Виды электронной эмиссии кратко

Обновлено: 04.07.2024

Под вакуумом понимают газ или воздух, находящийся в состоянии найвысщего разрежения (давление порядка ). Вакуум является непроводящей средой, так как в нем содержится ничтожное количество электрически нейтральных частиц вещества.

Для получения в вакууме электрического тока необходим источник заряженных частиц — электронов, причем движение электронов в вакууме происходит практически без столкновений с частицами газа.

Источником электронов служит обычно металлйческий электрод — катод. При этом используется явление выхода электронов с поверхности катода в окружающую среду, называемое электронной эмиссией.

Свободные электроны в металле при отсутствии внешнего электрического поля беспорядочно перемещаются между ионами кристаллической решетки.

Рис. 13-6. Двойной электрический слой на поверхности металла.

При комнатной температуре выхода электронов из металла не наблюдается вследствие недостаточной величины их кинетической энергии. Часть электронов, обладающих наибольшей кинетической энергией, при своем движении выходит за поверхность металла, образуя электронный слой, который вместе с расположенным под ним в металле слоем положительных ионов кристаллической решетки образует двойной электрический слой (рис. 13-6). Электрическое поле этого двойного слоя противодействует электронам, стремящимся выйти из проводника, т. е. является для них тормозящим.

Для выхода электрона за пределы поверхности металла электрону необходимо, сообщить энергию, равную работе, которую он должен совершить по преодолению тормозящего действия поля двойного слоя. Эта работа называется работой выхода Отношение энергии выхода к заряду электрона называется потенциалом выхода, т. е. .

Работа (потенциал) выхода зависит от химической природы металла.

Значения потенциала выхода для некоторых металлов даны в табл. 13-1.

В зависимости от того, каким способом сообщается электронам дополнительная энергия, необходимая для выхода из металла, различают виды эмиссии: термоэлектронную, электростатическую, фотоэлектронную, вторичную и под ударами тяжелых частиц.

Термоэлектронной эмиссией называется явление выхода электронов из катода, обусловленное исключительно нагревом катода. При нагревании металла скорости движения электронов и Их кинетическая энергия увеличиваются и число электронов, покидающих металл, возрастает. Все электроны, вылезающие из катода в единицу времени, если Они удаляются от катода внешним полем, образуют электрический ток эмиссии . При повышении температуры катода ток эмиссии растет сначала медленно, а затем все быстрее и быстрее. На рис. 13-7 даны кривые плотности тока эмиссии, т. е. тока эмиссии, отнесенного к единице поверхности катода, выраженной в А/см2, в зависимости от температуры Т для различных катодов.

Рис. 13-7. Кривые плотности тока эмиссии в зависимости от температуры для различных катодов: а — оксидный; б — вольфрамовый, покрытый торием; в - вольфрамовый без покрытия.

Зависимость плотности эмиссионного тока от температуры и работы выхода выражается уравнением Ричардсона—Дэшмана:

где А — постоянная эмиссии; для металлов она равна ; Т — абсолютная температура катода, К; — основание натуральных логарифмов; — работа выхода, эВ; — постоянная Больцмана.

Таким образом, плотность тока эмиссии увеличивается пропорционально и так что для получения большого тока эмиссии необходим катод из материала с малой работой выхода и высокой рабочей температурой.

Если электроны, вылетевшие из катода (эмиттированные электроны), не удаляются от него внешним ускоряющим полем, то они скапливаются вокруг катода, образуя объемный отрицательный заряд (электронное облако), который создает вблизи катода тормозящее электрическое поле, препятствующее дальнейшему вылету электронов из катода.

Электростатической электронной эмиссией называется явление выхода электронов из поверхности катода, обусловленное исключительно наличием у поверхности катода сильного электрического поля.

Сила, действующая на электрон, находящийся в электрическом поле, пропорциональна заряду электрона и напряженности поля F — её. При достаточно большой напряженности ускоряющего поля силы, действующие на электрон, находящиеся у поверхности катода, становятся достаточно большими для преодоления потенциального барьера и вырывания электронов из холодного катода.

Электростатическая эмиссия находит применение в ртутных вентилях и некоторых других приборах.

Фотоэлектронной эмиссией называется явление выхода электронов, обусловленное исключительно действием излучения, поглощаемого катодом, и не связанное с его нагреванием. При этом электроны катода получают дополнительную энергию от частиц света — фотонов.

Лучистая энергия испускается и поглощается определенными порциями — квантами. Если энергия кванта, определяемая произведением постоянной Планка частоты излучения v, т. е. , больше работы выхода для материала данного катода то электрон может покинуть катод., т. е. будет иметь место фотоэлектронная эмиссия.

Фотоэлектронная эмиссия применяется в фотоэлементах.

Вторичной электронной эмиссией называется явление выхода вторичных электронов, обусловленное исключительно ударами первичных электронов о поверхность тела (проводника, полупроводника). Летящие электроны, называемые первичными, встречая на пути проводник, ударяются о него, проникают в его поверхностный слой и отдают часть своей энергии электронам проводника. Если дополнительная энергия, получаемая электронами при ударе, будет больше работы выхода, то эти электроны могут выйти за пределы проводника.

Первичный электрон, обладающий значительной энергией, может отдать ее или одному или нескольким электронам, следовательно, число вторичных электронов может быть больше первичных.

Вторичная электронная эмиссия характеризуется коэффициентом вторичной эмиссии , равным отношению числа вторичных электронов к числу первичных

а ток вторичной эмиссии

Величина коэффициента вторичной эмиссии зависит от свойств эмиттера, а также от скорости и направления первичных электронов.

В электронных приборах с несколькими электродами вторичные электроны летят к электроду с более высоким положительным потенциалом.

Вторичная электронная эмиссия используется, например, в фотоэлектронных умножителях для усиления тока.

Электронной эмиссией под ударами тяжелых частиц называется явление выхода электронов, обусловленное исключительно ударами ионов или возбужденных атомов (молекул) о поверхность тела — электрода. Этот вид эмиссии аналогичен рассмотренной выше вторичной электронной эмиссии.

Для получения потока свободных электронов в электронных приборах имеется специальный металлический или полупроводниковый электрод — катод.

  • термоэлектронную, при которой дополнительная энергия сообщается электронам в результате нагрева катода;
  • фотоэлектронную, при которой на поверхность катода воздействует электромагнитное излучение;
  • вторичную электронную, являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;
  • электросатическую, при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.

Рассмотрим более подробно каждый из перечисленных видов электронной эмиссии.

Термоэлектронная эмиссия. Явление термоэлектронной эмиссии было известно уже в конце ХVIII в. Ряд качественных закономерностей этого явления установили В. В. Петров (1812), Т. Л. Эдисон (1889) и др. К 30-м годам нашего столетия были определены основные аналитические зависимости термоэлектронной эмиссии.


При нагревании металла распределение электронов по энергиям в зоне проводимости изменяется (рис, 1, кривая 2). Появляются электроны с энергией, превышающей уровень Ферми. Такие электроны могут выйти за пределы металла, и результате чего возникает эмиссия электронов. Величина тока термоэлектронной эмиссии зависит от температуры катода, работы выхода и свойств поверхности (уравнение Ричардсона — Дэшмана):


где Jе — плотность тока эмиссий, А/см²; А — эмиссионная постоянная, зависящая от свойств излучаощей поверхности и равная для большинства чистых металлов — 40…70 А/(см²•К²’); Т — абсолютная температура катода; е — основание натуральных логарифмов (е = 2,718); еφо — работа выхода электрона из металла, Дж; κ = 1,38•10‾²³ Дж/К — постоянная Больцмана.

Приведенное уравнение термоэлектронной эмиссии справедливо для металлов. Для примесных полупроводников существует несколько иная зависимость, однако качественно связь величины тока эмиссии с температурой и работой выхода остается такой же. Уравнение показывает, что величина тока эмиссии в наибольшей степени зависит от температуры катода. Однако при увеличении температуры резко возрастает скорость испарения материала катода и сокращается срок его службы. Поэтому катод должен работать в строго определенном интервале рабочих температур. Нижний предел температуры определяется возможностью получения требуемой эмиссии, а верхний — испарением или плавлением эмиттирующего материала.

Существенное влияние на величину тока эмиссии оказывает внешнее ускоряющее электрическое поле, действующее у поверхности катода. Это явление получило название эффекта Шоттки. На электрон, выходящий из катода, при наличии внешнего электрического поля действуют две силы — сила электрического притяжения, возвращающая электрон, и сила внешнего поля, ускоряющая электрон в направлении от поверхности катода. Таким образом, внешнее ускоряющее поле снижает потенциальный барьер, вследствие чего снижается работа выхода электронов из катода и увеличивается электронная эмиссия.


Электрон может выйти за пределы катода, если работа выхода меньше энергии кванта, так как лишь при этих условиях начальная скорость Vo, а следовательно и кинетическая энергия электрона:


Отметим основные особенности явления фотоэффекта:

  • При облучении поверхности фотокатода лучистым потоком постоянного спектрального состава ток фотоэлектронной эмиссии пропорционален интенсивности потока (закон Столетова):


где Iф — величина фототока; Ф — величина лучистого потока; К — коэффициент пропорциональности, характеризующий чувствительность поверхности фотокатода к излучению.


, где с — скорость распространения электромагнитных волн. При λ > λк, фотоэлектронная эмиссия отсутствует.

  • Фотоэффект практически безынерционен, т. е. нет запаздывания между началом облучения и появлением фотоэлектронов (время запаздывания не превышает 3•10∧-9 с).

Как и в случае термоэлектронной эмиссии, увеличение напряженности внешнего электрического поля у фотокатода также увеличивает фотоэлектронную эмиссию за счет снижения потенциального барьера катода. При этом порог фотоэффекта смещается в сторону более длинных воли.

Чем меньше работа выхода металла, из которого изготовлен фотокатод, тем меньше величина пороговой частоты для данного фотокатода. Например, для того чтобы фотокатод был чувствителен к видимому свету, материал его должен иметь работу выхода меньше 3,1 эВ. Такая работа выхода характерна для щелочных и щелочноземельных металлов (цезий, калий, натрий). Для увеличения чувствительности фотокатода к другим диапазонам лучистых потоков используют более сложные типы полупроводниковых фотокатодов (щелочно-водородные, кислородно-цезиевые, сурьмяно-цезиевые и др.).

Вторичная электронная эмиссия. Механизм вторичной электронной эмиссии отличается от механизма термоэлектронной и фотоэлектронной эмиссии. Если при термоэлектронной и фотоэлектронной эмиссии электроны расположенные главным образом на уровнях зоны проводимости, то при бомбардировке поверхности катода первичными электронами или ионами их энергия может поглощаться и электронами заполненных зон. Поэтому вторичная эмиссия возможна как с проводников, так и с полупроводников и диэлектриков.

Наиболее важным параметром, характеризующим вторичную электронную эмиссию, является коэффициент вторичной эмиссии σ. Он представляет собой отношение числа вылетающих с поверхности катода вторичных электронов n2, к числу падающих на катод первичным электронов n1, или же отношение тока вторичной элеронной эмиссии I2 к току первичных электронов I1:


Вторичная электронная эмиссия применяется в некоторых электронным приборах — фотоумножителях, передающих телевизионных трубках, отдельным типах электронных ламп. Однако во многим случаям, в частности в большинстве электронных ламп, она нежелательна и ее стремятся уменьшить.

Электростатическая эмиссия. Если внешнее электрическое поле у поверхности катода имеет напряженность, достаточную для полной компенсации тормозящего действия потенциального барьера, то даже при низких температурах катода кожно получить значительную электронную эмиссию. Подсчитано, что для компенсации потенциального барьера напряженность у поверхности катода должка быть порядка 10∧8 В/см. Однако уже при напряженности поля порядка 10∧6 В/см наблюдается значительная электронная эмиссия с холодных поверхностей.

Техническое получение значений напряженности поля, достаточных для возникновения электростатической эмиссии, представляет значительные трудности. Поэтому электростатическая эмиссия в основном применяется в ионных приборах с жидким ртутным катодом. В этом случае достаточную напряженность поля кожно получить за счет создании вблизи поверхности катода слоя ионизированных паров ртути.

Источник — Гершунский Б.С. Основы электроники (1977)

Электронная эмиссия — явление испускания электронов поверхностью твёрдого тела или жидкости.

Типы эмиссии

Электронную эмиссию, возникающую в результате нагрева, называют термоэлектронной эмиссией (ТЭ). Явление ТЭ широко используют в вакуумных и газонаполняемых приборах.

Электростатической (автоэлектронной эмиссией) называют эмиссию электронов, обусловленную наличием у поверхности тела сильного электрического поля. Дополнительная энергия электронам твёрдого тела при этом не сообщается, но за счёт изменения формы потенциального барьера они приобретают способность выходить в вакуум.

Фотоэлектронная эмиссия (ФЭ) или внешний фотоэффект — эмиссия электронов из вещества под действием падающего на его поверхность излучения. ФЭ объясняется на основе квантовой теории твёрдого тела и зонной теории твёрдого тела.

Испускание электронов поверхностью твёрдого тела при её бомбардировке электронами.

Испускание электронов металлом при его бомбардировке ионами.

Испускание электронов в результате локальных взрывов микроскопических областей эмиттера.

Испускания электронов ультрахолодными, охлаждёнными до криогенных температур поверхностями. Мало изученное явление.

См. также

  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электронная эмиссия" в других словарях:

ЭЛЕКТРОННАЯ ЭМИССИЯ — испускание электронов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть электронов тела приобретает в результате внеш. воздействия энергию, достаточную для преодоления потенц. барьера на его границе, или если внеш.… … Физическая энциклопедия

ЭЛЕКТРОННАЯ ЭМИССИЯ — испускание эл нов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть эл нов тела приобретает в результате внеш. воздействий энергию, достаточную для преодоления потенциального барьера на его границе, или если внеш.… … Физическая энциклопедия

ЭЛЕКТРОННАЯ ЭМИССИЯ — ЭЛЕКТРОННАЯ эмиссия, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Современная энциклопедия

ЭЛЕКТРОННАЯ ЭМИССИЯ — испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов (вторичная электронная… … Большой Энциклопедический словарь

Электронная эмиссия — ЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Иллюстрированный энциклопедический словарь

электронная эмиссия — Испускание электронов с поверхности материала в окружающее пространство. [ГОСТ 13820 77] Тематики электровакуумные приборы … Справочник технического переводчика

Электронная эмиссия — испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера (См.… … Большая советская энциклопедия

электронная эмиссия — [electron emission] испускание электронов поверхностью твердого тела или жидкости. Электронная эмиссия возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления… … Энциклопедический словарь по металлургии

электронная эмиссия — испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов (вторичная электронная… … Энциклопедический словарь

ЭЛЕКТРОННАЯ ЭМИССИЯ — испускание электронов в вом. В зависимости от способа возбуждения различают след. осн. типы Э. э.: термоэлектронная эмиссия, фотоэлектронная эмиссия (см. Фотоэффект внешний), вторичная электронная эмиссия, автоэлектронная эмиссия … Большой энциклопедический политехнический словарь

ЭЛЕКТРОННАЯ ЭМИССИЯ – испускание электронов поверхностью твердого тела или жидкости. Чтобы электрон покинул конденсированную среду в вакууме или газе, должна быть затрачена энергия, которую называют работой выхода. Зависимость потенциальной энергии электрона от координаты на границе эмиттера и вакуума (или иной среды) называют потенциальным барьером. Его и должен преодолеть электрон, выходя из эмиттера.

Поддерживать эмиссию можно при выполнении двух условий. Первое – подвод к электронам энергии, обеспечивающей преодоление потенциального барьера, либо создание такого сильного внешнего поля, что потенциальный барьер делается тонким и становится существенен туннельный эффект (автоэлектронная эмиссия), квантовое проникновение электронов сквозь потенциальный барьер, т.е. эмиссия электронов, имеющих энергию меньше работы выхода. Передача энергии бомбардирующими тело фотонами приводит к фотоэмиссии, бомбардировка электронами вызывает вторичную электронную эмиссию, ионами – ион-электронную эмиссию. Эмиссия может быть вызвана внутренними полями – эмиссия горячих электронов. Все эти механизмы могут действовать и одновременно (например – термоавтоэмиссия, фотоавтоэмиссия).

Термоэлектронная эмиссия. В середине 19 в. было известно, что вблизи нагретых твердых тел воздух становится проводником электричества, однако причина этого явления оставалась неясной. В результате проведенных опытов Ю.Эльстер и Г.Гейтель установили, что при пониженном давлении окружающего воздуха раскаленная добела поверхность металла приобретает положительный заряд. Протекание тока в вакууме между накаленным электродом и положительно заряженным электродом было открыто Т.Эдисоном (1884), объяснено испусканием электронов (отрицательно заряженных частиц) Дж.Томсоном (1887), теорию термоэлектронной эмиссии разработал О.Ричардсон (1902, иногда ему приписывается открытие и самого эффекта). Односторонняя проводимость была обнаружена Дж.Флемингом (1904, иногда это приписывается Эдисону), хотя его диод был не вполне вакуумным, а с частичной компенсацией пространственного заряда. Ток термоэлектронной эмиссии определяется температурой катода, (т.е. энергией электронов) и работой выхода. Максимальный ток эмиссии определяется отношением работы выхода к температуре, он называется током насыщения. Температура катода ограничивается, в свою очередь, испарением материала катода (т.е. сроком службы).

Фотоэлектронная эмиссия – испускание электронов твердыми телами и жидкостями под действием электромагнитного излучения (фотонов), при этом количество испускаемых электронов пропорционально интенсивности излучения. Для каждого вещества существует порог – минимальная частота (максимальная длина волны) излучения, ниже которой эмиссия не возникает, максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности. Фотоэмиссия чувствительна к работе выхода поверхности. Увеличения квантового выхода и сдвига порога фотоэмиссии достигают покрытием поверхности металла моноатомным слоем электроположительных атомов Cs (цезия) или Rb (рубидия), снижающих работу выхода для большинства металлов до 1,4–1,7 эв. Фотоэмиссия была открыта Густавом Герцем (1887), обнаружившим, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает пробой. Систематические исследования провели В.Гальвакс, А.Риги, А.Г.Столетов (1885) и показали, что в опыте Герца дело сводится к освобождению зарядов под действием света. То, что это именно электроны, lоказали Ф.Ленард и Дж.Томсон (1898).

Фотоэмиссия из полупроводников и диэлектриков определяется сильным поглощением электромагнитного излучения.

Автоэлектронная эмиссия (полевая эмиссия, электростатическая эмиссия, туннельная эмиссия) – испускание электронов проводящими твердыми и жидкими телами под действием внешнего электрического поля высокой напряженности, ее открыл Р.Вуд (1897) при исследовании вакуумного разряда. Автоэлектронная эмиссия объясняется туннельным эффектом и происходит без затрат энергии на возбуждение электронов, необходимых для электронной эмиссии иных видов. При автоэлектронной эмиссии электроны преодолевают потенциальный барьер, не проходя над ним за счет кинетической энергии теплового движения (как при термоэлектронной эмиссии), а путем туннельного просачивания сквозь барьер, сниженный и суженный электрическим полем.

Сильная зависимость автоэмиссии от работы выхода влечет за собой нестабильность работы автокатода. Работа выхода поверхности зависит как от процессов, происходящих на поверхности в высоком вакууме, так и от влияния недостаточно высокого вакуума: диффузии, миграции, перестройки поверхности, сорбции остаточных газов. Чаще всего применяемый материал – вольфрам – хорошо сорбирует газы. Это вызвало многочисленные попытки применения металлов, не так хорошо сорбирующих газы, например, рения или еще более пассивного углерода, имеющего, однако, большое сопротивление. Предлагалось покрывать металл пленкой углерода. Уменьшать сорбцию газа на поверхности можно постоянным небольшим нагревом автоэмиттера или периодическим сильным импульсным нагревом для очистки поверхности. В целом, для стабильной работы современных автокатодов требуется вакуум, на один-три порядка более высокий, чем тот, который нужен для термокатодов.

В результате у ряда неметаллических веществ (окислы щелочноземельных металлов, щелочногалоидные соединения) КВЭ > 1, у специально изготовленных эффективных эмиттеров (см. ниже) КВЭ >> 1, у металлов и полупроводников обычно КВЭ 5 –10 6 в/см) приводит к увеличению КВЭ до 50–100 (вторичная эмиссия, усиленная полем). В этой ситуации КВЭ начинает зависеть от пористости слоя – наличие пор увеличивает эффективную поверхность эмиттера, а поле вытягивает из них вторичные электроны, которые, ударяясь о стенки пор, могут вызвать, в свою очередь, эмиссию с КВЭ > 1 и возникновение электронных лавин. Это может приводить к самоподдерживающейся холодной эмиссии, продолжающейся (при подводе заряда к эмиттеру) и после прекращения бомбардировки электронами.

Основными областями применения вторично-электронных катодов являются вторично-электронные (ВЭУ) и фотоэлектронные (ФЭУ) умножители, ЭВП М-типа (в которых электроны двигаются во взаимно-перпендикулярных электрическом и магнитном полях) и приемно-усилительные лампы со вторичной эмиссией. Для всех применений наиболее существенными вторично-эмиссионными параметрами являются: коэффициент вторичной эмиссии КВЭ в области малых энергий первичных электронов, обычно характеризуемый энергией, при которой КВЭ = 1, максимальной величиной КВЭ и энергией первичных электронов, когда КВЭ достигает максимума.

Ион-электронная эмиссия – испускание электронов под действием ионов. Известны два механизма ион-электронной эмиссии: потенциальный – вырывание электронов из тела полем подлетающего иона и кинетический – выбивание электронов из тела за счет кинетической энергии иона. Коэффициент потенциальной эмиссии увеличивается с увеличением энергии ионизации иона и уменьшением работы выхода мишени, и для пар Ne+/W (неон/вольфрам), He+/W (гелий/вольфрам), Ar+/W (аргон/вольфрам) составляет, например, 0,24, 0,24 и 0,1 соответственно, и слабо зависит от энергии ионов. Для Мо (молибденовой) мишени и тех же ионов эти коэффициенты примерно на 10% больше.

При бомбардировке многозарядными ионами ион-электронная эмиссия возрастает – для 2-х, 3-х, 4-х зарядных ионов она больше, чем для однозарядных, примерно в 4, 10, 20 раз соответственно. Потенциальная ион-электронная эмиссия сильно зависит от состояния поверхности, поскольку она определяется работой выхода. Это влечет относительно большой разброс экспериментальных данных.

Кинетической ионно-электронной эмиссии практически нет при энергиях менее 1 кэВ, потом возрастает линейно, потом медленнее, проходит через максимум и убывает, к энергиям в единицы МэВ коэффициент падает примерно до единицы. Ион-электронная эмиссия играет существенную роль в работе ряда электронных газоразрядных приборов, в которых источником электронов является катод, бомбардируемый ионами. В некоторых случаях процесс ионно-электронной эмиссии создает основное количество электронов в объеме прибора.

Читайте также: