Влияние грэс на окружающую среду кратко

Обновлено: 02.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Экологические последствия использования тепловых, атомных и гидроэлектростанций

Энергетику принято делить на традиционную и альтернативную. Традиционная энергетика — это получение энергии от ископаемого топлива, а также от дров, текущей воды, синтетического топлива и при делении атомных ядер. Традиционные источники энергии — крупные ГЭС всех типов, ТЭС (угольные, нефтяные, газовые, торфяные), АЭС, ДВС, теплоустановки. Альтернативная энергетика — это получение энергии от Солнца, ветра, приливов и отливов и пр.

Тепловые электростанции (ТЭС)

Принцип работы: ископаемое топливо сжигается в топках паровых котлов, где его химическая энергия превращается в тепловую энергию пара. В паровой турбине тепловая энергия пара переходит в механическую энергию, которая в турбогенераторе превращается в электрическую энергию.

Влияние ТЭС на окружающую среду

1. В качестве топлива ежегодно уничтожается огромное количество ценного природного сырья, преимущественно органического, зачастую привозимого издалека.

2. Большой вред природе наносится при прокладке нефте- и газопроводов.

3. При работе ТЭС ежегодно образуются сотни миллионов тонн твердых отходов в виде золы и шлаков, которые практически не утилизируются, скапливаясь в огромных количествах на специальных полигонах. Они содержат целый ряд химических элементов, таких, как Zn, Mn, Sr, Ti, Ba и др., многие из которых токсичны. Эти элементы проникают из шлаков и золы в почву и подземные воды, делая их непригодными как для бытового, так и для хозяйственного использования.

4. Атмосферные выбросы ТЭС содержат SO 2 , оксиды азота, тяжелые металлы (As, Pb, Cd, V) и другие вредные для окружающей среды химические вещества.

5. Происходит загрязнение приземного слоя атмосферы большими количествами CO 2 , образующегося в результате процесса горения.

6. Локализованный процесс горения обуславливает возможность кислородного голодания региона ввиду превышения скорости потребления кислорода над скоростью его поступления в атмосферу за счет процесса фотосинтеза.

7. Вблизи ТЭС, работающих на угле, обычно превышен естественный радиационный фон. Это объясняется присутствием в угле микропримесей радиоактивных изотопов , которые при работе ТЭС поступают в окружающую среду вместе с другими продуктами сгорания.

8. Происходит тепловое загрязнение природных водоемов, вода которых используется для охлаждения отработавшего пара из паровых турбин ТЭС.

9. Работа ТЭС способствует шумовому и электромагнитному загрязнению окружающей среды.

Хочется отметить, что химическое загрязнение окружающей среды при работе ТЭС является одним из основных источников возникновения таких глобальных экологических проблем, как парниковый эффект, кислотные дожди, не говоря уже о том ущербе, какой наносится растительному и животному миру присутствием в компонентах окружающей среды токсичных веществ различного характера воздействия.

Гидроэлектростанции (ГЭС)

Принцип работы: Вода поступает в турбину ГЭС из верхнего бьефа реки (водохранилища, созданного плотиной) и уходит в нижний бьеф. Таким образом, энергия движения воды преобразуется в турбине в механическую энергию, которая затем генерируется в электрическую энергию. Основной вред окружающей среде и хозяйственной деятельности человека при работе ГЭС наносится созданием плотин и водохранилищ.

Влияние ГЭС на окружающую среду

1. Происходит нарушение естественных путей миграции рыб на нерестилища и обмеление самих нерестилищ в низовьях рек.

2. Оказывается большое влияние на водоснабжение, водоорошение, работу речного транспорта — то есть на судоходство рек.

3. Происходит затопление плодородных земель.

4. Возникает целый ряд экономических проблем: становятся необходимыми затраты на передислокацию населения, сельских хозяйств и промышленных объектов в новые районы из мест затопления.

5. Работа ГЭС способствует шумовому и электромагнитному загрязнению окружающей среды. Однако в работе ГЭС есть и свои плюсы: вода — возобновляемый природный ресурс; ГЭС не вносят химическое и тепловое загрязнения в окружающую среду; себестоимость энергии, вырабатываемой ГЭС, в 4 раза ниже, чем у ТЭС и во столько же раз быстрее ее самоокупаемость.

Атомные электростанции (АЭС)

Принцип работы: В реакторе АЭС выделяется тепловая энергия — за счет высвобождения энергии связи нейтронов и протонов при делении ядер радиоактивных изотопов урана (U-235,238,234) под воздействием нейтронов; тепловая энергия превращается в механическую, а затем — в электрическую.

Основной опасностью при работе АЭС является загрязнение окружающей среды радиоактивными отходами и тепловое загрязнение водоемов, вода из которых используется для охлаждения ядерного реактора и других агрегатов АЭС.

При проектировании и строительстве АЭС необходимо учитывать сейсмическую опасность в регионе, плотность населения, характеристику грунтовых слоев, вероятность наводнений, наличие достаточного количества воды для охлаждения реактора и другие условия. Очевидные преимущества АЭС: при сжигании 1 г ядерного топлива выделяется в 3106 раз больше теплоты, чем при сжигании 1 г угля; для работы АЭС мощностью в 1 млн. кВатт в течение 3-х лет нужно 2 вагона ядерного топлива, а для ТЭС с аналогичной мощностью — 300 000 вагонов угля.

Возможные варианты решения проблем энергетики

Несомненно, в ближайшей перспективе энергетическая область будет планомерно развиваться и преобладающей останется тепловая электроэнергетика. Существует большая вероятность повышения доли угля и прочих разновидностей топлива в производстве энергии. Негативное влияние энергетики на жизнедеятельность требуется снижать. И для этой цели уже разработано несколько способов решения проблемы. Все способы базируются на модернизации технологий подготовки топлива и извлечения опасных отходов.

В том числе, для снижения воздействия негативной энергетики предлагается: Использовать усовершенствованное очистное оборудование. В данное время на большинстве ТЭС улавливаются твердые выбросы при помощи установки фильтров. При этом наиболее вредные загрязнители улавливаются в небольшом количестве. Сократить поступление соединений серы в атмосферный воздух путем предварительной десульфурации наиболее часто используемых разновидностей топлива. Химические или физические методики позволят извлечь из топливных ресурсов свыше половины серы до начала их сжигания.

Реальная перспектива сокращения негативного воздействия энергетики и уменьшения выбросов связана с простой экономией. Экономить электроэнергию в быту возможно путем улучшения изоляционных характеристик домов. Добиться высокой экономии энергии позволит смена электрических ламп с КПД не более 5% флуоресцентными. Заметно повысить КПД топлива и снизить негативный эффект энергетики можно посредством использования топливных ресурсов вместо ТЭС на ТЭЦ.

Использование вышеперечисленных способов в определенной мере позволит снизить последствия отрицательного воздействия энергетики. Постоянное развитие энергетической области требует комплексного подхода к решению проблемы и внедрения новых технологий.

Альтернативные источники энергии

К альтернативным источникам энергии относят:

1) энергию Солнца (гелиоэнергетика);
2) силу ветра (ветроэнергетика);
3) жидкое и газообразное биотопливо — метанол, растительное масло, метан, водород и др., а также мусор (биоэнергетика);
4) геотермальную энергию, тепловые насосы и т.п. (энергетика, использующая разность температур);
5) энергию морских волн, приливов и отливов и т.п. (альтернативная гидроэнергетика).

Почти все альтернативные источники энергии представляют собой неисчерпаемые природные ресурсы. Об их экологической безопасности можно говорить пока только относительно традиционных источников энергии: с этой точки зрения альтернативные источники энергии практически безупречны. Однако в настоящее время эффективность работы имеющихся альтернативных источников очень низка, а затраты на их создание очень велики по сравнению с традиционными.

Шатурская ГРЭС.

Ситуация, когда существует крупное промышленное предприятие и небольшой город вокруг него, для которого оно является градообразующим, нередка в России. Причем для многих таких малых городов все дело осложняется еще и географическим соседством с другими городами, где действует эффект накопления. В результате выбросы из одной точки попадают на другую легко — буквально с дуновением ветерка. И сегодня, пишут СМИ, статистика показывает, что наиболее тяжелой ситуация становится в городах, где стоят энергетические предприятия.

Теплоэлектростанции как источник проблем

Государственные районные теплоэлектростанции, являющиеся по сути своей наследством системы ГОЭЛРО, действующей в советское время, отличаются наименьшей экоэффективностью. А удельное загрязнение в небольших населенных пунктах, где расположены такие объекты, в разы превышает норму и даже те показатели, которые замеряются в крупных городах.

Красноярская ГЭС.

Когда сгорает топливо, в тепловой электростанции начинает образовываться много разных продуктов сгорания, которые специалисты называют вредными. К ним обычно относят такие соединения, как обычная зола, оксид углерода, оксид азота, оксид серы, формальдегид, сернистый газ и т.д. Загрязнение атмосферы ими приводит к увеличению разных заболеваний на треть.

«Мы отслеживаем вопросы технической безопасности ГРЭС, так же, как и ТЭЦ — важный с точки зрения экологической безопасности. Известно, что на сегодня вследствие ряда других причин у энергетиков недостаточно средств для достаточного инвестирования в модернизацию своих мощностей, не говоря про строительство новых. Для такой модернизации необходимы субсидии и другие меры стимулирования.

Технологии 3D для атомщиков - привычная работа, хотя со стороны это экзотично.

Навести порядок

Конечно, власти — что региональные, что федеральные стараются навести порядок с такими объектами. Однако бывает и так, причем нередко, что они сталкиваются с сопротивлением со стороны управляющих таких предприятий. Так, например, руководитель ГРЭС в Шатуре (она входит в структуры ПАО ЮНИПРО), отмечают журналисты разных изданий, Сергей Бакурин уже не единожды получал уведомления о превышениях с требованием устранить источники и уменьшить количество выбросов. Но каждый раз он утверждает, что эти обвинения беспочвенны, опираясь на данные внутреннего мониторинга компании.

Эксперты, говорят СМИ, уверены, что причина такого поведения довольно проста: руководство попросту не хочет вкладываться в модернизацию своего оборудования. Если взять для примера все ту же Шатурскую ГРЭС, то она является одной из самых старых в стране — дата ее основания 1925 год. Сначала предприятие работало на торфе, на данный момент перешло на газ. И ее руководство, судя по всему, не особенно стремится улучшать и модернизировать работу своего предприятия. Даже на форумах и в соцсетях есть жалобы самих работников.

Негативный пример

Это все вызывает серьезную встревоженность экспертов, ведь печальный пример уже есть перед глазами. Так, в 2015 году в результате пожара, возникшего из-за ошибок персонала предприятия, рухнула крыша машинного цеха Сургутской ГРЭС-2, в 2016 году после запуска сгорел новый 800-мегаваттный энергоблок на Березовской ГРЭС. Из-за этого оптовая цена электроэнергии в Сибири выросла на 10%. Причем, что самое интересное, отмечают журналисты, — все эти компании принадлежат ПАО ЮНИПРО.

Вина в случившемся и в такой ситуации лежит целиком и полностью на менеджменте предприятий, отстаивающем интересы западных владельцев, уверен исполнительный директор Института проблем глобализации Михаил Делягин.

И в этом есть определенный смысл. Ведь ПАО ЮНИПРО хоть и имеет генерального директора Максима Широкова, входит в немецкий концерн Uniper, председателем правления которого является Клаус Шефер. Под руководством ЮНИПРО находятся достаточно крупные электростанции — Смоленская, березовская, Шатурская, Яйвинская и Сургутская. Причем эти энергетические активы становятся эффективным инструментов управления жизнеобеспечения сразу нескольких регионов страны.

ЮНИПРО на сегодня успела отметиться в ряде скандальных ситуаций, которые разгорелись на фоне завышения тарифов и стоимости подключений. Причем прибыль предприятий поднялась в 5 раз и стала равна 26 млрд рублей. Однако все ремонты, которые довольно дороги и в большинстве случаев требуются из-за халатности менеджмента, ложатся на плечи обычных граждан, говорят журналисты.

НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ ВЫБРОСОВ ГРЭС НА АГРОЛАНДШАФТЫ В УСЛОВИЯХ ЦЕНТРАЛЬНОГО РЕ

№ слайда 1

Введение Введение Одним из последствий развития промышленного и сельскохозяйстве

№ слайда 2

Введение Введение Одним из последствий развития промышленного и сельскохозяйственного производства является трансформация природных циклов миграции вещества и связанное с этим ухудшение качества окружающей человека среды. Техногенное загрязнение через атмосферу (атмотехногенез) в последние годы становится одним из главных путей поступления элементов в ландшафты. При высокотемпературных технологических процессах образуются мельчайшие аэрозольные частицы (0,5…10 мкм), которые плохо улавливаются установками газоочистки и способны мигрировать в атмосфере на значительные расстояния. При этом с мельчайшими техногенными аэрозолями в атмосферу селективно поступают высокотоксичные тяжелые металлы (ТМ) с низкими кларками ― Pb, Cd, Hg и др. Попадая в организм человека в относительно небольших количествах, они не приводят к отравлениям, однако способны накапливаться в ряде органов и тканей, вызывая их разрушение, возникновение злокачественных опухолей, тератогенные и мутагенные эффекты, понижение сопротивляемости к инфекциям. С этим связан значительный интерес к изучению поступления и трансформации в ландшафтах техногенных ТМ, который обусловлен не только их токсическими свойствами, но также и тем, что данные элементы являются индикаторами антропогенного воздействия. Экологическая проблема, связанная с поступлением ТМ в ландшафты, наиболее обострена в регионах с большой степенью концентрации производства и населения, в т.ч. в Центральном регионе России. При этом влияние выбросов промышленных предприятий в большинстве случаев затрагивает сельскохозяйственно освоенные ландшафты в радиусе до 30 км от источника выбросов. Существует насущная необходимость разработки экологически обоснованных агротехнологий, направленных не только на получение сельхозпродукции, но и на учет негативных последствий техногенного воздействия.

Одной из крупнейших тепловых электростанций Центра России является Рязанская ГРЭ

№ слайда 3

Одной из крупнейших тепловых электростанций Центра России является Рязанская ГРЭС. На нее приходится 50…60% всего объема выбросов предприятий Рязанской области, включая и г. Рязань. Электростанция расположена в 80 км к юго-востоку от Рязани в местности со значительным развитием сельскохозяйственного производства (распаханность превышает 70% общей площади территории). Основные загрязняющие вещества (ЗВ), продуцируемые в процессе сжигания топлива ― оксиды серы и азота, а также ТМ, адсорбирующиеся на частицах угольной и мазутной золы. В прилегающие к предприятию ландшафты поступает лишь 7…10% газообразных компонентов выбросов (остальное включается в дальнюю атмосферную миграцию), в то время как 40…60% твердой фазы оседает в пределах зоны наибольшего воздействия. В связи с этим влияние РГРЭС на экосистемы прилегающей территории связано в первую очередь с атмосферным поступлением ТМ. Одной из крупнейших тепловых электростанций Центра России является Рязанская ГРЭС. На нее приходится 50…60% всего объема выбросов предприятий Рязанской области, включая и г. Рязань. Электростанция расположена в 80 км к юго-востоку от Рязани в местности со значительным развитием сельскохозяйственного производства (распаханность превышает 70% общей площади территории). Основные загрязняющие вещества (ЗВ), продуцируемые в процессе сжигания топлива ― оксиды серы и азота, а также ТМ, адсорбирующиеся на частицах угольной и мазутной золы. В прилегающие к предприятию ландшафты поступает лишь 7…10% газообразных компонентов выбросов (остальное включается в дальнюю атмосферную миграцию), в то время как 40…60% твердой фазы оседает в пределах зоны наибольшего воздействия. В связи с этим влияние РГРЭС на экосистемы прилегающей территории связано в первую очередь с атмосферным поступлением ТМ. Материалы и методы В качестве объектов исследования рассматривались основные компоненты агроландшафтов зоны воздействия Рязанской ГРЭС: почвы, растительность (в первую очередь сельскохозяйственная), поверхностные и грунтовые воды, донные отложения, осадки зимнего и летнего периодов. Начальным этапом работы явились полевые исследования текущего экологического состояния агроландшафтов с выявлением факторов и особенностей техногенеза. При этом в границах зоны наибольшего воздействия предприятия была сформирована сеть стационарных точек опробования, размещенных вокруг РГРЭС по радиально-концентрической сети (рис. 1). Во всех образцах объектов окружающей среды определялось валовое содержание ТМ атомно-абсорбционным методом по методике ЦИНАО с использованием экстрагента ― 5н. НNО3 (сорбированные и обменные формы экстрагировались соответственно 1н. НNО3 и ацетатно-аммонийным буфером с рН 4,8). Полученные данные подвергались математической обработке, а также использовались при составлении ландшафтно-геохимических карт.

Рисунок 1. Карта-схема района полевых исследований

№ слайда 4

Рисунок 1. Карта-схема района полевых исследований

На втором этапе исследований был заложен полевой опыт, целью которого является в

№ слайда 5

На втором этапе исследований был заложен полевой опыт, целью которого является выбор экологически оптимального комплекса агромелиоративных мероприятий в техногенно загрязняемых агроландшафтах региона в условиях различного уровня загрязнения почв. Варианты опыта обосновывались по сумме атмосферных выпадений приоритетных загрязнителей (Рb и Cd) в зоне максимального влияния выбросов РГРЭС за 10, 20 и 30 лет (последний временной промежуток соответствует времени эксплуатации ГРЭС начиная с пуска первой очереди). Уровни загрязнения почв моделировались внесением на опытные площадки химически чистых солей ТМ в дозах, указанных в табл. 1. Изучался процесс транслокации ТМ в фитомассу кормовых трав, его закономерности и последствия. На втором этапе исследований был заложен полевой опыт, целью которого является выбор экологически оптимального комплекса агромелиоративных мероприятий в техногенно загрязняемых агроландшафтах региона в условиях различного уровня загрязнения почв. Варианты опыта обосновывались по сумме атмосферных выпадений приоритетных загрязнителей (Рb и Cd) в зоне максимального влияния выбросов РГРЭС за 10, 20 и 30 лет (последний временной промежуток соответствует времени эксплуатации ГРЭС начиная с пуска первой очереди). Уровни загрязнения почв моделировались внесением на опытные площадки химически чистых солей ТМ в дозах, указанных в табл. 1. Изучался процесс транслокации ТМ в фитомассу кормовых трав, его закономерности и последствия. Анализ результатов исследований Поступление 3В из атмосферы оценивалось на основе анализа их содержания в атмосферных осадках зимнего и летнего периодов. Оценка техногенного вклада в атмосферные выпадения ТМ осуществлялась при анализе соответствующих кривых распределения. Данный метод основан на том, что форма распределения, как весьма консервативный статистический показатель, отклоняется от нормальной функции лишь при наличии сильного и устойчивого внешнего воздействия. Было установлено, что в зоне воздействия РГРЭС ярко выраженными аномалиями распределения отличаются величины выпадений Pb и Cd (рис. 2). В дальнейшем определялась территориальная приуроченность аномалий. Выявлено, что зона максимума поставки атмотехногенных ТМ протягивается от водоразделов Среднерусской возвышенности на юго-западе через промплощадку ГРЭС по направлению преобладающего переноса выбросов. Это указывает на значительный рост выпадений поллютантов под влиянием техногенных выбросов и активизацию оседания аэрозолей ― носителей ТМ в местности с эрозионным рельефом.

Таблица 1. Уровни внесения в почву приоритетных ЗВ по вариантам полевого опыта

№ слайда 6

Таблица 1. Уровни внесения в почву приоритетных ЗВ по вариантам полевого опыта

Богучанская ГЭС на реке Ангара в Красноярском крае

Крупные гидроэлектростанции, которые регулируют уровень воды в реке, не способны адаптироваться к быстро меняющемуся климату. Специалисты говорят, что они устарели как технология производства энергии. Вот 10 причин, почему дальнейшее распространение больших ГЭС нанесет вред людям и экосистемам:

1. Ради строительства ГЭС приходится переселять огромное количество людей

2. Крупные ГЭС разрушают экосистемы, что может приводить к обострению нехватки пресной воды

Два миллиарда человек живут в странах с высоким уровнем нагрузки на водные ресурсы, в том числе из-за ГЭС. Это приводит к неравномерному распределению водных ресурсов: некоторые реки и ручьи осушают, огромные территории затапливают. Строительство крупных ГЭС нарушает установившийся баланс экосистем. Так, Иркутская ГЭС, сооруженная на Ангаре в 65 км от ее истока, спровоцировалаповышение уровня воды озера Байкал в среднем на один метр. Это привело к разрушению берегов, оползням и обвалам. Под воду ушло 600 кв. км земель, было затоплено 127 населенных пунктов и переселено 17 тыс. человек.

К 2030 году из-за острой нехватки воды до 700 млн человек могут вынужденно покинуть свои жилища. Сегодня использование пресной воды значительно опережаетвозможности естественного восстановления ее запасов. Дефицит ценнейшего для жизни ресурса увеличивается из-за неудержимого роста потребления по всему миру.

3. Авария на крупной ГЭС создаст угрозу для жизни и здоровья миллионов людей

Кариба — одно из трех крупнейших водохранилищ Африки — заполнено лишь на 16%. Образующая его ГЭС поставляет большую часть электроэнергии Замбии и Зимбабве. Существует высокая вероятность того, что если водохранилище, созданное в 1950-е годы, заполнится снова, плотина обрушится. В случае аварии большинство из трех миллионов человек, живущих неподалеку от водохранилища, погибнет или лишится имущества и урожая. Катастрофа выведет из строя около 40% генерирующих мощностей в 12 странах, расположенных на юге Африки.

4. Крупные ГЭС не способствуют уменьшению бедности

Крупные ГЭС — затратные, медленно строятся, зависимы от крупных источников спроса — производств и городов — и не могут решать задачи мобильного обеспечения электричеством бедных регионов и труднодоступных поселений.

Несмотря на десятки тысяч ГЭС по всему миру, почти миллиард человек не имеет доступа к электричеству. В России, по данным за 2013 год, его были лишены 1,5 млн домохозяйств. Без электроэнергии бедные регионы и малообеспеченные слои населения не получат доступа к качественному здравоохранению, образованию, рабочим местам. Объекты солнечной и ветряной генерации (а также малые ГЭС) могут находиться вблизи от предприятия или небольшого поселения. Они способны обеспечить электричеством удаленные сельскиерайоны, особенно — в развивающихся странах.

5. ГЭС наносят ущерб биоразнообразию

При строительстве плотин и наполнении водохранилищпроисходит разрушение среды обитания растений и животных, вызванное обезвоживанием или пересыханием притоков рек и ручьев. Происходит и разрушение русла, связанное с избыточной подачей воды в период регулирования стока. Гидроэлектростанции наносят огромный урон популяциям рыб.

6. Проекты строительства ГЭС не учитывают климатических изменений, поскольку их трудно предсказать

Климатические катаклизмы разрушают противопаводковые дамбы. Самые разрушительные паводковые наводнения последнего времени в России: Крымск — 2012 год; бассейн реки Амур — 2013-й; Амурская область, Еврейская АО, Хабаровский край — 2019 год.

7. С водохранилищами ГЭС связаны огромные выбросы парниковых газов

Гидроэлектростанции вносят вклад в изменения климата. Водохранилища задерживают органику, приносимую водными потоками. При ее разложении выделяются значительные объемы парниковых газов. Источниками выбросов также выступают затапливаемые растения и почва.

8. Гидроэнергетика обходится все дороже

9. ГЭС могут погубить многие объекты Всемирного природного наследия и ООПТ

По состоянию на июнь 2019 года, ГЭС угрожали 42 из 250 объектов Всемирного природного наследия.

10. Строительство ГЭС противоречит позиции экспертов

Необходимость переселения людей, большие затраты на возведение ГЭС, низкая скорость их строительства, зависимость от крупных источников спроса и высокий экологический ущерб — все это означает, что крупные гидроэлектростанции неэффективны с точки зрения выполнения таких целей устойчивого развития, как недорогостоящая и доступная энергия (Цель 7), уменьшение неравенства (Цель 10), борьба с изменением климата (Цель 13) и сохранение экосистем суши (Цель 15).

ГЭС сегодня

Фото: enelrussia.ru

Дефицит водных ресурсов — один из самых комплексных и важных вопросов для экологов. Нехватка водных запасов, необходимых для использования в земледелии или химии, стоит не так остро, как нехватка питьевой воды. Ещё с XX века проблема дефицита пресной питьевой воды рассматривается как глобальная проблема современности, а сейчас от неё страдает более 40% мирового населения. При этом само население лишь растёт, вслед за чем возрастает и потребность в чистой питьевой воде.

Хотя не все цели были выполнены к назначенному сроку, в решении проблемы были достигнуты значительные успехи, а к 2030 году организация поставила себе целью улучшение качества воды, повышение эффективности использования водных ресурсов и защиту связанных с водой экосистем.

По данным ООН, число жителей планеты, которые все ещё лишены доступа к чистой питьевой воде, составляет 663 миллиона человек, а 80% из них проживают в сельских районах. В Российской Федерации, хотя она занимает второе место в мире по количеству водных ресурсов, до сих пор наблюдается нехватка воды во многих регионах в силу её неравномерного распределения.

Одной из компаний, придерживающихся стратегий декарбонизации и заботящихся об окружающей среде, стала Группа Enel — один из крупнейших мировых операторов на электроэнергетическом и газовом рынках, представленный более чем в 30 странах, на 5 континентах, с установленной электрической мощностью порядка 87 ГВт. Enel диверсифицирует свои технологии для уменьшения углеродного следа, а также модернизирует и развивает свои предприятия с учётом одной из важнейших в нашем мире дисциплин — экологии.

Читайте также: