Вирусы использование в промышленности кратко

Обновлено: 02.07.2024

В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.

Свойства и происхождение вирусов.

Наиболее просто устроенные вирусы состоят из нуклеиновой кислоты, являющейся генетическим материалом (геномом) вируса, и покрывающего нуклеиновую кислоту белкового чехла. В состав некоторых вирусов входят также углеводы и жиры (липиды). Таким образом, вирусы можно рассматривать просто как мобильные наборы генетической информации. Вирусы лишены некоторых ферментов, необходимых для репродукции, и могут размножаться только внутри живой клетки, метаболизм которой после заражения перестраивается на воспроизводство вирусных, а не клеточных компонентов. Это свойство вирусов позволяет отнести их к облигатным (обязательным) клеточным паразитам. После синтеза отдельных компонентов формируются новые вирусные частицы. Симптомы вирусного заболевания развиваются как следствие повреждения вирусами отдельных клеток.

Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.

Являются ли вирусы живыми организмами?

В 1935 американский биохимик У.Стэнли выделил в кристаллической форме вирус табачной мозаики, доказав тем самым его молекулярную природу. Полученные результаты вызвали бурные дискуссии о природе вирусов: являются ли они живыми организмами или просто активированными молекулами? Действительно, внутри зараженной клетки вирусы проявляют себя как интегральные компоненты более сложных живых систем, но вне клетки представляют собой метаболически инертные нуклеопротеины. Вирусы содержат генетическую информацию, но не могут самостоятельно реализовать ее, не обладая собственным механизмом синтеза белка. Когда особенности строения и репродукции вирусов оказались выясненными, вопрос о том, являются ли они живыми, постепенно утратил свое значение.

Размеры вирусов.

Величина вирусов варьирует от 20 до 300 нм (1 нм = 10 -9 м). Практически все вирусы по своим размерам мельче, чем бактерии (см. БАКТЕРИИ). Однако наиболее крупные вирусы, например вирус коровьей оспы, имеют такие же размеры, как и наиболее мелкие бактерии (хламидии и риккетсии), которые тоже являются облигатными паразитами и размножаются только в живых клетках. Поэтому отличительными чертами вирусов по сравнению с другими микроскопическими возбудителями инфекций служат не размеры или обязательный паразитизм, а особенности строения и уникальные механизмы репликации (воспроизведения самих себя).

СТРОЕНИЕ ВИРУСОВ

Вирионы со спиральным типом симметрии, как у вируса табачной мозаики, имеют форму удлиненного цилиндра; внутри белкового чехла, состоящего из отдельных субъединиц – капсомеров, находится свернутая спираль нуклеиновой кислоты (РНК). Вирионы с икосаэдрическим типом симметрии (от греч. eikosi – двадцать, hedra – поверхность), как у полиовируса, имеют сферическую, а точнее, многогранную форму; их капсиды построены из 20 правильных треугольных фасеток (поверхностей) и похожи на геодезический купол.

Встречаются вирусы с еще более сложным строением. Вирионы поксвирусов (вирусы группы оспы) не имеют правильного, типичного капсида: между сердцевиной и наружной оболочкой у них располагаются трубчатые и мембранные структуры.

РЕПЛИКАЦИЯ ВИРУСОВ

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков. См. также РЕТРОВИРУСЫ.

КЛАССИФИКАЦИЯ ВИРУСОВ

Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса.

В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.

ВИРУСНЫЕ ЗАБОЛЕВАНИЯ

Эволюция вирусов и вирусных инфекций.

Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным.

ВИРУС бешенства

Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках.

Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем.

Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме.

Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда – Якоба и куру – дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы – прионами (см. ПРИОН).

Лечение и профилактика.

Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.

Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями (см. ГЕННАЯ ИНЖЕНЕРИЯ).

К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.

Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире. См. также ВАКЦИНАЦИЯ И ИММУНИЗАЦИЯ.

Накопление вирусов.

Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствии появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.

Задумывались ли вы о том, что вирусы могут быть полезными? Принято считать, что они приносят нам одни неприятности. Но в действительности большинство вирусов не представляют опасности, а многие из них даже полезны. Вирусы можно встретить где угодно: в воздухе, у растений и животных, на поверхности нашей кожи и даже внутри нас. Вирусы — часть нашего генома! Они помогли нам стать теми, кто мы есть.

Вначале была курица

Вирусы являются частью генетического кода огромного количества живых существ. А выяснить это человеку помогли куры.

Куры

В 1960-х по куриным фермам быстро распространялся птичий вирус лейкоза (ПВЛ), который вызывал рак и угрожал всему птицеводству. Выдающийся британский вирусолог Робин Уайсс, в то время работавший в Университете Вашингтона (США), решил проверить, а не мог ли вирус быть частью ДНК курицы, но при этом не приносить никакого вреда в обычных условиях.

Уайсс с коллегами воздействовали на клетки здоровых кур с помощью радиоактивного излучения и химикатов, чтобы вызвать мутацию и выяснить, можно ли таким образом вытащить вирус из его укрытия. Как и рассчитывали ученые, мутировавшие клетки стали воспроизводить ВПЛ. Иными словами, вирус не просто был заключен в некоторых клетках совершенно здоровых кур — генетическая инструкция по его воспроизводству была встроена в каждую клетку их организмов и передавалась от поколения к поколению.

Группа ученых выяснила, что приматы используют ретровирусные белки под названием синцитины для стимуляции образования плаценты

В 1993 году группа ученых из Института противораковых исследований Честера Битти под руководством доктора Робина Уайсса выяснила, что приматы используют ретровирусные белки под названием синцитины для стимуляции образования плаценты — важного эмбрионального органа, обеспечивающего обмен веществ между материнским организмом и плодом

Этот вирус получил название эндогенный ретровирус (эндогенный — значит воспроизводимый внутри организма). Позже исследователям удалось обнаружить такие вирусы в геномах многих других животных. Как выяснилось, вирусы населяют геном практически всех групп позвоночных — от рыб и рептилий до млекопитающих.

Вирус — двигатель эволюции

Исследования показывают, что вирусы стимулируют эволюционные изменения в организме, формируют глобальные экосистемы и влияют на каждую область жизни. В дикой природе вирусы — основной агент межвидового обмена генами, одного из важных двигателей эволюции.

В ходе изучения вирусов ученые выдвинули вирусологическую теорию эволюции, в соответствии с которой главным фактором наследственной изменчивости является вирусная инфекция, изменяющая наследственность зараженного организма. Вирус способен переносить значительное число генетического материала и вызывать резкое, скачкообразное изменение сразу многих признаков того или иного вида. На сегодняшний день достоверно подтверждено наличие у вирусов мигрирующих генов, которые могут самовоспроизводиться в геноме и являются вездесущими компонентами ДНК.

Коронавирусы сделали из обезьяны человека?

Птичий грипп, ближневосточная лихорадка, лихорадка Зика — все эти эпидемии вызываются коронавирусами, которые садятся на протеиновые молекулы клеточной оболочки. Ученые Стэнфордского университета выяснили, что треть изменений (замен аминокислот) этой оболочки, случившихся за время разделения эволюционных путей человека и шимпанзе, связана с защитой от коронавирусов.

Проще говоря, наши общие с шимпанзе предки стали, в числе прочего, вырабатывать разные механизмы борьбы с коронавирусами. В итоге одна эволюционная линия привела к появлению шимпанзе, а другая — к возникновению человека.

Использование вирусов в сельском хозяйстве

Вы удивитесь, но многие сорта цветов, обладающих пестрой окраской, были получены с помощью вирусов. Оказывается, эта особенность — результат вирусной инфекции, передающейся из поколения в поколение. Развитие пестрых лепестков у тюльпанов вызвано вирусом, который переносит тля.

Также в ходе исследований было установлено, что джут дает более обильный урожай, будучи пораженным вирусным заболеванием — некротической мозаикой риса.

Норовирусы (например, кишечный грипп) защищают кишечник мышей, когда тем дают антибиотики

Известно, что норовирусы (например, кишечный грипп) защищают кишечник мышей, когда тем дают антибиотики. Смерть кишечных бактерий от антибиотиков делает мышей восприимчивыми к кишечным инфекциям. Но в отсутствие нужных бактерий норовирусы защищают своих хозяев

Вирусы, паразитирующие на насекомых, в сельском хозяйстве успешно используют в борьбе против вредителей. Для этого готовят водную суспензию вируса с примесью клейкого вещества и разбрызгивают ее на поврежденные насаждения. Вирусные частицы прилипают к растениям. Вредители, поедая зараженные вирусом растения, быстро погибают.

Бактериофаг — друг человека

В первые десятилетия XX века бактериальные инфекции лечили с помощью вирусов бактерий (бактериофагов, или просто фагов). К сегодняшнему дню фаги по большей части вытеснены антибиотиками, но в свое время они помогли спасти множество жизней.

Бактериофаг. 3D-иллюстрация

Предложение использовать бактериофаги для лечения бактериальных инфекций также было выдвинуто Д'Эрэллем. Первые пациенты успешно прошли лечение фагами в 1919 году. В то время антибиотики еще не были открыты (во всяком случае, не были изучены и не имели широкого применения в официальной медицине), так что любое лекарство от бактерий имело огромное значение. С этого времени начался настоящий бум фаговой терапии.

Феликс Д

Феликс Д'Эрэлль с успехом использовал на зараженных чумой египтянах бактериофаги, которые он собрал с крыс во время посещения им в 1920 году полуострова Индокитай. Позже Д'Эрэлль выделил и использовал бактериофаги для лечения холеры в Индии

Вирусы-диагносты

Взятые из организма пациента бактерии выращивают в питательной среде, а после этого колонии заражают различными бактериофагами (тифозными, дизентерийными, холерными и т. п.). Спустя сутки контейнеры с колониями просматривают на свету и выясняют, какой фаг вызвал уничтожение бактерий. Если это сделали дизентерийные фаги, значит, из организма больного выделили бактерии дизентерии, если брюшнотифозный — бактерии брюшного тифа и т. д. Метод диагностики заболеваний с помощью бактериофагов отличается высокой точностью.

Вирус против вирусов

К полезным вирусам также можно отнести любую живую вакцину против вирусного заболевания, например, от кори или полиомиелита. Основу такой вакцины составляет вирус, утративший болезнетворность, но сохранивший антигенные свойства и способный к размножению.

Пегивирус А или GBV-C

К числу наших вирусов-защитников относится также пегивирус А или GBV-C. Для человека он совершенно безопасен. При этом многочисленные исследования показали, что пациенты с ВИЧ, инфицированные GBV-C, живут дольше по сравнению с пациентами без GBV-C

Некоторые из вирусов, воздействию которых мы подвергаемся, защищают нас от заражения опасными патогенами. К примеру, латентные (скрытые) вирусы герпеса могут помочь естественным клеткам-киллерам человека (особому типу лимфоцитов, участвующему в функционировании врожденного иммунитета) распознавать раковые клетки и клетки, инфицированные другими патогенами.

В наши дни ученые научились преобразовывать бактериофаги. Отдельные штаммы фагов тестируются против вредоносных бактерий. Благодаря генно-модифицированным фагам в будущем должны появиться препараты для лечения разнообразных бактериальных заболеваний. Их можно будет наносить непосредственно на раны или принимать внутрь. В биоинженерии конструкции на основе вирусов приспособили для того, чтобы доставлять в клетки нужные гены.

Вакцины содержат полезные вирусы

Кроме этого, вирусные инфекции в юном возрасте жизненно необходимы для правильного развития и функционирования иммунной системы человека. Иммунная система постоянно стимулируется небольшими количествами вирусов извне, что повышает устойчивость организма к другим инфекциям.

Природа создала множество биологических наноустройств и наномашин, элементы которых могут быть перепрограммированы для решения задач современной биологии и медицины. Одна из областей их применения – биофармацевтика. Молекулы белка, ДНК, РНК и их комплексы успешно применяются для конструирования терапевтических препаратов и вакцин. Это основа медицины будущего, которая будет базироваться на применении интеллектуальных лекарств, избирательно действующих на инфекционные агенты или на биополимеры, определяющие функционирование клеток человека

Широкое использование вирусов обусловлено их уникальным строением и образом жизни: они полностью инертны вне организма хозяина и не имеют клеточного строения. Структура их генома очень разнообразна: вирусы могут содержать одну или несколько молекул РНК или ДНК, которые могут принимать линейную, кольцевую или сегментированную форму.

Роль клеточного ядра, защищающего геном вируса, выполняет капсид, состоящий из структурных белков и ферментов. Более сложно организованные вирусные частицы могут иметь дополнительные оболочки – ​суперкапсиды. Эти липопротеидные структуры включают в себя гликопротеины – ​белки, взаимодействующие с поверхностными клеточными рецепторами, что обеспечивает проникновение вирусов внутрь заражаемой клетки. Вирус может содержать более одного типа гликопротеинов, например, у вируса гриппа их два: гемагглютинины и нейраминидаза.

На поверхности липидной оболочки вируса гриппа располагаются два типа гликопротеинов – гемагглютинины и нейраминидаза. Вирусная частица прикрепляется к клетке путем формирования комплекса между молекулами гемагглютининов и сиаловой кислоты на поверхности клетки, а затем проникает внутрь нее путем эндоцитоза – впячивания мембраны и формирования пузырьков. Высвобождение вирусной РНК из везикулы происходит при снижении pH внутри нее до значения 5.0. В результате мембрана вируса сливается с эндосомальной мембраной, и генетический материал выходит наружу и проникает в ядро клетки. По: (Рябчикова, 2009)

Природные наноконтейнеры

Так возникла идея решить эту проблему с помощью виросом – ​вирусных частиц, освобожденных от генетического материала, но содержащих поверхностные гликопротеины. Подобные частицы обладают важным свойством: сохраняют способность избирательно связываться с определенными клетками, доставляя в них свое содержимое.

Для получения виросом вирусные частицы разлагают на составляющие компоненты с помощью неионных детергентов, эффективно разрушающих межлипидные и липид-белковые связи и, как правило, не нарушающих структуру белков. Генетический материал вируса удаляют из раствора с помощью скоростного центрифугирования (около 100 000 g). При удалении детергента из оставшегося раствора происходит самосборка вирусной оболочки с сохранением первоначального набора белков. Для включения в виросомы лекарства его добавляют в раствор до удаления детергента. Один из подходов для включения макромолекул – проведение нескольких циклов замораживания-оттаивания виросом, при которых идет захват материала из раствора. Можно модифицировать липидную мембрану виросом (например, вводя холестерин), что повышает ее устойчивость, или присоединить к ней адресующие молекулы

Возможность доставки лекарственных средств с помощью виросом была показана на примере подавления синтеза белков вируса гепатита С в организме животных. В виросомы, сделанные на основе вируса Сендай, заключили короткие шпилечные РНК, способные ингибировать наработку белка вируса гепатита С в зараженных клетках. В результате внутривенного введения такого препарата удалось эффективно снизить количество исследуемого вирусного белка в клетках печени больных мышей (Subramanian et. al., 2009).

Безопасные вакцины

Наиболее часто вакцинные препараты на основе виросом конструируют из вируса гриппа. Причина – способность его белков-гемагглютининов связываться с молекулами сиаловой кислоты на поверхности антигенпрезентирующих клеток иммунной системы. Главная функция этих клеток – захват и презентация чужеродных белков лимфоцитам, отвечающим за развитие иммунного ответа и последующее формирование иммунологической памяти в организме. Если виросома будет содержать такой чужеродный антиген, он также попадет в антигенпрезентирующие клетки, и в организме может сформироваться устойчивая защита от патогена. Внизу – варианты размещения антигена в виросомах на основе вируса гриппа: а – внутри виросомы; б – в комплексе с гемагглютининами; в – адсорбированные на мембране; г – погруженные в липидный слой

Виросомы могут применяться в качестве вакцин не только против вирусов, но и других патогенов. Так, у мышей происходит наработка антител против возбудителя малярии после введения им виросом на основе вируса гриппа, несущих на поверхности синтетические пептиды, соответствующие фрагментам белков плазмодия (Okitsu et al., 2008). Эффективные вакцинирующие препараты были разработаны на основе виросом, содержащих дифтерийный и столбнячный токсины. Сравнение действия таких препаратов и анатоксинов (токсинов, вызывающих иммунный ответ, но не проявляющих токсикологических свойств и служащих традиционными вакцинами против дифтерии и столбняка) показало, что в первом случае антитела нарабатываются более эффективно (Zubrrigen & Gluck, 1999).


Виросомы можно использовать и для иммунотерапии онкологических заболеваний – ​доставки в опухоль ассоциированных с раком антигенов в виде плазмидной ДНК или коротких пептидов. Такие виросомы способны активировать клетки иммунной системы даже более эффективно, чем антиген в нативном виде. В экспериментах на животных было показано, что антиген, специфичный для клеток меланомы Melan-A, доставляемый в виросомах на основе вируса гриппа, успешно проникает в плазматические дендритные клетки иммунной системы (популяция антигенпрезентирующих клеток крови). В результате происходит более эффективная активация Т-клеток, способных уничтожить раковые клетки, чем при введении свободного пептида. Этот эффект, по-видимому, обусловлен хорошей защищенностью антигена, находящегося в виросомах (Angel et al., 2007).

Использование виросом в терапии болезней человека и животных имеет существенные достоинства, главные из которых – ​нетоксичность и совместимость с большинством лекарственных средств. Кроме того, липидная оболочка обеспечивает надежную защиту заключенного в виросомах материала от преждевременной деградации. С помощью виросом-опосредованной терапии уже удалось добиться весьма многообещающих результатов. Некоторые созданные на их основе препараты, в основном вакцины, находятся на разных стадиях доклинических и клинических испытаний. К их числу относятся интраназальные вакцины против вируса гриппа, вакцина против РСВ-вируса, ВИЧ-инфекции.

Примером коммерчески доступных виросомных вакцин является препарат Инфлексал производства Швейцарии, который представляет собой виросомы, содержащие антигены против вирусов гриппа типов А и В. В последнее десятилетие именно Швейцария занимает лидирующие позиции по числу средств, вкладываемых в исследование и разработку препаратов на основе виросом.

На сегодняшний день в мире можно выделить несколько групп, занимающихся доставкой терапевтических нуклеиновых кислот, в том числе и малых интерферирующих РНК (siRNA), в клетки млекопитающих с помощью вирососм (de Jonge et al., 2006). Основные затруднения, с которыми приходится сталкиваться при приготовлении таких виросомных препаратов, связаны с эффективностью включения препарата в состав виросом, а также адресной доставкой в определенные типы клеток. Сегодня в Институте химической биологии и фундаментальной медицины СО РАН (Новосибирск) ведутся работы по получению виросом стандартного качества со стабильными свойствами, в том числе обладающих способностью к адресной доставке терапевтических нуклеиновых кислот. Уже разработаны методы включения этих макромолекул в оболочки вируса (Власов и др., 1988, 1989). В дальнейшем планируется создать виросомные препараты, содержащие терапевтические нуклеиновые кислоты, и оценить их воздействие на различные типы раковых клеток человека.

Власов В. В., Иванова Е. М., Кренделев Ю. Д. и др. Оболочки вируса Сендай и тени эритроцитов – мембранные переносчики для введения реакционноспособных производных олигонуклеотидов в клетки // Биополимеры и клетка. 1989. Т. 5. № 4. Р. 52—58.

Власов В. В., Кренделев Ю. Д., Овандер М. Н. и др. Эффективный метод включения ДНК в реконструированные оболочки вируса Сендай // Биополимеры и клетка. 1988. Т. 4. № 5. Р. 250—254.

Шамшева О. В., Ртищев А. Ю.. Ультрикс – отечественная вакцина нового поколения // Педиатрия. 2014. Т. 93. № 6. P. 121—124.

Angel J., Chaperot L., Molens J. et al. Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells // Vaccine. 2007. V. 25. P. 3913—3921.

de Jonge J., Holtrop M., Wilschut J. et al. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs // Gene Therapy. 2006. V. 13. P. 400—411.

Okitsu S. L., Mueller M. S., Amacker M. et al. Preclinical profiling of the immunogenicity of a two-component subunit malaria vaccine candidate based on virosome technology // Human Vaccines. 2008. V. 4 N. 2. Р. 106—114.

Вирусы уже очень давно изучают в лабораториях, а также выводят полученные с нуля виды или иначе говоря de novo. Однако работа вирусологов массово заинтересовала широкую общественность только после начала пандемии коронавируса. Рассказываем, с какой целью выводят биологическое оружие, есть ли у модифицированных вирусов положительные задачи и что известно о происхождении коронавируса.

Искусственные вирусы

Многие вирусы могут быть получены de novo, то есть с нуля, а первый искусственный вирус был создан в 2002 году. Несмотря на некоторые неправильные трактовки, при этом процессе синтезируется не сам вирус как таковой, а его геномная ДНК (в случае ДНК-вирусов) или комплементарная копия ДНК его генома (в случае РНК-вирусов).

У вирусов многих семейств искусственная ДНК или РНК, если она введена в клетку, проявляет инфекционные свойства. Иными словами, такие вирусы содержат всю необходимую информацию для образования новых вирусов.

Эту технологию в настоящее время используют для разработки вакцин нового типа. Возможность создавать искусственные вирусы имеет далеко идущие последствия, поскольку вирус не может вымереть, пока известна его геномная последовательность и имеются чувствительные к нему клетки.

В наши дни полные геномные последовательности 2408 различных вирусов (в том числе оспы) находятся в публичном доступе в онлайн-базе данных, поддерживаемой Национальными институтами здравоохранения США.


Микрофотография, показывающая цитопатические эффекты, вызванные вирусом простого герпеса первого типа. Тест Папаниколау

Как из вирусов делают биологическое оружие

Способность вирусов вызывать опустошительные эпидемии среди людей порождает беспокойство, что вирусы могут использоваться как биологическое оружие.

Биологическое оружие — это патогенные микроорганизмы или их споры, вирусы, бактериальные токсины, заражающие людей и животных, предназначенные для массового поражения живой силы и населения противника, сельскохозяйственных животных, посевов сельскохозяйственных культур, заражения продовольствия и источников воды, а также порчи некоторых видов военного снаряжения и военных материалов.

Биологическое оружие включает также средства доставки патогенных микроорганизмов и животных-переносчиков. Является оружием массового поражения и запрещено согласно Женевскому протоколу 1925 года.

Дополнительные опасения вызвало успешное воссоздание вредоносного вируса испанского гриппа в лаборатории. Другим примером может служить вирус оспы. Он на всем протяжении истории опустошал множество стран вплоть до его окончательного искоренения. Официально образцы вируса оспы хранятся лишь в двух местах в мире — в двух лабораториях в России и США.

Опасения, что он может быть использован как оружие, не совсем беспочвенны; вакцина против оспы иногда имеет тяжелые побочные эффекты — в последние годы до официально объявленного искоренения вируса больше людей серьёзно заболели из-за вакцины, чем от вируса, поэтому вакцинация против оспы больше не практикуется повсеместно. По этой причине большая часть современного населения Земли практически не имеет устойчивости к оспе.

Способы применения бактериальных и вирусных средств

Средствами доставки и способами применения биологического оружия, как правило, являются:

  • боевые части ракет;
  • авиационные бомбы;
  • артиллерийские мины и снаряды;
  • пакеты (мешки, коробки, контейнеры), сбрасываемые с самолетов;
  • специальные аппараты, рассеивающие насекомых с самолетов;
  • диверсионные методы.

Заболевание в этом случае может произойти в результате прямого контакта с заражёнными предметами. Возможно также преднамеренное оставление при отходе инфекционных больных с тем, чтобы они явились источником заражения.

При разрыве боеприпасов, снаряженных бактериальной рецептурой, образуется бактериальное облако, состоящее из взвешенных в воздухе мельчайших капелек жидкости или твёрдых частиц. Облако, распространяясь по ветру, рассеивается и оседает на землю, образуя заражённый участок, площадь которого зависит от количества рецептуры, её свойств и скорости ветра.

Проблемой является то, что вне природного очага обитания и без соответствующих его экологической обстановке механизмов передачи, возбудитель заболевания передаваться людям не будет.

Особенности поражения биологическим оружием

При поражении бактериальными или вирусными средствами заболевание наступает не сразу, почти всегда имеется скрытый (инкубационный) период, в течение которого заболевание не проявляет себя внешними признаками, а пораженный не теряет боеспособности.

Некоторые заболевания (чума, холера, сибирская язва) способны передаваться от больного человека здоровому и, быстро распространяясь, вызывать эпидемии. Установить факт применения бактериальных средств и определить вид возбудителя достаточно трудно, поскольку ни микробы, ни токсины не имеют ни цвета, ни запаха, ни вкуса, а эффект их действия может проявиться через большой промежуток времени.

Обнаружение бактерий и вирусов возможно только путём проведения специальных лабораторных исследований, на что требуется значительное время, что затрудняет своевременное проведение мероприятий по предупреждению эпидемических заболеваний.

Признаком применения бактериологического оружия являются также валяющиеся на местности использованные боеприпасы (предназначенные для него) и другие средства его доставки. В некоторых случаях также — внезапное появление или резкое увеличение количества определенных насекомых или грызунов (например — блохи на снегу).

Современные стратегические средства биологического оружия используют смеси вирусов и спор бактерий для увеличения вероятности летальных исходов при применении, однако используются, как правило, штаммы, не передающиеся от человека к человеку, чтобы территориально локализовать их воздействие и избежать вследствие этого собственных потерь.

Искусственные вирусы можно использовать во благо

Ученые из NPL (Национальной физической лабораторией), работая с партнерами из Кембриджского и Эксетерского университетов, а также из Королевского колледжа Лондона, разработали создают искусственный вирус для борьбы с супербактериями

Рост числа супербактерий вызывает серьезную озабоченность в медицинском сообществе, поскольку бактерии эволюционируют, чтобы избежать существующих методов лечения быстрее, чем разрабатывают новые антибиотики. Вместо того чтобы создавать новые лекарства, группа экспертов пошла другим путем.

Авторы работы, опираясь на принципы архитектуры вируса, создали синтетический белок Ψ—капсид, который собирается из небольшого молекулярного мотива или характерной последовательности нуклеотидов (в ДНК, РНК) или аминокислот (в белках). Мотив нашли в клетках человека. Он может распознавать молекулярные паттерны, связанные с патогенами, на бактериальных поверхностях.

Отмечается, что благодаря комбинации наноразмерных и одноклеточных изображений, команда подтвердила, что капсиды наносят непоправимый ущерб бактериям. Капсиды были одинаково эффективны в любой из своих хиральных форм, что может сделать их невидимыми для иммунной системы хозяина, а также позволит убивать различные фенотипы бактерий и супербактерий без цитотоксичности in vitro и in vivo.

Коронавирус создан искусственно?

Пока нельзя сказать однозначно. Предлагаем ознакомиться с недавним необычном исследованием, в котором британский и норвежский ученые Ангус Далглиш и Биргер Сёренсен утверждают, что COVID-19 был создан в лаборатории.

По их словам, ранее они уже пытались опубликовать результаты своего исследования, но были отвергнуты научными журналами, которые были уверены в естественном происхождении вируса. Сейчас в ряде стран снова заговорили о необходимости пересмотреть версии возникновения COVID-19, указывает издание.

Исследователи обратили внимание на эксперименты, проведенные в лаборатории в Ухане в период с 2002 по 2019 год, и выяснили, что
их китайские коллеги, некоторые из которых работают совместно с американскими университетами, занимались исследованиями по изменению вируса таким образом, чтобы повысить его заразность.

Читайте также: