Внутреннее строение материалов кратко

Обновлено: 02.07.2024

Свойства материалов в большей мере связаны с особенностями их строения и со свойствами тех веществ, из которых данный материал состоит. В свою очередь, строение материала зависит: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки материала.

Каждый строительный материал характеризуется химическим, минеральным и фазовым составами.

В зависимости от химического состава все материалы делят:

· на органические (древесные, битум, пластмассы и т. п.),

· минеральные (бетон, цемент, кирпич, природный камень и т. п.)

· металлы (сталь, чугун, алюминий).

Каждая из этих групп имеет свои особенности. Так, все органические материалы горючи, а минеральные — огнестойки; металлы хорошо проводят электричество и теплоту. Химический состав позволяет судить и о других технических характеристиках (биостойкости, прочности и т. д.). Химический состав некоторых материалов (неорганические вяжущие вещества, каменные материалы, стекло) часто выражают количеством содержащихся в них оксидов.

Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Зная минералы и их количество в материале, можно судить о свойствах материала. Например, способность неорганических вяжущих веществ твердеть и сохранять прочность в водной среде, обусловлена присутствием в них минералов силикатов, алюминатов, ферритов кальция, причем при большом их количестве ускоряется процесс твердения и повышается прочность цементного камня.

Не меньшее влияние на свойства материала оказывают его макро- и микроструктура и внутреннее строение веществ, составляющих материал, на молёкулярно ионном уровне.

Макроструктура материала — строение, видимое невооруженным глазом или при небольшом увеличении.

Микроструктура материала — строение, видимое под микроскопом. Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д.

Во многом свойства материала определяют количество, размер и характер пор. Например, пористое стекло (пеностекло), в отличие от оконного стекла, непрозрачное и очень легкое.

Форма и размер частиц твердого вещества также влияют на свойства материала. Так, если из расплава обычного стекла вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата.

В зависимости от формы и размера частиц и их строения макроструктура твердых строительных материалов может быть:

· зернистой (рыхлозернистой или конгломератной);

Рыхлозернистые материалы состоят из отдельных, не связанных одно с другим зерен (песок, гравий, порошкообразные материалы для мастичной теплоизоляции и засыпок и др.).

Конгломератное строение, когда зерна прочно соединены между собой, характерно для различных видов бетона, некоторых видов природных и керамических материалов и др.

Ячеистая (мелкопористая) структура характеризуется наличием макро- и микропор, свойственных газо- и пенобетонам, ячеистым пластмассам, некоторым керамическим материалам.

Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами вдоль и поперек волокон (слоев). Это явление называется анизотропией, а материалы, обладающие такими свойствами, — анизотропными. Волокнистая структура присуща древесине, изделиям из минеральной ваты, а слоистая — рулонным, листовым, плитным материалам со слоистым наполнителем (текстолит, бумопласт и др.).

По взаимному расположению атомов и молекул материалы могут, быть кристаллическими иаморфными. Неодинаковое строение кристаллических и аморфных веществ определяет и различия в их свойствах. Аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава (например, аморфные формы кремнезема — пемзы, туфы, трепелы, диатомиты и кристаллический кварц).




Существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании имеют определенную температуру плавления (при постоянном давлении), а аморфные размягчаются и постепенно переходят в жидкое состояние.

Прочность аморфных веществ, как правило, ниже кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию, например стекол при получении стеклокристаллических материалов — ситаллов и шлакоситаллов.

Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями (явление полиморфизма). Например, полиморфные превращения кварца сопровождаются изменением объема. Изменением свойств материала путем изменения кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске).

Свойства материалов в большей мере связаны с особенностями их строения и со свойствами тех веществ, из которых данный материал состоит. В свою очередь, строение материала зависит: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки материала.

Каждый строительный материал характеризуется химическим, минеральным и фазовым составами.

В зависимости от химического состава все материалы делят:

· на органические (древесные, битум, пластмассы и т. п.),

· минеральные (бетон, цемент, кирпич, природный камень и т. п.)

· металлы (сталь, чугун, алюминий).

Каждая из этих групп имеет свои особенности. Так, все органические материалы горючи, а минеральные — огнестойки; металлы хорошо проводят электричество и теплоту. Химический состав позволяет судить и о других технических характеристиках (биостойкости, прочности и т. д.). Химический состав некоторых материалов (неорганические вяжущие вещества, каменные материалы, стекло) часто выражают количеством содержащихся в них оксидов.

Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Зная минералы и их количество в материале, можно судить о свойствах материала. Например, способность неорганических вяжущих веществ твердеть и сохранять прочность в водной среде, обусловлена присутствием в них минералов силикатов, алюминатов, ферритов кальция, причем при большом их количестве ускоряется процесс твердения и повышается прочность цементного камня.

Не меньшее влияние на свойства материала оказывают его макро- и микроструктура и внутреннее строение веществ, составляющих материал, на молёкулярно ионном уровне.

Макроструктура материала — строение, видимое невооруженным глазом или при небольшом увеличении.

Микроструктура материала — строение, видимое под микроскопом. Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д.

Во многом свойства материала определяют количество, размер и характер пор. Например, пористое стекло (пеностекло), в отличие от оконного стекла, непрозрачное и очень легкое.

Форма и размер частиц твердого вещества также влияют на свойства материала. Так, если из расплава обычного стекла вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата.

В зависимости от формы и размера частиц и их строения макроструктура твердых строительных материалов может быть:

· зернистой (рыхлозернистой или конгломератной);

Рыхлозернистые материалы состоят из отдельных, не связанных одно с другим зерен (песок, гравий, порошкообразные материалы для мастичной теплоизоляции и засыпок и др.).

Конгломератное строение, когда зерна прочно соединены между собой, характерно для различных видов бетона, некоторых видов природных и керамических материалов и др.

Ячеистая (мелкопористая) структура характеризуется наличием макро- и микропор, свойственных газо- и пенобетонам, ячеистым пластмассам, некоторым керамическим материалам.

Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами вдоль и поперек волокон (слоев). Это явление называется анизотропией, а материалы, обладающие такими свойствами, — анизотропными. Волокнистая структура присуща древесине, изделиям из минеральной ваты, а слоистая — рулонным, листовым, плитным материалам со слоистым наполнителем (текстолит, бумопласт и др.).

По взаимному расположению атомов и молекул материалы могут, быть кристаллическими иаморфными. Неодинаковое строение кристаллических и аморфных веществ определяет и различия в их свойствах. Аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава (например, аморфные формы кремнезема — пемзы, туфы, трепелы, диатомиты и кристаллический кварц).

Существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании имеют определенную температуру плавления (при постоянном давлении), а аморфные размягчаются и постепенно переходят в жидкое состояние.

Прочность аморфных веществ, как правило, ниже кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию, например стекол при получении стеклокристаллических материалов — ситаллов и шлакоситаллов.

Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями (явление полиморфизма). Например, полиморфные превращения кварца сопровождаются изменением объема. Изменением свойств материала путем изменения кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске).

Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практического вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.

Строение материала изучают на трех уровнях: 1) макроструктура материала – строение, видимое невооруженным глазом; 2) микроструктура материала – строение видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне, изучаемом методами рентгено-структурного анализа, электронной микроскопии и т.п.

Макроструктура

Макроструктура твердотелых строительных материалов делится на следующие типы: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, рыхлозернистая (порошкообразная).

Искусственные конгломераты

Искусственные конгломераты – это обширная группа, объединяющая бетоны различного вида, ряд керамических и других материалов.

Ячеистая структура

Ячеистая структура характеризуется наличием макропор, свойственных газо– и пенобетонам, ячеистым пластмассам.

Мелкопористая структура

Мелкопористая структура свойственна, например, керамическим материалам, поризованным способами высокого водозатворения и введением выгорающих добавок.

Волокнистая структура

Волокнистая структура присуща древесине, стеклопластикам, изделиям из минеральной ваты и др. Ее особенностью является резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.

Слоистая структура

Слоистая структура отчетливо выражена у рулонных, чистовых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).

Рыхлозернистые материалы

Рыхлозернистые материалы – это заполнители для бетона, зернистые и порошкообразные материалы для матичной теплоизоляции, засыпок и др.

Микроструктура веществ

Микроструктура веществ, составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезёма. Кристаллическая форма всегда более устойчива. Чтобы вызвать химическое взаимодействие между кварцевым песком и известью, в технологии силикатного кирпича используют автоклавную обработку отформованного сырцового материала насыщенным водяным паром с температурой не менее 175 °C и давления 0,8 Мпа. Между тем трепел (аморфная форма диоксида кремния) вместе с известью после затворения водой образует гидросиликат кальция при нормальной температуре 15-25 °C. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.

Практическое значение для природных и искусственных материалов имеет явление полиморфизма – когда одно и то же вещество способно существовать в разнообразных кристаллических формах, называемых модификациями. Наблюдаются, например, полиморфные превращения кварца, сопровождающегося изменением объема.

Особенностью кристаллического вещества является определенная температура плавления (при постоянном давлении) и определенная геометрическая форма кристаллов каждой его модификации.

Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность и др. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.

В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспорядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).

Внутреннее строение

Внутреннее строение веществ, составляющих материал, определяет механическую прочность, твердость тугоплавкость и другие важные свойства материала.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами; ионами; целыми молекулами.

Ковалентная связь, образуется обычно электронной парой в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, карборунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.

Ионные связи образуются в кристаллах тех материалов, в которых связь имеет преобладающе ионных характер. Распространенные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, не водостойки.

В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная и ионная связи. У полевых шпатов сочетаются относительно высокие показатели прочности и твердости, хотя и уступающие кристаллам алмаза с чисто ковалентной связью.

Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен их целых молекул, которые удерживаются друг около друга сравнительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.

Силикаты, занимающие особое место в строительных материалах, имеют сложную структуру, обусловившую их особенности. Так, волокнистые материалы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.

Свойства материалов определяются внутренним строением вещества, из которого они состоят. Согласно молекулярно-кинетической теории все тела, как твердые, так и жидкие и газообразные, состоят из мельчайших отдельных частиц — молекул, которые состоят из еще меньших частичек — атомов, а те в свою очередь из еще меньших, так называемых элементарных частиц (электронов, протонов, нейтронов и др.).

Мельчайшей частицей, которой присущи свойства данного вещества, является молекула. Это объясняется тем, что атомы, составляющие молекулу, занимают относительно друг друга вполне определенное положение, свойственное молекуле данного вещества.

Молекулы простых веществ состоят из атомов одного элемента, а сложных — из атомов нескольких элементов.

Как было сказано выше, величина молекул очень мала и не превышает 0,0 000 001 см. В частности, например, диаметр молекулы кислорода равен 0,00 000 003 см.

При таких малых размерах молекул их число в единице объема вещества очень велико. Установлено, что в 1 см 2 воздуха содержится 27 000 000 000 000 000 000 молекул (число Лошмидта).

Если их расположить цепочкой вплотную друг к другу, то получилась бы нить, которой можно было бы опоясать земной шар около 200 раз. Несмотря на большое число молекул, плотность заполнения ими объема вещества очень мала. Так, нетрудно подсчитать, что в воздухе молекулы занимают меньше 0,04% объема.

Наибольшую плотность имеют твердые тела, у которых число молекул, находящихся в 1 см 3 , превышает число Лошмидта в тысячи раз. Плотность жидких тел имеет промежуточное значение.

При температуре выше 273 °С молекулы всех тел находятся в непрерывном движении, причем, чем выше температура тела, тем больше скорость их движения в межмолекулярном пространстве.

Установлено, что в твердых телах происходит главным образом колебательное движение, а в жидких — колебательное и поступательное движение молекул.

Между молекулами действуют молекулярные силы притяжения и отталкивания.

Особенность этих сил такова, что при увеличении расстояния между молекулами преобладают силы притяжения, а при уменьшении — силы отталкивания, причем действие тех или других сил проявляется только при условии, что расстояние между молекулами не превышает определенной величины, свойственной молекулам данного вещества. В среднем эта величина близка к 0,0 000 001 см.

Действием молекулярных сил объясняется то, что в твердом теле молекулы вещества сохраняют свое взаимное расположение, пока им нагреванием не будет сообщено достаточное для преодоления молекулярных сил количество энергии и тело не перейдет в жидкое состояние.

В зависимости от агрегатного состояния тел и его устойчивости твердые тела могут иметь строго упорядоченное строение, т.е. кристаллическую решетку или беспорядочное, хаотическое расположение молекул и атомов.

Природа частиц, находящихся в узлах кристаллической решетки, и преобладающие силы взаимодействия (химические связи) определяют тип или характер кристаллической решетки (рис. 3.1).


Рис. 3.1Схемы основных типов структур кристаллической решетки а– атомный; б – молекулярный; в – ионный; г - металлический

В узлах этих решеток соответственно находятся молекулы, которые связаны друг с другом межмолекулярными силами; атомы, связанные ковалентной связью; положительно или отрицательно заряженные ионы, связанные друг с другом силами электростатического притяжения; атомы металла, между которыми свободно движутся общие для этих атомов электроны.

Как указывалось выше, молекулярные и атомные решетки присущи веществам с ковалентной связью, ионные - ионным соединениям, металлические - металлам и сплавам.

Вещества с атомными решетками характеризуются высокой твердостью, они, как правило, тугоплавки, практически нерастворимы ни в каких растворителях. Таких веществ сравнительно мало (алмаз, кремний и др.), и их свойства обусловлены прочной ковалентной связью.

Веществ с молекулярной решеткой очень много. Это почти все неметаллы (кроме углерода и кремния), все органические соединения с не ионной связью и многие неорганические вещества. Такие соединения, как правило, имеют невысокую твердость, легкоплавки и летучи.

К соединениям с ионной кристаллической решеткой относится большинство солей и некоторые оксиды. По прочности ионные решетки уступают атомным, но превышают молекулярные и имеют высокие температуры плавления.

Решетки различных веществ различаются между собой не только природой образующихих частиц, но и расположением частиц в пространстве, что и формирует особую структуру. Эти частицы называются элементарными ячейками, которые и придают веществу только ему свойственные особенности.

Упорядоченное расположение частиц в кристалле, отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов - во всем их объеме. Такая упорядоченность строения твердых тел носит название "дальний порядок". В телах с менее упорядоченным или хаотическим расположением частиц, что свойственно некристаллическим (аморфным) телам, имеет место лишь местная упорядоченность, т.е. на малых участках, и весьма приблизительного характера ("ближний порядок").

Это объясняет тот факт, что аморфные тела не имеют определенную точку плавления. Хаотическое (неупорядоченное) расположение частиц свидетельствует о неустойчивом агрегатном состоянии системы, способном изменять его под действием внешних факторов.

Известно, что для каждого агрегатного состояния характерно свое соотношение между потенциальной и кинетической энергиями частиц вещества. У твердых тел средняя потенциальная энергия больше средней кинетической энергии. Поэтому в твердых телах частицы занимают вполне определенные положения друг относительно друга и лишь колеблются около этих положений.

Для газов соотношение между энергиями обратное, вследствие чего молекулы газов всегда находятся в состоянии хаотического движения, и силы сцепления между молекулами практически отсутствуют, в результате чего газ занимает весь предоставленный ему объем.

Для жидкостей соотношение между энергиями стремиться к единице, т.е. частички связаны друг с другом, но не жестко. Поэтому жидкости обладают текучестью, но имеют при определенной температуре постоянный, объем.

В результате исследования внутреннего строения жидкости методом структурного анализа установлено, что по своему строению жидкости подобны аморфным телам, т.е. в расположении частиц также наблюдается ближний порядок - число ближайших соседей у каждой молекулы и их взаимное расположение приблизительно одинаковы во всем объеме жидкости.

Вследствие сходства во внутреннем строении жидкостей и аморфных тел (стекло, например), последние часто рассматриваются как жидкости с очень высокой вязкостью, хотя в отличие от обычных жидкостей в аморфных телах частицы имеют значительно меньшую подвижность - такую же как в кристаллах.

Исходя из общих соображений, строение материалов принято характеризовать термином ”cтруктура”. Однако, поскольку элементы структуры имеют различную величину, то и картина их сочетаний будет различной в зависимости от размеров и особенностей рассматриваемых элементов структуры. Поэтому в разных случаях используют соответствующие термины: “микроструктура” и “макроструктура”.

В строительном материаловедении термин "микроструктура" понимают как строение вещества (материала), различаемое с помощью оптических приборов или, проще говоря, под микро-скопом.

Академик П.А. Ребиндер рассматривает микроструктуру на уровне взаимодействия мельчайших частиц вещества, т.е. межмолекулярного взаимодействия или образования систем благодаря действию различного рода химических связей. По этим факторам он подразделяет микро-структуру на конденсационную, коагуляционную, кристаллизационную и смешанную.

Профессор И.А. Рыбьев рассматривает микроструктуру на уровне контактных зон твердых частиц и на границе раздела фаз. Многие исследователи часто называют такой уровень изучения мезоструктурой, т.е. промежуточной между микро - и макроструктурой.

Классический подход в классификации микроструктуры основан на подразделении ее на кристаллическую, аморфную и смешанную. Различные подходы отнюдь не противопоставляют различные понятия микроструктуры, а лишь дополняют друг друга.

Рассмотрим классификацию П.А. Ребиндера, примечая в дальнейшем, что при перечислении разновидностей микроструктуры, составная часть термина "микро" опускается.

Коагуляционная структура. Под этим понятием подразумевают структуру твердого тела или среды, в образовании которой участвуют силы межмолекулярного взаимодействия (Ван-дер-Ваальсовые), действующие через прослойку жидкости. Такие структуры могут уплотняться при сушке и набухать при увлажнении, т.е. представляют собой неустойчивые системы, способные под воздействием окружающей среды изменять своё состояние. В основном, такие структуры характеризуют глиняное, цементное, гипсовое тесто, а также различные пасты, мастики, смеси и т.д.

Глиняное тесто, например, обладая пластичностью, при увеличении прослойки жидкости теряет связность и превращается в шликер, приобретая свойства жидкости. При обезвоживании глиняное тесто превращается в хрупкий каркас со свойствами твердого тела.

Примерно также ведут себя цементное и гипсовое тесто с той разницей, что при избыточной влажности они частично переходят в коллоидный раствор, а при обезвоживании - через золь и гель, кристаллизуется.

Следовательно, коагуляционная структура характеризует временное промежуточное состояние тела, способного при соответствующих условиях либо диспергироваться, превращаясь в жидкость, либо конденсироваться, превращаясь в твердое тело;

Конденсационная структура.Формируетсяв результате непосредственного химического взаимодействия частиц в зависимости от состава и типа образующихся химических связей. Вещества и материалы с конденсационной структурой характеризуются достаточно высокой жесткостью, хрупкостью и необратимо разрушаются под действием механических и термических напряжений. К ним можно отнести вещества со сложной химической связью, а также молекулярные кристаллы и материалы типа термореактивных полимеров.

Кристаллизационная структура. Образуется в результате выделения твердой фазы из расплава или раствора в виде кристаллов и дальнейшей кристаллизации в монолит. К такому классу материалов можно отнести все плавленые и обжиговые материалы, такие как керамика, огнеупоры, природные каменные материалы, цемент, известь, гипс и др., т.е. материалы со сложной ионно-ковалентной связью.

Смешанная структура. К этому классу структуры относятся, по всей видимости, системы, находящиеся в процессе формирования и не достигшие условного равновесия, т.е. находящиеся на определенной стадии коагуляции, конденсации или кристаллизации и имеющие признаки первого, второго или третьего вида.

Анализируя представленную классификацию структуры, следует заметить, что в основу ее положен процесс формирования той или иной структуры (коагуляция, конденсация, кристаллизация), а не состояние самой системы.

Представляет интерес проследить, из какого состояния исходит, к примеру, процесс коагуляции и в результате каких факторов. Очевидно, из жидкого состояния, т.е. из диспергированного твердого тела. Следовательно, коагуляция - процесс самопроизвольный, и она неотвратимо должна закончиться конденсацией, т.е. затвердеванием, разновидностью которого и является кристаллизация.

Процесс кристаллизации идет из расплава или раствора, а так как и то и другое – неустойчивые состояния, то кристаллизация - ничто иное, как продукт процесса конденсации.

С учетом вышеизложенного наиболее стройной, на наш взгляд, является классическая или традиционная классификация, включающая кристаллическую, аморфную и аморфно-кристаллическую структуры веществ или материалов, так как эта классификация в большей степени связана не с процессом образования системы, а с ее состоянием.

Читайте также: