Устройство мембранного исполнительного механизма кратко

Обновлено: 05.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ

Приводы и исполнительные механизмы запорно-регулирующей, регулирующей и запорной трубопроводной арматуры предназначены
для преобразования управляющего сигнала (пневматического, электрического или механического) в механическое (линейное или вращательное) перемещение штока привода и жестко связанного со штоком запорного органа (клапана, шарового затвора, дисковой заслонки, задвижки и т.п.).

Исполнительные механизмы, применяемые для управления запорно-регулирущей арматурой по принципу действия и используемому виду энергии для создания необходимого механического усилия на рабочем затворе подразделяют на:

Пневматические исполнительные механизмы

Пневматические исполнительные механизмы в силу сложившейся традиции занимают достаточно большое место среди приводов для регулирующей арматуры различного типа. Это обусловлено в первую очередь тем, что массовая промышленная автоматизация до 50-х, 60х годов прошлого столетия базировалась в основном на пневматике. Пневматические системы автоматизированного управления сегодня, в эпоху микропроцессоров и широкого применения цифровой электроники, смотрятся несколько архаично, и кроме того, они достаточно громоздкие, требуют организации сетей подготовки и распределения сжатого воздуха, который к тому же расходуется при работе пневматических систем.

Вместе с тем, простота конструкции пневмоприводов, а как следствие этого — достаточно высокая надежность и ремонтопригодность их, позволяют успешно использовать такие приводы и в современных системах автоматизированного управления технологическими процессами.
Пневматические исполнительные механизмы предназначены для преобразования изменений давления воздуха Р на выходе регулятора в перемещение регулирующего органа — клапана, заслонки, шибера, крана и т. п. Регулирующий орган изменяет расход потока жидкости, газа, пара и т. п. на объекте управления, и тем самым вызывает изменение регулируемого технологического параметра.

По типу привода пневматические исполнительные механизмы делятся на мембранные, поршневые, поворотные, пневмодвигатели вращающиеся.

Мембранный исполнительный механизм (МИМ)

hello_html_51b75a45.jpg

Рисунок 2. Мембранный исполнительный механизм, установленный на регулирующем клапане:
1 - регулирующий орган; 2 - шток; 3 - пружина; 4 - мембрана; 5 - сальник

Статические характеристики большинства МИМов близки к линейным, однако они обладают зоной гистерезиса, составляющей 2—15% от наибольшего значения Р. Эта величина зависит от усилий трения в сальнике 5, от перепада давлений на регулирующем органе, от характеристик пружины и эффективной площади мембраны.

Для уменьшения зоны гистерезиса и улучшения динамических характеристик МИМов на исполнительный механизм устанавливают дополнительные усилители мощности, называемые позиционерами. Различают позиционеры, работающие по схеме компенсации перемещений и по схеме компенсации сил. В позиционерах обоих типов МИМ охватывается отрицательной обратной связью по положению штока, что исключает влияние на статические характеристики сил трения в сальнике, перепада давлений на регулирующем органе и т.п.

Одновременно с этим увеличение расхода воздуха, подаваемого в МИМ и заметно улучшаются динамические характеристики последнего.
Для сопряжения с электрическими сигналами систем управления применяют электропневматические позиционеры, которые кроме улучшения статических характеристик мембранных исполнительных механизмов, обеспечивают преобразование электрического сигнала в импульс управляющего воздуха, подаваемого на МИМ.

Пневматический исполнительный механизм — устройство, которое использует давление сжатого воздуха, чтобы произвести механическое движение. Движение, которое произведено, затем может использоваться, чтобы выполнить функцию перемещения регулирующего органа в системе автоматического регулирования.

Движение, вырабатываемое пневматическим исполнительным механизмом может быть использовано, например, для выбора положения вентиля, управляющего потоком пара, воды или других жидкостей. Для управления положением заслонки или жалюзи, течением воздуха или других продуктов технологического процесса.

Пневматический исполнительный механизм

Пневматический исполнительный механизм

Это наиболее распространенный тип исполнительных механизмов, используемых в автоматических системах регулирования технологических процессов.

Различаются три общих вида пневматических исполнительных механизмов, используемых в промышленности: мембранные исполнительные механизмы однонаправленного действия, мембранные исполнительные механизмы двойного действия и поршневые исполнительные механизмы.

Мембранный исполнительный механизм однонаправленного действия

Мембранный исполнительный механизм однонаправленного действия классифицирован, как механизм однонаправленного действия, потому что воздушное давление вводится в исполнительный механизм только через один порт и давление воздействует только на одну сторону мембраны.

Такой тип исполнительного механизма мог бы использоваться для управления движением клапана на топливной линии или для регулирования расхода питательной воды в котел, когда очень опасно прекращение потока воды в котел.

Мембранный исполнительный механизм однонаправленного действия

Мембранный исполнительный механизм однонаправленного действия

В состав такого механизма входит:

1. Гибкая мембрана, часто сделанная из прорезиненной ткани;
2. Металлический диск, который принимает на себя нагрузку и поддерживает мембрану;
3. Пружина, которая прикладывает предварительное усилие на мембрану и шток, связанный с мембраной и перемещающийся при прогибе мембраны;
4. Орган управления, движение которого будет обеспечивать исполнительный механизм;

Принцип действия:

1. Давление вводится в механизм;
2. Мембрана прогибается вверх, сжимая пружину и поднимая шток;
3. Шток двигается пропорционально величине давления воздуха, приложенного к исполнительному механизму через порт ввода давления.

Связь движения штока с величиной приложенного давление воздуха означает, что управление прилагаемым давлением позволяет исполнительному механизму устанавливать регулирующий орган в любой заданной точке его зоны перемещения.

Мембранный исполнительный механизм двойного действия

Мембранные исполнительные механизмы двойного действия содержат два порта для ввода давления. Такие механизмы часто используются там, где ограничено пространство для размещения клапана. Давление воздуха обеспечивает усилия для движения в обоих направлениях и не имеется никакой потребности в применении громоздкой пружины, используемой в мембранных исполнительных механизмах однонаправленного действия.

Мембранные исполнительные механизмы двойного действия

Мембранные исполнительные механизмы двойного действия

Принцип действия:

Головка исполнительного механизма разделена на две секции или камеры, мембранной и двумя металлическими дисками. Имеются два порта, по одному для каждой камеры.
1. Давление воздуха, прилагаемое к нижнему порту, перемещает мембрану и шток вверх;
2. Давление воздуха, прилагаемое к верхнему порту, перемещает мембрану и шток вниз.

Так как давление воздуха обеспечивает силу для движения в двух направлениях, это исполнительный механизм двойного действия.

Поршневой исполнительный механизм

В поршневом пневматическом исполнительном механизме давление воздуха действует на поршень в цилиндре для развития тяги и создания движения. Поршневой исполнительный механизм позволяет обеспечивать большее перемещение штока, которое ограничено лишь практической длиной цилиндра.

Поршневой пневматический исполнительный механизм хорошо подходит для работ, где требуется передвижение на большее расстояние. Обычно используется для выбора положения жалюзи и заслонок, которые управляют потоком воздуха или других газов в промышленных процессах.

Поршневой исполнительный механизм

Поршневой исполнительный механизм

В состав такого механизма входит:

1. Цилиндр;
2. Две торцевые крышки, которые герметично закрывают цилиндр;
3. Два порта, через которые сжатый воздух поступает в цилиндр или выходит из него; 4. Поршень, который перемещается в цилиндре;
5. Шток поршня, который соединяет поршень с органом управления, приводимым в действие исполнительным механизмом.

Принцип действия:

1. Поршень перемещается под действием давления воздуха, подаваемого через один порт;
2. В это время воздух на другой стороне поршня выпускается наружу через другой воздушный канал, соединенный с атмосферой;

Поршневой пневматический исполнительный механизм

Поршневой пневматический исполнительный механизм

Исполнительный механизм устройство, преобразующее выходной сигнал регулятора в перемещение регулирующего органа

Электрический исполнительный механизм устройство, преобразующее выходной сигнал регулятора при помощи электрической энергии, чтобы произвести механическое движение

Гидравлический исполнительный механизм устройство, преобразующее выходной сигнал регулятора при помощи силы жидкости под давлением.

Дифференциальное регулирование выработка составляющей выходного сигнала регулятора в зависимости от скорости отклонения регулируемой переменной

Интегральное регулирование формирует регулирующее воздействие пропорционально интегралу отклонения регулируемой величины так долго, пока существует отклонение

При устройстве систем кондиционирования и вентиляции воздуха в производственных условиях бывает необходимо осуществить срочное закрывание воздуховодов в системах вытяжки. Например, от сушилок — для исключения дополнительной тяги воздуха от зон возможного возникновения огня. В качестве привода при этом чаще всего используются мембранные исполнительные механизмы (МИМ).

Мембранный исполнительный механизм или сокращенно МИМ представляет собой мембранное пружинное устройство, имеющее резиновую или резинотканевую мембрану. Этот привод применяется в регулирующей трубопроводной арматуре. Принцип работы механизма заключается в том, что давление рабочей жидкости создает перестановочное напряжение в полости мембраны. Если давление среды работает в обоих направлениях, то механизм называется беспружинным, а если в одном, то в другом направление усилие передается действием сжатия пружины.

МИМ в трубопроводной арматуре чаще всего имеет мембрану именно из резины. Обычно она производится из тканевой или обыкновенной резины толщиной от 2 до 4 мм. Для химически активных рабочих сред мембрана должна быть из фтористой или фторкаучуковой резины. В качестве передаточного звена мембранный исполнительный механизм предполагает возможность использования рычага и чаще всего он применяется в клапанах с поворотным механизмом затвора. Регулирующие клапана — самое место для МИМ и наиболее широко он применяется именно там.

Мембранные механизмы высокой мощности находят свое применение в запорной арматуре. Под действием именно этого устройства происходит открытие или закрытие клапана трубопровода. Если механизм не имеет в своей конструкции пружину, то наличествует две мембраны, между которыми находится воздух за счет этого и происходит открывание или закрывание клапана. Беспружинный МИМ меньше размерами и весом, чем пружинный, тем не менее, создает большее перестановочное усилие, как раз благодаря отсутствию пружины. В таком устройстве возможно управление при помощи буфера, где установлено постоянное давление среды – он то и будет играть главную роль — символической возвратной пружины. Другой способ — управление при помощи позиционера – именно он осуществляет подачу воздуха, призванного управлять действие механизма.

Разные виды МИМ способны работать при разных температурных условиях. По этому принципу они подразделяются на группы. Верхняя граница + 50 град. С установлена для всех видов устройств, а вот нижний предел может быть — 50, -30 и -15 град С. При этом относительная влажность воздуха не должна превышать 80% и быть ниже 30%.

Производители МИМ стараются постоянно совершенствовать свои изделия и расширять область их применения. Для этого их компонуют дополнительными узлами, такими как позиционное реле, ограничитель хода, блок обеспечения действий, амортизатор, ручной дублер, датчик положения и некоторыми другими блоками.


Регулирование потоков различных жидкостей и газов и регулирование взаимных положений различных компонентов в процессе производства является неотъемлемой составляющей частью любого технологического процесса. Применяемые для этих целей регулирующие органы, такие как клапаны, задвижки и заслонки осуществляют регулирование давлений (расходов) жидких и газообразных сред в широких диапазонах температур, давлений и физических свойств технологических сред и параметров.

Практически любой регулирующий орган можно условно разложить на две составляющие компоненты:

  • собственно регулирующий орган , осуществляющий непосредственный контакт и взаимодействие с технологической средой, веществом, материалом или теплоносителем и призванный изменять через свою исполнительную часть количественные или качественные
    характеристики вещества или материала; регулирующие органы наиболее часто представлены в виде трубопроводной арматуры, стержней позиционирующих в рабочей зоне установки, механически связанных узлов и компонентов взаимодействующих друг с другом в процессе протекания технологических процессов;
  • исполнительный механизм или привод регулирующего органа, осуществляющий управляемое преобразование одного вида энергии (энергии сжатого газа в пневматических системах, электрической, гидравлической и др. видов энергии) в механическую энергию, прикладываемую к регулирующему органу, в результате чего исполнительная часть регулирующего органа выполняет возлагаемые на нее функции.

Наиболее часто в качестве регулирующих органов применяются клапаны, устанавливаемые на трубопроводах. Кроме клапанов в качестве
регулирующих механизмов применяются заслонки, краны, шиберы и т.д. Об этом мы будем рассказывать в последующих номерах.

Регулирующие (запорно-регулирующие) клапаны

Клапаны предназначены для управления потоками жидких и газообразных сред, транспортируемых по трубопроводам.

Регулирующие и запорно-регулирующие клапаны осуществляют непрерывное изменение расхода регулируемого потока от минимального, когда клапан полностью закрыт, до максимального, когда клапан полностью открыт.

Запорные или отсечные клапаны управляют регулируемым потоком не непрерывно, а дискретно (клапан полностью открыт или полностью закрыт). Как у регулирующих, так и у запорных клапанов есть небольшие протечки регулируемой среды при закрытом положении клапана.

Следует отметить, что деление клапанов на регулирующие, запорные и запорно-регулирующие есть только в нашей стране, также как и отдельные стандарты на протечки для регулирующих и запорных клапанов. Весь остальной мир производит просто регулирующие клапаны, протечки у которых подразделяются на шесть классов, чем выше номер класса – тем меньше протечки. Последние три класса относятся к клапанам, которые у нас называют запорными и запорно-регулирующими.

Под условным диаметром прохода клапана (Ду) следует понимать номинальный внутренний диаметр входного и выходного патрубков клапана (в ряде случаев диаметр выходного патрубка может превышать диаметр входного). Каждому значению условного диаметра прохода клапана соответствует максимально возможное значение расхода регулируемого вещества, которое, в общем случае, зависит от ряда параметров (перепада давления, плотности и др.). Для удобства сравнения клапанов и выбора по результатам гидравлического расчета необходимого типоразмера клапана введено понятие условной пропускной способности.

Условная пропускная способность клапана (Kvy) показывает, какое количество воды при температуре 20 °С может пропустить клапан при перепаде давления на нем 0,1 МПа (1 кгс/см2) при полностью открытом затворе.

Регулирующий клапан состоит из трех основных блоков: корпуса, дроссельного узла и привода клапана. Типичная конструкция проходного
запорно-регулирующего клапана без установленного привода представлена на рисунке 1.

Внутри корпуса клапана 1 устанавливается дроссельный узел, состоящий из седла 2 и плунжера 3, связанного со штоком 4. Седло может быть выполнено в различных конструктивных исполнениях: вворачиваться в корпус клапана как показано на рисунке 1, прижиматься к корпусу специальной втулкой или выполняться заедино с корпусом.

Конструкция проходного запорно-регулирующего клапана

Рис 1. Конструкция проходного запорно-регулирующего клапана


Плунжер скользит по направляющей, выполненной в крышке 5. Между корпусом 1 и крышкой 5 установлена уплотнительная прокладка 6. Шток 4 выводится наружу через сальниковый узел 7, представляющий собой набор подпружиненных шевронных колец из фторопласта-4 или его модификаций. На крышке 5 устанавливается привод, шток которого соединяется со штоком клапана. Привод может быть пневматическим, ручным, электрическим или электромагнитным.

Дроссельный узел является регулирующим и запирающим элементом клапана. Именно в этом узле реализуется задача изменения проходного сечения клапана и, как следствие, изменение его расходной характеристики.

Конкретные комбинации втулка-седло-плунжер выбираются исходя из условий эксплуатации клапана: перепада давления, типа регулируемой
среды и ее температуры, наличия мехпримесей, величины пропускной способности, вязкости среды и т.д.

Таблица 1.
Основные параметры запорно-регулирующих клапанов

Основные параметры запорно-регулирующих клапанов

Таблица 2.
Условная пропускная способность запорно-регулирующих клапанов

Условная пропускная способность запорно-регулирующих клапанов

ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ

Приводы и исполнительные механизмы запорно-регулирующей, регулирующей и запорной трубопроводной арматуры предназначены
для преобразования управляющего сигнала (пневматического, электрического или механического) в механическое (линейное или вращательное) перемещение штока привода и жестко связанного со штоком запорного органа (клапана, шарового затвора, дисковой заслонки, задвижки и т.п.).

Исполнительные механизмы, применяемые для управления запорно-регулирущей арматурой по принципу действия и используемому виду энергии для создания необходимого механического усилия на рабочем затворе подразделяют на:

  • Пневматические
  • Электрические
  • Гидравлические
  • Комбинированные
  • Ручные

Пневматические исполнительные механизмы

Пневматические исполнительные механизмы в силу сложившейся традиции занимают достаточно большое место среди приводов для регулирующей арматуры различного типа. Это обусловлено в первую очередь тем, что массовая промышленная автоматизация до 50-х, 60‑х годов прошлого столетия базировалась в основном на пневматике. Пневматические системы автоматизированного управления сегодня, в эпоху микропроцессоров и широкого применения цифровой электроники, смотрятся несколько архаично, и кроме того, они достаточно громоздкие, требуют организации сетей подготовки и распределения сжатого воздуха, который к тому же расходуется при работе пневматических систем.

Вместе с тем, простота конструкции пневмоприводов, а как следствие этого — достаточно высокая надежность и ремонтопригодность их, позволяют успешно использовать такие приводы и в современных системах автоматизированного управления технологическими процессами.
Пневматические исполнительные механизмы предназначены для преобразования изменений давления воздуха Р на выходе регулятора в перемещение регулирующего органа — клапана, заслонки, шибера, крана и т. п. Регулирующий орган изменяет расход потока жидкости, газа, пара и т. п. на объекте управления, и тем самым вызывает изменение регулируемого технологического параметра.

По типу привода пневматические исполнительные механизмы делятся на мембранные, поршневые, поворотные, пневмодвигатели вращающиеся.

Мембранный исполнительный механизм (МИМ)

Мембранный исполнительный механизм, установленный на регулирующем клапане

Рисунок 2. Мембранный исполнительный механизм, установленный на регулирующем клапане:
1 - регулирующий орган; 2 - шток; 3 - пружина; 4 - мембрана; 5 - сальник


Статические характеристики большинства МИМов близки к линейным, однако они обладают зоной гистерезиса, составляющей 2—15% от наибольшего значения Р. Эта величина зависит от усилий трения в сальнике 5, от перепада давлений на регулирующем органе, от характеристик пружины и эффективной площади мембраны.

Для уменьшения зоны гистерезиса и улучшения динамических характеристик МИМов на исполнительный механизм устанавливают дополнительные усилители мощности, называемые позиционерами. Различают позиционеры, работающие по схеме компенсации перемещений и по схеме компенсации сил. В позиционерах обоих типов МИМ охватывается отрицательной обратной связью по положению штока, что исключает влияние на статические характеристики сил трения в сальнике, перепада давлений на регулирующем органе и т.п.

Одновременно с этим увеличение расхода воздуха, подаваемого в МИМ и заметно улучшаются динамические характеристики последнего.
Для сопряжения с электрическими сигналами систем управления применяют электропневматические позиционеры, которые кроме улучшения статических характеристик мембранных исполнительных механизмов, обеспечивают преобразование электрического сигнала в импульс управляющего воздуха, подаваемого на МИМ.

Основные технические характеристики МИМов представлены в таблице 3.
Таблица 3.

Основные технические характеристики МИМов

Внешний вид типичных МИМов, устанавливаемых на регулирующих клапанах, представлен на рисунке 3.

Внешний вид типичных МИМов, устанавливаемых на регулирующих клапанах

Поршневые пневматические приводы


Поршневые пневматические приводы (ППП) применяют в тех случаях, когда требуется линейное перемещение штока исполнительного
механизма на большое расстояние – до 300 мм. Для повышения точности и улучшения динамических характеристик поршневые приводы
снабжают также позиционерами, а сами приводы в этом случае называют следящими.

Схема поршневого пневматического привода представлена на рисунке 4. Механизм поршневого пневматического привода состоит из закрепленного на кронштейне 1 цилиндра 2 с размещенным внутри поршнем 3, жестко соединенным со штоком привода 4, и нескольких пружин 5, ориентированных относительно поршня в зависимости от исполнения привода (нормально открытый НО или нормально закрытый НЗ). Внутренняя поверхность цилиндра имеет антифрикционное покрытие. Наиболее типичная характеристика поршневого пневматического привода приведена в таблице 4. Пневматический поршневой привод работает следующим образом.

Схематический разрез нормально закрытого поршневого пневматического привода

Рисунок 4.
Схематический разрез нормально закрытого поршневого пневматического привода

Пневматический входной сигнал от управляющего устройства поступает в рабочую полость и воздействует на поршень. При этом пружины противодействуют усилию, создаваемому давлением сжатого воздуха, вследствие чего шток перемещается на величину, обратно пропорциональную жесткости пружин.

Таблица 4.
Основные технические параметры поршневого пневматического привода

Основные технические параметры поршневого пневматического привода

Поворотные пневматические приводы


Поворотные пневматические приводы типа ППР предназначены для управления трубопроводной арматурой (краны шаровые и пробковые,
затворы дисковые и шиберные и т.п.) при аналоговом или дискретном управлении положением запорного элемента, когда управляющее
воздействие на шток запорного элемента требует поворотного воздействия или приложения к нему вращательного момента.

Поворотные пневматические приводы могут рассматриваться как некоторая разновидность поршневого пневматического привода, где поршень, выполненный в виде лепестка перемещается под давлением управляющего воздуха в специальной камере. Движение силового элемента (лепестка) пневмопривода непосредственно передается на вал запорного элемента трубопроводной арматуры, обеспечивая его требуемое положение.

Внешний вид поворотного пневматического привода представлен на рисунке 5.

Внешний вид поворотного пневматического лопастного привода типа ППР

Рисунок 5. Пневмопривод лопастной типа ППР

Основные технические характеристики поворотного пневматического привода следующие:

Основные технические характеристики поворотного пневматического привода


Таблица 5
Основные технические характеристики
поворотных пневмоприводов типа ППР

Читайте также: