Векторное произведение это кратко

Обновлено: 03.07.2024

Первое свойство определяет антисимметричность векторного произведения, второе и третье — аддитивность и однородность по первому множителю. Эти свойства аналогичны свойствам произведения чисел: первое свойство "противоположно" закону коммутативности умножения чисел (закон антикоммутативности), второе свойство соответствует закону дистрибутивности умножения чисел по отношению к сложению, третье — закону ассоциативности умножения. Поэтому рассматриваемая операция и называется произведением векторов. Поскольку ее результатом является вектор, то такое произведение векторов называется векторным.

Докажем первое свойство, предполагая, что векторы и имеют равные длины и коллинеарны (так как оба вектора перпендикулярны одной плоскости). По определению тройки векторов и — правые, т.е. вектор Замечания 1.12

1. Свойства аддитивности и однородности векторного произведения означают линейность векторного произведения по первому множителю:

для любых векторов и любых действительных чисел .

2. В силу антисимметричности векторное произведение линейно и по второму множителю, т.е. линейно по любому множителю.

Геометрические свойства векторного произведения

1. Модуль векторного произведения численно равен площади параллелограмма, построенного на множителях (рис. 1.42,6).

2. Векторное произведение равняется нулевому вектору тогда и только тогда, когда множители коллинеарны, т.е.

Первое свойство следует из определения. Докажем второе свойство. Равенство возможно в трех случаях: , или , или . В каждом из этих случаев векторы

Пример 1.19. Вычислить площади параллелограмма и треугольника, построенных на векторах , где , угол между векторами и (рис. 1.44).

Решение. Используя алгебраические свойства, найдем сначала векторное произведение

а затем его модуль .

По первому геометрическому свойству векторного произведения искомая площадь параллелограмма равна , а площадь треугольника в 2 раза меньше: .

Выражение векторного произведения через координаты векторов

Пусть в пространстве задан ортонормированный (стандартный) базис . Векторные произведения базисных векторов находятся по определению:

Формулы (1.14) можно получить, используя диаграмму (рис. 1.45): если на этой схеме кратчайший поворот от первого множителя ко второму совершается в положительном направлении (указанном стрелкой), то произведение равно третьему вектору, а если — в отрицательном направлении, то произведение равно третьему вектору, взятому со знаком минус (противоположному вектору).

Найдем выражение векторного произведения через координаты множителей. Пусть в стандартном базисе векторы и соответственно. Тогда, используя линейность векторного произведения по любому множителю (см. пункт 2 замечаний 1.12) и формулы (1.14), получаем

Запишем это равенство при помощи определителей второго порядка:

Правую часть (1.15) можно представить как результат разложения символического определителя третьего порядка по первой строке

Формула вычисления векторного произведения

Теорема 1.8 (формула вычисления векторного произведения). Если векторы имеют координаты и соответственно, то векторное произведение этих векторов находится по формуле (1.15), которую принято записывать в виде

Если и — координатные столбцы векторов векторного произведения находится по формуле

В самом деле, выполняя умножение матрицы на столбец, получаем

Тогда , что совпадает с (1.15).

Пример 1.20. Параллелограмм (рис. 1.46). Найти:

а) векторные произведения и ;
б) площадь параллелограмма для которого тройка , Решение. а) Векторное произведение находим по формуле (1.16):

Для нахождения векторного произведения можно использовать матричную запись формулы (1.15) (см. теорему 1.8). Векторам .

По указанной формуле получаем координатный столбец вектора :

то есть . Результаты совпадают.

Векторное произведение находим, используя алгебраические свойства:

б) Площадь параллелограмма :

в) Вектор, противоположный вектору , удовлетворяет перечисленным в условии требованиям, поэтому

Перед тем, как дать понятие векторного произведения, обратимся к вопросу о ориентации упорядоченной тройки векторов a → , b → , c → в трехмерном пространстве.

Отложим для начала векторы a → , b → , c → от одной точки. Ориентация тройки a → , b → , c → бывает правой или левой, в зависимости от направления самого вектора c → . От того, в какую сторону осуществляется кратчайший поворот от вектора a → к b → с конца вектора c → , будет определен вид тройки a → , b → , c → .

Если кратчайший поворот осуществляется против часовой стрелки, то тройка векторов a → , b → , c → называется правой, если по часовой стрелке – левой.

Определение векторного произведения

Далее возьмем два не коллинеарных вектора a → и b → . Отложим затем от точки A векторы A B → = a → и A C → = b → . Построим вектор A D → = c → , который одновременно перпендикулярный одновременно и A B → и A C → . Таким образом, при построении самого вектора A D → = c → мы можем поступить двояко, задав ему либо одно направление, либо противоположное (смотрите иллюстрацию).

Определение векторного произведения

Упорядоченная тройка векторов a → , b → , c → может быть, как мы выяснили правой или левой в зависимости от направления вектора.

Из вышесказанного можем ввести определение векторного произведения. Данное определение дается для двух векторов, определенных в прямоугольной системе координат трехмерного пространства.

Векторным произведением двух векторов a → и b → будем называть такой вектор заданный в прямоугольной системе координат трехмерного пространства такой, что:

  • если векторы a → и b → коллинеарны, он будет нулевым;
  • он будет перпендикулярен и вектору a → ​​​​ и вектору b → т.е. ∠ a → c → = ∠ b → c → = π 2 ;
  • его длина определяется по формуле: c → = a → · b → · sin ∠ a → , b → ;
  • тройка векторов a → , b → , c → имеет такую же ориентацию, что и заданная система координат.

Векторное произведение векторов a → и b → имеет следущее обозначение: a → × b → .

Координаты векторного произведения

Так как любой вектор имеет определенные координаты в системе координат, то можно ввести второе определение векторного произведения, которое позволит находить его координаты по заданным координатам векторов.

В прямоугольной системе координат трехмерного пространства векторным произведением двух векторов a → = ( a x ; a y ; a z ) и b → = ( b x ; b y ; b z ) называют вектор c → = a → × b → = ( a y · b z - a z · b y ) · i → + ( a z · b x - a x · b z ) · j → + ( a x · b y - a y · b x ) · k → , где i → , j → , k → являются координатными векторами.

Векторное произведение можно представит как определитель квадратной матрицы третьего порядка, где первая строка есть векторы орты i → , j → , k → , вторая строка содержит координаты вектора a → , а третья – координаты вектора b → в заданной прямоугольной системе координат, данный определитель матрицы выглядит так: c → = a → × b → = i → j → k → a x a y a z b x b y b z

Разложив данный определитель по элементам первой строки, получим равенство: c → = a → × b → = i → j → k → a x a y a z b x b y b z = a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k → = = a → × b → = ( a y · b z - a z · b y ) · i → + ( a z · b x - a x · b z ) · j → + ( a x · b y - a y · b x ) · k →

Свойства векторного произведения

Известно, что векторное произведение в координатах представляется как определитель матрицы c → = a → × b → = i → j → k → a x a y a z b x b y b z , то на базе свойств определителя матрицы выводятся следующие свойства векторного произведения:

  1. антикоммутативность a → × b → = - b → × a → ;
  2. дистрибутивность a ( 1 ) → + a ( 2 ) → × b = a ( 1 ) → × b → + a ( 2 ) → × b → или a → × b ( 1 ) → + b ( 2 ) → = a → × b ( 1 ) → + a → × b ( 2 ) → ;
  3. ассоциативность λ · a → × b → = λ · a → × b → или a → × ( λ · b → ) = λ · a → × b → , где λ - произвольное действительное число.

Данные свойства имеют не сложные доказательства.

Для примера можем доказать свойство антикоммутативности векторного произведения.

По определению a → × b → = i → j → k → a x a y a z b x b y b z и b → × a → = i → j → k → b x b y b z a x a y a z . А если две строчки матрицы переставить местами, то значение определителя матрицы должно меняется на противоположное,следовательно, a → × b → = i → j → k → a x a y a z b x b y b z = - i → j → k → b x b y b z a x a y a z = - b → × a → , что и доказывает антикоммутативность векторного произведения.

Векторное произведение – примеры и решения

В большинстве случаев встречаются три типа задач.

В задачах первого типа обычно заданы длины двух векторов и угол между ними, а нужно найти длину векторного произведения. В этом случае пользуются следующей формулой c → = a → · b → · sin ∠ a → , b → .

Найдите длину векторного произведения векторов a → и b → , если известно a → = 3 , b → = 5 , ∠ a → , b → = π 4 .

С помощью определения длины векторного произведения векторов a → и b → решим данную задач: a → × b → = a → · b → · sin ∠ a → , b → = 3 · 5 · sin π 4 = 15 2 2 .

Ответ: 15 2 2 .

Задачи второго типа имеют связь с координатами векторов, в них векторное произведение, его длина и т.д. ищутся через известные координаты заданных векторов a → = ( a x ; a y ; a z ) и b → = ( b x ; b y ; b z ) .

Для такого типа задач, можно решить массу вариантов заданий. Например, могут быть заданы не координаты векторов a → и b → , а их разложения по координатным векторам вида b → = b x · i → + b y · j → + b z · k → и c → = a → × b → = ( a y · b z - a z · b y ) · i → + ( a z · b x - a x · b z ) · j → + ( a x · b y - a y · b x ) · k → , или векторы a → и b → могут быть заданы координатами точек их начала и конца.

Рассмотрим следующие примеры.

В прямоугольной системе координат заданы два вектора a → = ( 2 ; 1 ; - 3 ) , b → = ( 0 ; - 1 ; 1 ) . Найдите их векторное произведение.

По второму определению найдем векторное произведение двух векторов в заданных координатах: a → × b → = ( a y · b z - a z · b y ) · i → + ( a z · b x - a x · b z ) · j → + ( a x · b y - a y · b x ) · k → = = ( 1 · 1 - ( - 3 ) · ( - 1 ) ) · i → + ( ( - 3 ) · 0 - 2 · 1 ) · j → + ( 2 · ( - 1 ) - 1 · 0 ) · k → = = - 2 i → - 2 j → - 2 k → .

Если записать векторное произведение через определитель матрицы, то решение данного примера выглядит следующим образом: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 2 1 - 3 0 - 1 1 = - 2 i → - 2 j → - 2 k → .

Ответ: a → × b → = - 2 i → - 2 j → - 2 k → .

Найдите длину векторного произведения векторов i → - j → и i → + j → + k → , где i → , j → , k → - орты прямоугольной декартовой системы координат.

Для начала найдем координаты заданного векторного произведения i → - j → × i → + j → + k → в данной прямоугольной системе координат.

Известно, что векторы i → - j → и i → + j → + k → имеют координаты ( 1 ; - 1 ; 0 ) и ( 1 ; 1 ; 1 ) соответственно. Найдем длину векторного произведения при помощи определителя матрицы, тогда имеем i → - j → × i → + j → + k → = i → j → k → 1 - 1 0 1 1 1 = - i → - j → + 2 k → .

Следовательно, векторное произведение i → - j → × i → + j → + k → имеет координаты ( - 1 ; - 1 ; 2 ) в заданной системе координат.

Длину векторного произведения найдем по формуле (см. в разделе нахождение длины вектора): i → - j → × i → + j → + k → = - 1 2 + - 1 2 + 2 2 = 6 .

Ответ: i → - j → × i → + j → + k → = 6 . .

В прямоугольной декартовой системе координат заданы координаты трех точек A ( 1 , 0 , 1 ) , B ( 0 , 2 , 3 ) , C ( 1 , 4 , 2 ) . Найдите какой-нибудь вектор, перпендикулярный A B → и A C → одновременно.

Векторы A B → и A C → имеют следующие координаты ( - 1 ; 2 ; 2 ) и ( 0 ; 4 ; 1 ) соответственно. Найдя векторное произведение векторов A B → и A C → , очевидно, что оно является перпендикулярным вектором по определению и к A B → ​​​​​ и к A C → , то есть, является решением нашей задачи. Найдем его A B → × A C → = i → j → k → - 1 2 2 0 4 1 = - 6 i → + j → - 4 k → .

Ответ: - 6 i → + j → - 4 k → . - один из перпендикулярных векторов.

Задачи третьего типа ориентированы на использование свойств векторного произведения векторов. После применения которых, будем получать решение заданной задачи.

Векторы a → и b → перпендикулярны и их длины равны соответственно 3 и 4 . Найдите длину векторного произведения 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → .

По свойству дистрибутивности векторного произведения мы можем записать 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b →

По свойству ассоциативности вынесем числовые коэффициенты за знак векторных произведений в последнем выражении: 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → = = 3 · a → × a → + 3 · ( - 2 ) · a → × b → + ( - 1 ) · b → × a → + ( - 1 ) · ( - 2 ) · b → × b → = = 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b →

Векторные произведения a → × a → и b → × b → равны 0, так как a → × a → = a → · a → · sin 0 = 0 и b → × b → = b → · b → · sin 0 = 0 , тогда 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b → = - 6 · a → × b → - b → × a → . .

Из антикоммутативности векторного произведения следует - 6 · a → × b → - b → × a → = - 6 · a → × b → - ( - 1 ) · a → × b → = - 5 · a → × b → . .

Воспользовавшись свойствами векторного произведения, получаем равенство 3 · a → - b → × a → - 2 · b → = = - 5 · a → × b → .

По условию векторы a → и b → перпендикулярны, то есть угол между ними равен π 2 . Теперь остается лишь подставить найденные значения в соответствующие формулы: 3 · a → - b → × a → - 2 · b → = - 5 · a → × b → = = 5 · a → × b → = 5 · a → · b → · sin ( a → , b → ) = 5 · 3 · 4 · sin π 2 = 60 .

Ответ: 3 · a → - b → × a → - 2 · b → = 60 .

Геометрический смысл векторного произведения

Длина векторного произведения векторов по орпеделению равна a → × b → = a → · b → · sin ∠ a → , b → . Так как уже известно (из школьного курса), что площадь треугольника равна половине произведения длин двух его сторон умноженное на синус угла между данными сторонами. Следовательно, длина векторного произведения равна площади параллелограмма - удвоенного треугольника, а именно произведению сторон в виде векторов a → и b → , отложенные от одной точки, на синус угла между ними sin ∠ a → , b → .

Это и есть геометрический смысл векторного произведения.

Геометрический смысл векторного произведения

Физический смысл векторного произведения

В механике, одном из разделов физики, благодаря векторному произведению можно определить момент силы относительно точки пространства.

Под моментом силы F → , приложенной к точке B , относительно точки A будем понимать следующее векторное произведение A B → × F → .


О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.


вектор

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.


тройка векторов

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.


тройка векторов рис2

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.


Векторным произведением вектора

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.


правая тройка векторов

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор


Координаты векторного произведения

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:


 векторное произведение в координатной форме

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:


равенство из определения векторного произведения в координатах

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:


Свойства векторного произведения

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:


Сочетательное свойство рис 2

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.


 антикоммутативности векторного произведения


антикоммутативности векторного произведения рис 2

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому


значение определителя матрицы изменяется на противоположное, если переставить местами две строки

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:


пример решения


ответ 1

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:


пример решения 2


ответ 2

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:


формула

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.


ответ3

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:


найдем векторы

Затем векторное произведение:


найдем векторное произведение

Вычислим его длину:


длинна векторного произведения

Подставим данные в формулы площадей параллелограмма и треугольника:


формула 2


ответ4

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна


Геометрический смысл векторного произведения

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.


геометрический смысл векторного произведения

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].


Физический смысл векторного произведения

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

Содержание

Определение и история

Векторным произведением вектора на вектор в пространстве называется вектор , удовлетворяющий следующим требованиям:

 \mathbf c = \left[ \mathbf a \mathbf b \right] = \left[ \mathbf a,\; \mathbf b \right] = \mathbf a \times \mathbf b

В литературе [1] определение векторного произведения может даваться по-разному. Например, в качестве определения даётся описанное далее выражение векторного произведения в координатах в правой и левой прямоугольной системе координат. А далее выводится данное выше определение, а также определение правой и левой тройки векторов.

Также для исходного определения может быть взят набор алгебраических свойств векторного произведения, а из них выводиться остальное.

Векторное произведение было введено У. Гамильтоном в 1846 году [2] одновременно со скалярным произведением в связи с кватернионами — соответственно, как векторная и скалярная часть произведения двух кватернионов, скалярная часть которых равна нулю [3] .

Правые и левые тройки векторов в трёхмерном пространстве


Рассмотрим упорядоченную тройку некомпланарных векторов " width="" height="" />
в трёхмерном пространстве. Совместим начала этих векторов в точке (то есть выберем произвольно в пространстве точку и параллельно перенесём каждый вектор так, чтобы его начало совпало с точкой ). Концы векторов, совмещённых началами в точке , не лежат на одной прямой, так как векторы некомпланарны. Рассмотрим плоскость — единственную плоскость, проходящую через концы векторов, совмещённых началами в точке . Тогда можно в плоскости провести через концы векторов " width="" height="" />
, совмещённых началами в точке , единственную окружность и выяснить направление обхода трёх точек на окружности, смотря на неё с одной из сторон от плоскости.

Упорядоченная тройка некомпланарных векторов " width="" height="" />
в трёхмерном пространстве называется правой, если наблюдателю, находящемуся по одну сторону с точкой от плоскости , обход концов приведённых в общее начало векторов " width="" height="" />
в указанном порядке кажется совершающимся в плоскости по часовой стрелке.

B противном случае " width="" height="" />
— левая тройка. В этом случае наблюдателю, находящемуся с другой стороны от плоскости , обход концов таких векторов будет казаться совершающимся против часовой стрелки.

Другое определение связано с правой рукой человека (см. рисунок), откуда и берётся название.

Все правые между собой (и левые между собой) тройки векторов называются одинаково ориентированными.

Свойства

Геометрические свойства векторного произведения




Рисунок 2: Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений.

Алгебраические свойства векторного произведения

Выражение для векторного произведения в декартовых координатах

Если два вектора и определены своими прямоугольными декартовыми координатами, а говоря точнее — представлены в ортонормированном базисе

 \mathbf a = (a_x,\; a_y,\; a_z)
\mathbf b = (b_x,\; b_y,\; b_z)

а система координат правая, то их векторное произведение имеет вид

 [ \mathbf a,\; \mathbf b ] = (a_y b_z - a_z b_y,\; a_z b_x - a_x b_z,\; a_x b_y - a_y b_x).

Для запоминания этой формулы удобно использовать определитель:

 [ \mathbf a,\; \mathbf b ] = \begin</p>
<p> \mathbf i & \mathbf j & \mathbf k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end

 [ \mathbf a,\; \mathbf b ]_i = \sum_<j,k=1></p>
<p>^3 \varepsilon_ a_j b_k,

\varepsilon_<i j k></p>
<p>где
— символ Леви-Чивиты.

Если система координат левая, то их векторное произведение имеет вид

 [ \mathbf a,\; \mathbf b ] = (a_z b_y - a_y b_z,\; a_x b_z - a_z b_x,\; a_y b_x - a_x b_y).

Для запоминания, аналогично:

 [ \mathbf a,\; \mathbf b ] = - \begin</p>
<p> \mathbf i & \mathbf j & \mathbf k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end

 [ \mathbf a,\; \mathbf b ]_i = - \sum_<j,k=1></p>
<p>^3 \varepsilon_ a_j b_k.

Формулы для левой системы координат можно легко получить из формул правой системы координат, записав те же векторы и во вспомогательной правой системе координат ():

 [ \mathbf a,\; \mathbf b ] = \begin<vmatrix></p>
<p> \mathbf i

Обобщения

Кватернионы

Векторное произведение можно также записать в кватернионной форме, поэтому буквы , , — стандартные обозначения для ортов в : они рассматриваются как воображаемые кватернионы.

Заметим, что соотношения через векторное произведение между , и соответствуют правилам умножения для кватернионов , и . Если представить вектор как кватернион , то векторное произведение двух векторов получается взятием векторной части от произведения соответствующих им кватернионов. Скалярное произведение этих векторов противоположно скалярной части произведения этих кватернионов.

Преобразование к матричной форме

Векторное произведение двух векторов можно записать как произведение кососимметрической матрицы и вектора:

= [\mathbf]_ \mathbf = \begin\,0&\!-a_3&\,\,a_2\\ \,\,a_3&0&\!-a_1\\-a_2&\,\,a_1&\,0\end\beginb_1\\b_2\\b_3\end" width="" height="" />
\times \mathbf = \mathbf^T [\mathbf]_ = \beginb_1&b_2&b_3\end\begin\,0&\!-a_3&\,\,\,a_2\\\,\,\,a_3&\,0&\!-a_1\\-a_2&\,\,a_1&\,0\end" width="" height="" />

[\mathbf]_ <\times></p>
<p>\stackrel \begin\,\,0&\!-a_3&\,\,\,a_2\\\,\,\,a_3&0&\!-a_1\\\!-a_2&\,\,a_1&\,\,0\end

\mathbf

Пусть равен векторному произведению:

\mathbf= \mathbf <c></p>
<p> \times \mathbf

[\mathbf]_ <\times></p>
<p>= (\mathbf\mathbf^T)^T - \mathbf\mathbf^T.

Такая форма записи позволяет обобщить векторное произведение на высшие размерности, представляя псевдовекторы (угловая скорость, индукция и т. п.) как такие кососимметричные матрицы. Ясно, что такие физические величины будут иметь независимых компонент в -мерном пространстве. В трёхмерном пространстве получаются три независимые компоненты, поэтому такие величины можно представлять как векторы этого пространства.

С такой формой записи также зачастую проще работать (например, в en:epipolar geometry).

Из общих свойств векторного произведения следует, что

\, \mathbf = \mathbf " width="" height="" />
и \, [\mathbf]_ = \mathbf " width="" height="" />

 [\mathbf]_ <\times></p>
<p>а так как
кососимметрична, то

 \mathbf</p>
<p>^ \, [\mathbf]_ \, \mathbf = 0.

Распространение на матрицы

A

В трёхмерном случае можно определить векторное произведение матриц и произведение матрицы на вектор. Это делает очевидным указанный выше изоморфизм и позволяет упростить многие выкладки. Представим матрицу как столбец векторов, тогда

\mathbf a_1\\\mathbf a_2\\\mathbf a_3\end \times \mathbf b = \begin\mathbf a_1 \times \mathbf b \\\mathbf a_2 \times \mathbf b \\\mathbf a_3 \times \mathbf b \end" width="" height="" />
\mathbf a_1\\\mathbf a_2\\\mathbf a_3\end \cdot \mathbf b = \begin\mathbf a_1 \cdot \mathbf b \\\mathbf a_2 \cdot \mathbf b \\\mathbf a_3 \cdot \mathbf b \end" width="" height="" />

Умножение матрицы на вектор слева определяется аналогично, если представить как строку векторов. Транспонирование матрицы, соответственно, переводит строку векторов в столбец векторов, и наоборот. Легко обобщить многие соотношения для векторов на соотношения для векторов и матриц, например ( — матрица, , — векторы):

A \cdot (\mathbf x \times \mathbf y) = (A \times \mathbf x) \cdot \mathbf y
A \times (\mathbf x \times \mathbf y) = \mathbf x (A \cdot \mathbf y)- \mathbf y (A \cdot \mathbf x)

После этого можно изменить форму записи для векторного произведения:

\mathbf x \times \mathbf y = E \cdot (\mathbf x \times \mathbf y) = (E \times \mathbf x)\cdot \mathbf y

 \int\limits_<\Sigma></p>
<p>\operatorname\, \mathbf \, \mathbf = \int\limits_ <\partial\Sigma>\mathbf\cdot\, d \mathbf,

где ротор матрицы вычисляется как векторное произведение матрицы на оператор Гамильтона слева. В этих обозначениях очень легко доказать, например, следующие формы теоремы Стокса:

\operatorname\, u \times \, \mathbf = \int\limits_ <\partial\Sigma>u\, d \mathbf, " width="" height="" />
\left[ \mathbf; \left[ \nabla; \mathbf a \right] \right] = \int\limits_ <\partial\Sigma>\mathbf a \times d \mathbf. " width="" height="" />

Размерности, не равные трём

n

Пусть — размерность пространства.

\mathbb</p>
<p>Векторное произведение, обладающее всеми свойствами обычного трёхмерного векторного произведения, то есть бинарное билинейное антисимметричное невырожденное отображение ^n \times \mathbb^n \to \mathbb^n
, можно ввести только для размерностей 3 и 7.

Однако есть простое обобщение на остальные натуральные размерности, начиная с 3, а если нужно — и на размерность 2 (последнее, правда, сравнительно специфическим образом). Тогда это обобщение, в отличие от невозможного, описанного чуть выше, вводится не для пары векторов, а лишь для набора векторов-сомножителей. Вполне аналогично смешанному произведению, естественно обобщаемому в -мерном пространстве на операцию с сомножителями. Используя символ Леви-Чивиты " width="" height="" />
с индексами, можно явно записать такое -валентное векторное произведение как

(n-1)

Такое обобщение дает гиперплощадь размерности .

n \neq 3

Если нужно ввести операцию именно для двух сомножителей, имеющую геометрический смысл, предельно близкий к смыслу векторного произведения (то есть представляющую ориентированную площадь), то результат уже не будет вектором, так как при не найдется единственной, однозначно определённой нормали к двумерной плоскости, натянутой на множители. Можно ввести бивектор, компоненты которого равны проекциям ориентированной площади параллелограмма, натянутого на пару векторов, на координатные плоскости:

\ P_<ij></p>
<p>(\mathbf) = a_i b_j - a_j b_i
.

Эта конструкция называется внешним произведением.

Для двумерного случая операция

называется псевдоскалярным произведением, так как получающееся пространство одномерно и результат есть псевдоскаляр. (Двухиндексное внешнее произведение, описанное выше, можно ввести и для двумерного пространства, однако оно, очевидно, достаточно тривиально связано с псевдоскалярным произведением, а именно внешнее произведение в этом случае представляется матрицей, на диагонали которой нули, а оставшиеся два недиагональных элемента равны псевдоскалярному произведению и минус псевдоскалярному произведению).

Алгебра Ли векторов

Векторное произведение вводит на ^" width="" height="" />
структуру алгебры Ли (поскольку оно удовлетворяет обеим аксиомам — антисимметричности и тождеству Якоби). Эта структура соответствует отождествлению с касательной алгеброй Ли к группе Ли ортогональных линейных преобразований трёхмерного пространства.

Векторное произведение — это псевдовектор, который перпендикулярен плоскости, построенной по двум

векторами в трёхмерном евклидовом пространстве.

Векторное произведение не имеет свойств коммутативности и ассоциативности (антикоммутативное)

векторного произведения двух векторов равен произведению модулей этих векторов, если они

перпендикулярны, и стремится к нулю, если векторы параллельны или антипараллельны.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в

трёхмерной прямоугольной системе координат, формула для векторного произведения зависит

Векторное произведение двух векторов обозначается квадратными скобками:

Вектор. Векторное произведение векторов

Свойства векторного произведения векторов.

1. Геометрический смысл векторного произведения векторов.

Векторным произведением вектора на вектор является

Вектор. Векторное произведение векторов

вектор , длина его численно соответствует площади

параллелограмма, который построен на векторах и ,

перпендикулярный к плоскости этих векторов и направлен

так, чтоб самое маленькое вращение от к около

Вектор. Векторное произведение векторов

вектора происходило против часовой стрелки, если взгляд вести

Вектор. Векторное произведение векторов

с конца вектора .

Модуль векторного произведения двух векторов и = площади параллелограмма, который

построен на них:

Площадь треугольника строящегося на векторах и соответствует одной второй модуля

векторного произведения векторов и :

Вектор. Векторное произведение векторов

2. Вектор перпендикулярен векторам и , то есть и ;

3. Вектор направлен таким образом, что поворот от вектора к вектору происходит против часовой стрелки, если смотришь с конца вектора (в таком случае тройка векторов , и – правая).

Читайте также: