Угол между прямыми кратко

Обновлено: 05.07.2024

Данный материал посвящен такому понятию, как угол между двумя пересекающимися прямыми. В первом пункте мы поясним, что он из себя представляет, и покажем его на иллюстрациях. Потом разберем, какими способами можно найти синус, косинус этого угла и сам угол (отдельно рассмотрим случаи с плоскостью и трехмерным пространством), приведем нужные формулы и покажем на примерах, как именно они применяются на практике.

Что такое угол между пересекающимися прямыми

Для того чтобы понять, что такое угол, образующийся при пересечении двух прямых, нам потребуется вспомнить само определение угла, перпендикулярности и точки пересечения.

Мы называем две прямые пересекающимися, если у них есть одна общая точка. Эта точка называется точкой пересечения двух прямых.

Каждая прямая разделяется точкой пересечения на лучи. Обе прямые при этом образуют 4 угла, из которых два – вертикальные, а два – смежные. Если мы знаем меру одного из них, то можем определить и другие оставшиеся.

Допустим, нам известно, что один из углов равен α . В таком случае угол, который является вертикальным по отношению к нему, тоже будет равен α . Чтобы найти оставшиеся углы, нам надо вычислить разность 180 ° - α . Если α будет равно 90 градусам, то все углы будут прямыми. Пересекающиеся под прямым углом линии называются перпендикулярными (понятию перпендикулярности посвящена отдельная статья).

Взгляните на рисунок:

Что такое угол между пересекающимися прямыми

Перейдем к формулированию основного определения.

Угол, образованный двумя пересекающимися прямыми – это мера меньшего из 4 -х углов, которые образуют две эти прямые.

Из определения нужно сделать важный вывод: размер угла в этом случае будет выражен любым действительным числом в интервале ( 0 , 90 ] . Если прямые являются перпендикулярными, то угол между ними в любом случае будет равен 90 градусам.

Что такое угол между пересекающимися прямыми

Как найти угол между пересекающимися прямыми на плоскости

Умение находить меру угла между двумя пересекающимися прямыми полезно для решения многих практических задач. Метод решения можно выбрать из нескольких вариантов.

Для начала мы можем взять геометрические методы. Если нам известно что-то о дополнительных углах, то можно связать их с нужным нам углом, используя свойства равных или подобных фигур. Например, если мы знаем стороны треугольника и нужно вычислить угол между прямыми, на которых эти стороны расположены, то для решения нам подойдет теорема косинусов. Если у нас в условии есть прямоугольный треугольник, то для подсчетов нам также пригодится знание синуса, косинуса и тангенса угла.

Координатный метод тоже весьма удобен для решения задач такого типа. Поясним, как правильно его использовать.

У нас есть прямоугольная (декартова) система координат O x y , в которой заданы две прямые. Обозначим их буквами a и b . Прямые при этом можно описать с помощью каких-либо уравнений. Исходные прямые имеют точку пересечения M . Как определить искомый угол (обозначим его α ) между этими прямыми?

Начнем с формулировки основного принципа нахождения угла в заданных условиях.

Нам известно, что с понятием прямой линии тесно связаны такие понятия, как направляющий и нормальный вектор. Если у нас есть уравнение некоторой прямой, из него можно взять координаты этих векторов. Мы можем сделать это сразу для двух пересекающихся прямых.

Угол, образуемый двумя пересекающимися прямыми, можно найти с помощью:

  • угла между направляющими векторами;
  • ­угла между нормальными векторами;
  • угла между нормальным вектором одной прямой и направляющим вектором другой.

Теперь рассмотрим каждый способ отдельно.

1. Допустим, что у нас есть прямая a с направляющим вектором a → = ( a x , a y ) и прямая b с направляющим вектором b → ( b x , b y ) . Теперь отложим два вектора a → и b → от точки пересечения. После этого мы увидим, что они будут располагаться каждый на своей прямой. Тогда у нас есть четыре варианта их взаимного расположения. См. иллюстрацию:

Как найти угол между пересекающимися прямыми на плоскости

Если угол между двумя векторами не является тупым, то он и будет нужным нам углом между пересекающимися прямыми a и b . Если же он тупой, то искомый угол будет равен углу, смежному с углом a → , b → ^ . Таким образом, α = a → , b → ^ в том случае, если a → , b → ^ ≤ 90 ° , и α = 180 ° - a → , b → ^ , если a → , b → ^ > 90 ° .

Исходя из того, что косинусы равных углов равны, мы можем переписать получившиеся равенства так: cos α = cos a → , b → ^ , если a → , b → ^ ≤ 90 ° ; cos α = cos 180 ° - a → , b → ^ = - cos a → , b → ^ , если a → , b → ^ > 90 ° .

Во втором случае были использованы формулы приведения. Таким образом,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 - cos a → , b → ^ , cos a → , b → ^ 0 ⇔ cos α = cos a → , b → ^

Запишем последнюю формулу словами:

Косинус угла, образованного двумя пересекающимися прямыми, будет равен модулю косинуса угла между его направляющими векторами.

Общий вид формулы косинуса угла между двумя векторами a → = ( a x , a y ) и b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a → , b → ^ a → · b → = a x · b x + a y· b y a x 2 + a y 2 · b x 2 + b y 2

Из нее мы можем вывести формулу косинуса угла между двумя заданными прямыми:

cos α = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2 = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

Тогда сам угол можно найти по следующей формуле:

α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Здесь a → = ( a x , a y ) и b → = ( b x , b y ) – это направляющие векторы заданных прямых.

Приведем пример решения задачи.

В прямоугольной системе координат на плоскости заданы две пересекающиеся прямые a и b . Их можно описать параметрическими уравнениями x = 1 + 4 · λ y = 2 + λ λ ∈ R и x 5 = y - 6 - 3 . Вычислите угол между этими прямыми.

Решение

У нас в условии есть параметрическое уравнение, значит, для этой прямой мы сразу можем записать координаты ее направляющего вектора. Для этого нам нужно взять значения коэффициентов при параметре, т.е. прямая x = 1 + 4 · λ y = 2 + λ λ ∈ R будет иметь направляющий вектор a → = ( 4 , 1 ) .

Вторая прямая описана с помощью канонического уравнения x 5 = y - 6 - 3 . Здесь координаты мы можем взять из знаменателей. Таким образом, у этой прямой есть направляющий вектор b → = ( 5 , - 3 ) .

Далее переходим непосредственно к нахождению угла. Для этого просто подставляем имеющиеся координаты двух векторов в приведенную выше формулу α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Получаем следующее:

α = a r c cos 4 · 5 + 1 · ( - 3 ) 4 2 + 1 2 · 5 2 + ( - 3 ) 2 = a r c cos 17 17 · 34 = a r c cos 1 2 = 45 °

Ответ: данные прямые образуют угол в 45 градусов.

Мы можем решить подобную задачу с помощью нахождения угла между нормальными векторами. Если у нас есть прямая a с нормальным вектором n a → = ( n a x , n a y ) и прямая b с нормальным вектором n b → = ( n b x , n b y ) , то угол между ними будет равен углу между n a → и n b → либо углу, который будет смежным с n a → , n b → ^ . Этот способ показан на картинке:

Как найти угол между пересекающимися прямыми на плоскости

Формулы для вычисления косинуса угла между пересекающимися прямыми и самого этого угла с помощью координат нормальных векторов выглядят так:

cos α = cos n a → , n b → ^ = n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2 α = a r c cos n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2

Здесь n a → и n b → обозначают нормальные векторы двух заданных прямых.

В прямоугольной системе координат заданы две прямые с помощью уравнений 3 x + 5 y - 30 = 0 и x + 4 y - 17 = 0 . Найдите синус, косинус угла между ними и величину самого этого угла.

Решение

Исходные прямые заданы с помощью нормальных уравнений прямой вида A x + B y + C = 0 . Нормальный вектор обозначим n → = ( A , B ) . Найдем координаты первого нормального вектора для одной прямой и запишем их: n a → = ( 3 , 5 ) . Для второй прямой x + 4 y - 17 = 0 нормальный вектор будет иметь координаты n b → = ( 1 , 4 ) . Теперь добавим полученные значения в формулу и подсчитаем итог:

cos α = cos n a → , n b → ^ = 3 · 1 + 5 · 4 3 2 + 5 2 · 1 2 + 4 2 = 23 34 · 17 = 23 2 34

Если нам известен косинус угла, то мы можем вычислить его синус, используя основное тригонометрическое тождество. Поскольку угол α , образованный прямыми, не является тупым, то sin α = 1 - cos 2 α = 1 - 23 2 34 2 = 7 2 34 .

В таком случае α = a r c cos 23 2 34 = a r c sin 7 2 34 .

Ответ: cos α = 23 2 34 , sin α = 7 2 34 , α = a r c cos 23 2 34 = a r c sin 7 2 34

Разберем последний случай – нахождение угла между прямыми, если нам известны координаты направляющего вектора одной прямой и нормального вектора другой.

Допустим, что прямая a имеет направляющий вектор a → = ( a x , a y ) , а прямая b – нормальный вектор n b → = ( n b x , n b y ) . Нам надо отложить эти векторы от точки пересечения и рассмотреть все варианты их взаимного расположения. См. на картинке:

Как найти угол между пересекающимися прямыми на плоскости

Если величина угла между заданными векторами не более 90 градусов, получается, что он будет дополнять угол между a и b до прямого угла.

a → , n b → ^ = 90 ° - α в том случае, если a → , n b → ^ ≤ 90 ° .

Если он менее 90 градусов, то мы получим следующее:

a → , n b → ^ > 90 ° , тогда a → , n b → ^ = 90 ° + α

Используя правило равенства косинусов равных углов, запишем:

cos a → , n b → ^ = cos ( 90 ° - α ) = sin α при a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = - sin α при a → , n b → ^ > 90 ° .

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° - cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 - cos a → , n b → ^ , a → , n b → ^ 0 ⇔ ⇔ sin α = cos a → , n b → ^

Чтобы найти синус угла между двумя прямыми, пересекающимися на плоскости, нужно вычислить модуль косинуса угла между направляющим вектором первой прямой и нормальным вектором второй.

Запишем необходимые формулы. Нахождение синуса угла:

sin α = cos a → , n b → ^ = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Нахождение самого угла:

α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Здесь a → является направляющим вектором первой прямой, а n b → – нормальным вектором второй.

Две пересекающиеся прямые заданы уравнениями x - 5 = y - 6 3 и x + 4 y - 17 = 0 . Найдите угол пересечения.

Решение

Берем координаты направляющего и нормального вектора из заданных уравнений. Получается a → = ( - 5 , 3 ) и n → b = ( 1 , 4 ) . Берем формулу α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2 и считаем:

α = a r c sin = - 5 · 1 + 3 · 4 ( - 5 ) 2 + 3 2 · 1 2 + 4 2 = a r c sin 7 2 34

Обратите внимание, что мы взяли уравнения из предыдущей задачи и получили точно такой же результат, но другим способом.

Ответ: α = a r c sin 7 2 34

Приведем еще один способ нахождения нужного угла с помощью угловых коэффициентов заданных прямых.

У нас есть прямая a , которая задана в прямоугольной системе координат с помощью уравнения y = k 1 · x + b 1 , и прямая b , заданная как y = k 2 · x + b 2 . Это уравнения прямых с угловым коэффициентом. Чтобы найти угол пересечения, используем формулу:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 , где k 1 и k 2 являются угловыми коэффициентами заданных прямых. Для получения этой записи были использованы формулы определения угла через координаты нормальных векторов.

Есть две пересекающиеся на плоскости прямые, заданные уравнениями y = - 3 5 x + 6 и y = - 1 4 x + 17 4 . Вычислите величину угла пересечения.

Решение

Угловые коэффициенты наших прямых равны k 1 = - 3 5 и k 2 = - 1 4 . Добавим их в формулу α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 и подсчитаем:

α = a r c cos - 3 5 · - 1 4 + 1 - 3 5 2 + 1 · - 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Ответ: α = a r c cos 23 2 34

В выводах этого пункта следует отметить, что приведенные здесь формулы нахождения угла не обязательно учить наизусть. Для этого достаточно знать координаты направляющих и/или нормальных векторов заданных прямых и уметь определять их по разным типам уравнений. А вот формулы для вычисления косинуса угла лучше запомнить или записать.

Как вычислить угол между пересекающимися прямыми в пространстве

Вычисление такого угла можно свести к вычислению координат направляющих векторов и определению величины угла, образованного этими векторами. Для таких примеров используются такие же рассуждения, которые мы приводили до этого.

Допустим, что у нас есть прямоугольная система координат, расположенная в трехмерном пространстве. В ней заданы две прямые a и b с точкой пересечения M . Чтобы вычислить координаты направляющих векторов, нам нужно знать уравнения этих прямых. Обозначим направляющие векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) . Для вычисления косинуса угла между ними воспользуемся формулой:

cos α = cos a → , b → ^ = a → , b → a → · b → = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Для нахождения самого угла нам понадобится эта формула:

α = a r c cos a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x 1 = y - 3 = z + 3 - 2 . Известно, что она пересекается с осью O z . Вычислите угол пересечения и косинус этого угла.

Решение

Обозначим угол, который надо вычислить, буквой α . Запишем координаты направляющего вектора для первой прямой – a → = ( 1 , - 3 , - 2 ) . Для оси аппликат мы можем взять координатный вектор k → = ( 0 , 0 , 1 ) в качестве направляющего. Мы получили необходимые данные и можем добавить их в нужную формулу:

cos α = cos a → , k → ^ = a → , k → a → · k → = 1 · 0 - 3 · 0 - 2 · 1 1 2 + ( - 3 ) 2 + ( - 2 ) 2 · 0 2 + 0 2 + 1 2 = 2 8 = 1 2

В итоге мы получили, что нужный нам угол будет равен a r c cos 1 2 = 45 ° .

Как известно из курса планиметрии, две прямые в плоскости могут пересекаться (имеют общую точку) или быть параллельными (не имеют общую точку).
В пространстве мы можем найти множество примеров ситуаций, когда две прямые не пересекаются, но они и не параллельны.

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство
Рассмотрим прямую \(AB\), лежащую в плоскости, и прямую \(CD\), которая пересекает плоскoсть в точке \(D\), не лежащей на прямой \(AB\).

Taisnes_plaknes1.jpg

1. Допустим, что прямые \(AB\) и \(CD\) всё-таки лежат в одной плоскости.
2. Значит, эта плоскость идёт через прямую \(AB\) и точку \(D\), то есть, она совпадает с плоскостью \(α\).
3. Это противоречит условиям теоремы, по которым прямая \(CD\) не находится в плоскости \(α\), а пересекает её.
Теорема доказана.

Paralelas.jpg

В пространстве прямые могут пересекаться, скрещиваться или быть параллельными.


Рис. \(4\). Пересекающиеся прямые.

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Taisnes_plaknes2.jpg

Доказательство
Рассмотрим скрещивающиеся прямые \(AB\) и \(CD\).

1. Через точку \(D\) можно провести прямую \(DE\), параллельную \(AB\).
2. Через пересекающиеся прямые \(CD\) и \(DE\) можно провести плоскость \(α\).
3. Так как прямая \(AB\) не лежит в этой плоскости и параллельна прямой \(DE\), то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через \(CD\), будет пересекаться с \(DE\) и \(AB\), которая ей параллельна.
Теорема доказана.

1. Если прямые параллельны, то угол между ними — 0 ° .
2. Углом между двумя пересекающимися прямыми называют величину меньшего из углов, образованных этими прямыми. Если все углы равны, то эти прямые перпендикулярны (образуют угол 90 ° ).
3. Углом между двумя скрещивающимися прямыми называют угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

Провести соответственные прямые, параллельные данным скрещивающимся прямым, можно через любую точку. Иногда удобно выбрать эту точку на одной из данных скрещивающихся прямых и провести через эту точку прямую, параллельную другой из скрещивающихся прямых.

Угол между прямыми

Две прямые называются пересекающимися, если они имеют единственную общую точку. Эта точка называется точкой пересечения прямых. Прямые разбиваются точкой пересечения на лучи, которые образуют четыре неразвернутых угла, среди которых две пары вертикальных углов и четыре пары смежных углов. Если известен размер одного из углов, образованных пересекающимися прямыми, то легко определить размер остальных углов. Если один из углов прямой, то все остальные тоже прямые, а прямые перпендикулярны.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k 1· k 2 = 0), то прямые перпендикулярны.

Угол между прямыми

Доказательство. Если прямые заданы уравнениями с угловыми коэффициентами, то легко найти углы между этими прямыми и осью OX

Соответственно легко найти угол между прямыми

tg γ = tg ( α - β ) = tg α - tg β 1 + tg α ·tg β = k 1 - k 2 1 + k 1· k 2

Угол между прямыми через направляющие векторы этих прямых

Угол между прямыми

Если a - направляющий вектор первой прямой и b - направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано параметрически

x = l t + a y = m t + b

то вектор направляющей имеет вид

Если уравнение прямой задано как

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = - C B значит точка на прямой имеет координаты K(0, - C B ), при y = 0 => x = - C A значит точка на прямой имеет координаты M(- C A , 0). Вектор направляющей KM = .

Если дано каноническое уравнение прямой

то вектор направляющей имеет вид

Если задано уравнение прямой с угловым коэффициентом

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

Угол между прямыми

Если a - вектор нормали первой прямой и b - вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Угол между прямыми

Если a - направляющий вектор первой прямой и b - вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

sin φ = | a · b | | a | · | b |

Примеры задач на вычисления угла между прямыми на плоскости

Угол между прямыми

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 - k 2 1 + k 1· k 2 = 2 - (-3) 1 + 2·(-3) = 5 -5 = 1

Ответ. γ = 45°

Угол между прямыми

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор , для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Ответ. φ ≈ 36.87°

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = - 2 3 x ( k 1 = - 2 3 )

x - 2 3 = y 4 => y = 4 3 x - 8 3 ( k 2 = 4 3 )

tg γ = k 1 - k 2 1 + k 1· k 2 = - 2 3 - 4 3 1 + (- 2 3 )· 4 3 = - 6 3 1 - 8 9 = 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

Если a - направляющий вектор первой прямой, а b - направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то - направляющий вектор первой прямой, направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Ответ. φ = 90°

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор .

Преобразуем второе уравнение к каноническому вид.

1 - 3 y = 1 + y -1/3 = y - 1/3 -1/3

3 z - 5 2 = z - 5/3 2/3

Получено уравнение второй прямой в канонической форме

x - 2 -2 = y - 1/3 -1/3 = z - 5/3 2/3

- направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 - 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Как найти угол между прямыми? Пара прямых на плоскости может иметь несколько вариантов расположения относительно друг друга: полностью совпадать, быть параллельными друг другу и пересекающимися. Одной из типичных геометрических задач является задача по нахождению угла между двумя пересекающимися линиями.

Определение угла между скрещивающимися прямыми

Пересечение двух линий на плоскости говорит о наличии у них одной общей точки. Она же является центром их пересечения и делит их на лучи.

Лучи формируют четыре угла, которые являются неразвернутыми. Зная о размере одного из них, можно вычислить значение и остальных. Точно можно утверждать, что если один из них – прямоугольный, то остальные три равнозначны ему, а линии будут перпендикулярными.

1002

Рис. 1 Графическое отображение пересечения прямых


Как найти угол между скрещивающимися прямыми

Для определения угла между двумя скрещивающимися линиями можно воспользоваться специальным онлайн-калькулятором или применить традиционный математический алгоритм для вычислений.

Предположим, что две бесконечные линии задаются уравнениями общего вида:

Искомое значение следует обозначить как φ. Численная величина угла измеряется в градусах от 0 до 90°, т. е. угол будет острым или прямоугольным. Необходимо ввести еще одно понятие– угол ψ между нормальными векторами данных прямых:

Если он меньше, либо равен 90°, то непосредственно сам искомый угол будет соответствовать его градусной мере. В случае когда ψ больше 90°, для вычисления φ необходимо применить известную формулу:

Для обоих вариантов достоверно утверждение, что cos φ = lcos ψl. Выполнив необходимые вычисления, можно рассчитать искомое значение:

Если по условию задачи существует некий прямоугольный треугольник с известными сторонами, расположенными на двух прямых, то для вычисления угла между этими прямыми необходимо знать синус, тангенс и косинус искомого угла.

Для нахождения значения синуса угла, образованного в результате пересечения двух прямых, вычисляют модуль косинуса этого угла, образованного направляющими векторами данных прямых.


Пример решения задачи

На школьных уроках геометрии для решения в классе часто предлагается следующий вид задач по поиску угла между двумя прямыми.

Ниже приведем алгоритм решения задачи, при которой бесконечные линии на плоскости заданы уравнениями общего вида, в которых присутствует угловой коэффициент.

Обозначим прямые как (L1) и (L2). Каждая из них задается уравнением следующего вида:

Зная, что нормальные вектора каждой из них имеют вид:

Суть задачи сводится к вычислению угла φ, образованного нормальными векторами.

Используем определение скалярного произведения векторов:

и координатное выражение их длин, а также их скалярное произведение:

В практических задачах по математике часто требуется найти не сам угол между пресекающимися прямыми, а составить уравнение их всех, при условии, что прямые пересекаются между собой.

Так, если прямые заданы уравнениями общего вида с коэффициентами, то

506

Если прямые задаются уравнениями, включающими угловой коэффициент, который определяется тангенсом угла, найти значение углов, образованных при их пересечении, достаточно просто:

507

Рис. 2 Углы, образованные пересечением двух прямых на плоскости

где k1 и k2 – те самые угловые коэффициенты.

Следовательно, чтобы вычислить значение γ, следует применить формулы:

tan γ = tan (α - β)

510



В данном видеофрагменте мы рассмотрим углы между пересекающимися и скрещивающимися прямыми. А также решим несколько задач на нахождение скрещивающихся углов.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Угол между прямыми"

· рассмотрим углы между пересекающимися и скрещивающимися прямыми в пространстве.

Напомню, что два луча ОА и O1A1 в пространстве, не лежащие на одной прямой, называются сонаправленными, если они параллельны и лежат в одной полуплоскости с границей ОO1. Если стороны двух углов соответственно сонаправленны, то такие углы равны.


Как вы уже знаете, любые две пересекающиеся прямые лежат в одной плоскости и образуют четыре неразвернутых угла. Если известен один из этих углов, то можно найти и другие три угла.

Определение. Если пересекающиеся прямые образуют тупые и острые углы, то углом между этими прямыми называется тот, который не превосходит любой из трех остальных углов, т.е. наименьший из углов.


Если пересекающиеся прямые образуют четыре равных угла, то угол между этими прямыми равен девяносто градусов.



Пусть α – тот из углов, который не превосходит любого из трех остальных углов. Тогда говорят, что угол между пересекающимися прямыми равен α. Очевидно, что угол альфа между двумя пересекающимися прямыми удовлетворяет условию: .


Теперь введем понятие угла между скрещивающимися прямыми. Пусть нам даны две скрещивающиеся прямые а и b. Возьмем произвольную точку М1 в пространстве и проведем через нее прямые A1B1, параллельные прямым а и b соответственно.


Тогда углом между скрещивающимися прямыми а и b называется угол между построенными пересекающимися прямыми A1B1. Т. е. если угол между прямыми A1B1 равен φ, то будем говорить, что угол между скрещивающимися прямыми а и b равен φ.

Докажем, что угол между скрещивающимися прямыми не зависит от выбора точки М1.

Возьмем любую другую точку М2 и проведем через нее прямые a2 и b2, параллельные прямым а и b соответственно. Пусть угол между прямыми a1 и b1 равен α1, а угол между прямыми a2 и b2 равен α2.


Если прямые a1, b1, a2, b2 лежат в одной плоскости, то по свойству накрест лежащих углов при параллельных прямых угол α1 равен углу φ и равен углу α2.

Пусть теперь прямые a1 и b1, пересекающиеся в точке М1, лежат в одной плоскости. А прямые a2 и b2, пересекающиеся в точке М2 лежат в другой плоскости.

Так как прямая a1 параллельна прямой а и прямая a2 параллельна прямой а, то по признаку параллельности прямых в пространстве прямые a1 и a2 также параллельны. Так как прямая b1 параллельна прямой b и прямая b2 параллельна прямой b, то по признаку параллельности прямых в пространстве прямые b1 и b2 параллельны.

Отметим на прямых a1 и a2 точки A1 и A2 так, чтобы отрезки М1А1 и М2А2 были равны. На прямых b1 и b2 отметим точки B1 и B2 так, чтобы отрезки M1B1и M2B2 были равны.

Тогда стороны угла A1M1B1 и угла A2M2B2 попарно сонаправлены. По теореме о равенстве углов с сонаправленными сторонами получаем, что угол A1M1B1 равен углу A2M2B2. Т. е. имеем, что угол α1 равен углу α2.

Таким образом, величина угла между скрещивающимися прямыми не зависит от выбора точки M1.

Замечание. Угол между параллельными прямыми в пространстве считается равным 0º.

Рассмотрим пример. Пусть у нас есть треугольная пирамида DABC. На ее ребре DB взята точка Т.


Тогда угол между скрещивающимися прямыми BC и АТ равен углу между прямой АТ и прямой TF, которая проходит через точку Т параллельно прямой BC в плоскости BDC.

Рассмотрим еще пример. Пусть есть параллелепипед ABCDA1B1C1D1. И пусть точка О – точка пересечения диагоналей грани A1B1C1D1, а точка F – точка пересечения диагоналей грани AA1B1B.


Тогда угол между скрещивающимися прямыми C1D и OF равен углу между прямыми OF и прямой OK, проходящей через точку О и параллельной прямой C1D в плоскости C1DA1.

Задача. Дана правильная пирамида . – средняя линия грани . Найдите угол между прямыми и .



Запишем ответ: 90º

Задача. Дан куб . Найдите угол между прямыми и .



Подведем итоги урока. На этом уроке мы рассмотрели углы между пересекающимися и скрещивающимися прямыми. А также решили несколько задач на нахождение скрещивающихся углов.

Читайте также: