нулю.

Свойство 6. Определитель, имеющий два одинаковых столбца или две одинаковых строки, равен нулю.

Свойство 7. Определитель равен нулю, если элементы двух столбцов или двух строк пропорциональны.

Свойство 8. Если каждый элемент некоторой строки (столбца) определителя представлен в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки (столбцы), кроме данной, прежние, а в данной строке (столбце) в первом определителе стоят первые слагаемые, а во втором – вторые:


.

Свойство 9.Если к элементам некоторого столбца (или строки) определителя прибавить соответствующие элементы другого столбца (или строки), умноженные на общий множитель, то величина определителя не изменится.

Пример 7


,

при вычислении определителя первую строку умножили на 2 и сложили со второй, затем разложили определитель по 2-й строке.

Свойство 10. Сумма произведений элементов какого-нибудь столбца (или строки) на алгебраические дополнения элементов другого столбца (или строки) определителя равна нулю.

Обратная матрица

Пусть дана квадратная матрица А порядка n.


Обратной матрицей по отношению к данной А называется матрица , которая будучи умноженной, как справа, так и слева на данную матрицу, дает единичную матрицу.

А · = · А = Е.

Квадратная матрица называется неособенной или невырожденной, если определитель ее отличен от нуля. В противном случае матрица называется особенной или вырожденной.

Всякая неособенная матрица имеет обратную матрицу, которую можно найти по формуле


,

где - определитель матрицы А, - союзная матрица по отношению к данной матрице, в которой элементы каждой строки данной матрицы заменены алгебраическими дополнениями элементов соответствующих столбцов. Например, для квадратной матрицы 2-го порядка союзной является матрица


,

для квадратной матрицы 3-го порядка союзной является матрица


.

Пример


Для матрицы найти обратную.

Обратную матрицу находим по формуле


.


Определитель матрицы , следовательно, матрица неособенная и обратная матрица существует. Найдем алгебраические дополнения элементов матрицы:





.

Тогда обратная матрица имеет вид


.

Прокрутить вверх


ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.


ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.


Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.).


Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.

В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка


Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Задание. Вычислить определитель второго порядка $\left| \begin & \\ & \end\right|$

Решение. $\left| \begin & \\ & \end\right|=11 \cdot 5-(-2) \cdot 7=55+14=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.


Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Вычислить определитель $\left| \begin & & \\ & & \\ & & \end\right|$ методом треугольников.

Решение. $\left| \begin & & \\ & & \\ & & \end\right|=3 \cdot 1 \cdot(-2)+4 \cdot(-2) \cdot(-1)+$

$$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":


Задание. Вычислить определитель $\left| \begin & & \\ & & \\ & & \end\right|$ с помощью правила Саррюса.


Решение.

$$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель $\left| \begin & & \\ & & \\ & & \end\right|$

Решение. $\left| \begin & & \\ & & \\ & & \end\right| \leftarrow=a_ \cdot A_+a_ \cdot A_+a_ \cdot A_=$

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Задание. Вычислить определитель $\left| \begin & & \\ & & \\ & & \end\right|$

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Задание. Вычислить определитель $\left| \begin & & & \\ & & & \\ & & & \\ & & & \end\right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Задание. Вычислить определитель $\Delta=\left| \begin & & & \\ & & & \\ & & & \\ & & & \end\right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получим нули в первом столбце, кроме элемента $a_$ , для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом: к третьей строке прибавляем три вторых, а к четвертой - две вторых строки, получаем:

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под главной диагональю, а для этого к последней строке прибавляем третью:

Ответ. $\Delta=-80$

Теорема Лапласа

Пусть $\Delta$ - определитель $n$-го порядка. Выберем в нем произвольные $k$ строк (или столбцов), причем $k \leq n-1$ . Тогда сумма произведений всех миноров $k$-го порядка, которые содержатся в выбранных $k$ строках (столбцах), на их алгебраические дополнения равна определителю.

Задание. Используя теорему Лапласа, вычислить определитель $\left| \begin & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end\right|$

Решение. Выберем в данном определителе пятого порядка две строки - вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):


Каждой квадратной матрице А соответствует число - определи­тель данной матрицы (det А).


A= - определитель второго порядка.

B= - определитель третьего порядка

Для вычисления определителя второго порядка используют формулу:

A= =

1) А=(а11) матрица 1-ого порядка


2) А= матрица 2-ого порядка


D2=


Определителем третьего порядка называют число, обозначаемое символом


и определяемое равенством

= (2)

Определитель 3-его порядка можно вычислить по правилу треугольника, схеме Саррюса.



Это правило позволяет легко записать формулу (2) и вычислить дан­ный определитель.


А= матрица 3-его порядка


D3=



Каждой квадратной матрице А соответствует число - определи­тель данной матрицы (det А).


A= - определитель второго порядка.

B= - определитель третьего порядка

Для вычисления определителя второго порядка используют формулу:

A= =

1) А=(а11) матрица 1-ого порядка


2) А= матрица 2-ого порядка


D2=


Определителем третьего порядка называют число, обозначаемое символом


и определяемое равенством

= (2)

Определитель 3-его порядка можно вычислить по правилу треугольника, схеме Саррюса.



Это правило позволяет легко записать формулу (2) и вычислить дан­ный определитель.


А= матрица 3-его порядка


D3=

Читайте также: