Транскапиллярный обмен воды кратко

Обновлено: 04.07.2024

Обмен веществ между кровью и тканью через стенки капилляров (транскапиллярный обмен веществ) происходит несколькими способами: 1) диффузия, 2) облегчённая диффузия, 3) фильтрация, 4) осмос, 5) трансцитоз. Основной способ - пассивный перенос (варианты 1-4). Особый способ - трансцитоз (вариант 5). Трансцитоз (лат. trans — сквозь, через и греч. cytos — клетка) — это как бы соединение двух процессов - эндоцитоэа и экзоцитоза, когда с помощью пузырьков-везикул происходит перенос транспортируемых частиц через цитоплазму клетки от места их поглощения (эндоцитоза) к месту выделения (экзоцитоза) на другой стороне клетки.

Транскапиллярный обмен веществ между кровью и тканями

Капилляры представ­ляют собой очень тонкие сосуды с внутренним диаметром просвета около 5 мкм, толщиной стенки приблизительно 1 мкм и средней длиной около 0,5 мм. (Для сравнения; человеческий волос в диаметре составляет около 100 мкм). Эндотелиальные клетки, образующие капилляры, лежат в один слой, мышечные элементы отсутствуют.

Транскапиллярный обмен происходит через стенку капилляра между кровью, находящейся внутри этого капилляра, и тканевой жидкостью, находящейся снаружи.

Основой транскапиллярного обмена веществ является пассивный транспорт. А самым специфическим способом транскапиллярного обмена является трансцитоз.

Способы транскапиллярного обмена веществ

Наибольшую роль в обмене жидкостью и веществами между кровью и межклеточным пространством играет двухсторонняя диффузия. Скорость ее настолько высока, что при прохождении крови через капилляры жидкость плазмы успевает 40 раз полностью обменяться с жидкостью межклеточного пространства. Таким образом, эти две жидкости постоянно перемешиваются. При этом число молекул, переходящих из капилляра и в капилляр, одинаково, и поэтому объем плазмы и межклеточной жидкости практически не изменяется. Скорость диффузии составляет около 60 л в минуту, или примерно 85 тыс. л в сутки.
Водорастворимые вещества типа ионов натрия , хлора , глюкозы и т.д. диффундируют исключительно через заполненные водой поры открытых ионных каналов. Проницаемость капилляров для ионов натрия и калия примерно в 10 000 раз меньше, чем для молекул кислорода, легко растворяющегося в липидном слое клеточных мембран. Тем не менее, прони­цаемость капилляров для мелких ионов на несколько порядков больше, чем проницаемость, которая могла бы ожидаться, если бы ионы передвигались через сплошные липидные плазматические мембраны. Проницаемость капилляров для различных веществ зависит от соотношения размеров молекул и пор. Если принять проницаемость для воды за 1, то относительная проницаемость для глюкозы составит 0,6, а для альбумина - менее 0,0001. В среднем поры составляют только небольшую часть от общей площади поверхности капилляров - около 0,01 %. Эта площадь, тем не менее, достаточна для того, чтобы осуществить очень быстрый обмен небольших по размерам водорастворимых веществ между плазмой и интерстициаль- ной жидкостью.
Крупные молекулы, не способные проникать через поры капилляров, могут переноситься через капиллярную стенку путем пиноцитоза . При этом мембрана клетки инвагинирует, образуя вакуоль, окружающую молекулу, затем на противоположной стороне клетки происходит обратный процесс ( эмиоцитоз ).
Через стенку капилляров свободно диффундируют жирорастворимые вещества типа алкоголя , а также кислород и углекислый газ . Поскольку диффузия этих веществ идет по всей поверхности мембраны капилляра, скорость их транспорта гораздо выше, чем водорастворимых веществ.

2. Облегчённая диффузия.

Кроме диффузии имеется еще механизм, обеспечивающий обмен между внутрисосудистым и межклеточным пространством - это фильтрация и реабсорбция , происходящие в терминальном русле . Между объемами жидкости, фильтрующейся в артериальном конце капилляров и реабсорбирующейся в их венозном конце (или удаляемой лимфатическими сосудами ), в норме существует динамическое равновесие. Если это равновесие нарушается, происходит довольно быстрое перераспределение внутрисосудистого и межклеточного объема жидкости. Это перераспределение оказывает существенное влияние на функции сердечно - сосудистой системы , тем более, что внутрисосудистый объем жидкости должен поддерживаться на уровне, соответствующем потребностям организма.
Интенсивность фильтрации и реабсорбции в капиллярах определяется гидростатическим давлением в капиллярах , гидростатическим давлением в тканевой жидкости , онкотическим давлением плазмы в капилляре , онкотическим давлением тканевой жидкости и коэффициентом фильтрации. Под действием гидростатического давления в капиллярах и онкотического давления тканевой жидкости жидкость выходит из капилляра в ткани, а под действием гидростатического давления в тканевой жидкости и онкотического давления плазмы в капилляре - наоборот. Коэффициент фильтрации соответствует проницаемости капиллярной стенки для изотонических растворов.
Средняя скорость фильтрации во всех капиллярах организма составляет около 14 мл в мин, или 20 л в сутки. Скорость реабсорбции равна примерно 12,5 мл в 1 мин, т.е. 18 л в сутки. По лимфатическим сосудам оттекает 2 л в сутки.
Фильтрация возрастает при общем увеличении кровяного давления , при расширении резистивных сосудов во время мышечной деятельности , при перходе в вертикальное положение, при увеличении объема крови вследствие вливаний различных растворов, при повышении венозного давления (например, при сердечной недостаточности). Реабсорбция увеличивается при снижении кровяного давления , сужении резистивных сосудов , кровопотере и т.д. Фильтрация повышается также при снижении онкотического давления плазмы (например, при гипопротеинемии) или при накоплении осмотически активных веществ в интерстициальной жидкости . Выход жидкости в интерстициальное пространство увеличивается при повышении проницаемости капилляров, которое может быть обусловлено действием кининов , гистамина и подобных ему веществ и других агентов, выделяющихся при аллергических реакциях , воспалении , ожогах и т.д. Если в результате недостаточной реабсорбции в капиллярах тканевая жидкость начинает накапливаться, то она быстрее удаляется по лимфатическим сосудам. Поскольку при этом из интерстициального пространства выводятся белки, онкотическое давление в нем падает, а это приводит к угнетению выхода воды в ткани и тем самым способствует поддержанию равновесия между внутрисосудистым и интерстициальным объемами жидкости.

Трансцитоз (лат. trans — сквозь, через и греч. cytos — клетка) — это как бы соединение двух процессов - эндоцитоэа и экзоцитоза, - при котором с помощью пузырьков-везикул происходит пперенос транспортируемых частиц через цитоплазму клетки от места их поглощения (эндоцитоза) к месту выделения (экзоцитоза) на другой стороне клетки.

Таким способом., например, происходит транспорт через капиллярную стенку молекул белков, заключённых в везикулы. Везикулы перенося нужные вещества, через эндотелиальные клетки капилляров из кровяного русла в ткань. В процессе трансцитоза пузырьки могут сливаться друг с другом, образуя каналы, пересекающие всю клетку насквозь. В результате транспортируемый материал проходит через всю клетку — с одной ее стороны на другую. В этом случае эндоцитозные пузырьки не взаимодействуют с лизосомами и не изменяют перемещаемые вещества.

Трансцитоз характерен для определённых типов клеток. Он активно протекает в цитоплазме плоских клеток, выстилающих сосуды (эндотелиоцитах), особенно в капиллярах. Именно в этих клетках пузырьки, сливаясь, способны образовывать временные трансцеллюлярные каналы, через которые могут транспортироваться водорастворимые молекулы.
Образование эндоцитозных пузырьков провоцируется особыми фузогенными (от лат. fusio — слияние) мембранными белками, которые концентрируются в местах впячивания (инвагинации) плазмолеммы. Эти же белки при экзоцитозе способствуют слиянию мембраны пузырька с плазмолеммой. Заметную роль в этих процессах играют элементы цитоскелета, такие как микрофиламенты и микротрубочки.

Интенсивность всех этих процессов транскапиллярного транспорта, разных по физико-химической природе, зависит от объёма кровотока в системе капиллярной микроциркуляции (величина его может возрастать за счёт увеличения количества функционирующих капилляров, т.е. площади обмена, и линейной скорости кровотока), а также определяется проницаемостью обменной поверхности.
Обменная поверхность капилляров гетерогенна по своему строению: она состоит из чередующихся белковой, липидной и водной фаз. Липидная фаза представлена почти всей поверхностью эндотелиальной клетки, белковая — переносчиками и ионными каналами, водная — межэндотелиальными порами и каналами, имеющими разный диаметр, а также фенестрами (окнами) эндотелиоцитов. Эффективный радиус водных пор и каналов определяет размер водорастворимых молекул, которые могут проходить через них свободно, ограничено или вообще не проходить, т.е. проницаемость капилляров для разных веществ неодинакова.
Свободно диффундирующие вещества быстро переходят в ткани, и диффузионное равновесие между кровью и тканевой жидкостью достигается уже в начальной (артериальной) половине капилляра. Для ограниченно диффундирующих веществ требуется большее время установления диффузионного равновесия, и оно либо достигается на венозном конце капилляра, или не устанавливается вообще. Поэтому для веществ, транспортируемых только диффузией, имеет большое значение линейная скорость капиллярного кровотока. Если скорость транскапиллярного транспорта веществ (чаще — диффузии) меньше, чем скорость кровотока, то вещество может выноситься с кровью из капилляра, не успев вступить в диффузионное равновесие с жидкостью межклеточных пространств. При определённой величине скорости кровоток может лимитировать количество перешедшего в ткани или, наоборот, выводимого из тканей вещества. Поток свободно диффундирующих веществ в основном зависит от площади поверхности обмена, т.е. от количества функционирующих капилляров, поэтому транспорт свободно диффундирующих веществ может ограничиваться при снижении объемной скорости кровотока.
Та часть объема кровотока, из которой в процессе транскапиллярного перехода извлекаются вещества, называется нутритивным кровотоком, остальной объём — шунтовым кровотоком (объем функционального шунтирования).
Для характеристики гидравлической проводимости капилляров используют коэффициент капиллярной фильтрации. Его выражают количеством миллилитров жидкости, которое фильтруется в течение 1 мин в 100 г ткани в расчете на 1 мм рт.ст. фильтрационного давления.

Обмен жидкости через стенку капилляра

Теперь, когда известны основные факторы, обеспечивающие движение жидкости через стенку капилляра, выясним, каким образом поддерживается нормальное распределение объемов жидкости между плазмой крови и интерстицием.

Гидростатическое давление в капиллярах

Капиллярное давление жидкости и коллоидно-осмотическое давление - силы, вызывающие движение жидкости через стенку капилляра в разных направлениях

а) Анализ сил, вызывающих фильтрацию в артериальном конце капилляра. Средняя величина сил, действующих в артериальном конце капилляра и вызывающих движение жидкости через стенку капилляра, следующая.

Обмен жидкости через стенку капилляра

Таким образом, за счет сил, действующих в артериальном конце капилляра, создается эффективное фильтрационное давление величиной 13 мм рт. ст., которое обеспечивает выход жидкости через капиллярные поры в интерстиций. За время протекания крови через капилляры примерно 1/200 часть плазмы фильтруется из артериального конца капилляров в интерстициальное пространство.

б) Анализ сил, вызывающих реабсорбцию в венозном конце капилляра. Низкое давление крови в венозном конце капилляра меняет соотношение сил в пользу реабсорбции, что видно из следующей таблицы.

Обмен жидкости через стенку капилляра

В венозном конце капилляров реабсорбируется примерно 9/10 объема жидкости, которая профильтровалась в артериальном конце. Оставшаяся 1/10 часть оттекает по лимфатическим сосудам и также возвращается в циркулирующую кровь.

Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена. Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).

Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

Регуляция сосудов - это регуляция сосудистого тонуса, который определяет величину их просвета. Просвет сосудов определяется функциональным состоянием их гладкой мускулатуры, а просвет капилляров зависит от состояния клеток эндотелия и гладкой мускулатуры прекапиллярного сфинктера.

Гуморальная регуляция сосудистого тонуса. Эта регуляция осуществляется за счет тех химических веществ, которые циркулируют в кровеносном русле и изменяют ширину просвета сосудов. Все гуморальные факторы, которые оказывают влияние на тонус сосудов, делят на сосудосуживающе (вазоконстрикторы) и сосудорасширяющие(вазодилятаторы).

К сосудосуживающим веществам относятся:

адреналин - гормон мозгового вещества надпочечников, суживает артериолы кожи, органов пищеварения и легких, в низких концентрациях расширяет сосуды мозга, сердца и скелетных мышц, обеспечивая тем самым адекватное перераспределение крови, необходимое для подготовки организма к реагированию в трудной ситуации;




• норадреналин - гормон мозгового вещества надпочечников по своему действию близок к адреналину, но его действие более выражено и более продолжительно;

вазопрессин - гормон, образующийся в нейронах супраоптического ядра гипоталамуса, форму в клетках задней доли гипофиза, действует в основном на артериолы;

• серотонин - вырабатывается клетками стенки кишки, в некоторых участках головного мозга, а также выделяется при распаде кровяных пластинок; .

К сосудорасширяющим веществам относятся:

гистамин - образуется в стенке желудка, кишечника, других органах, расширяет артериолы;

ацетилхолин - медиатор парасимпатических нервов и симпатических холинергических вазодилятаторов, расширяет артерии и вены;

брадикинин - выделен из экстрактов органов (поджелудочной железы, подчелюстной слюнной железы, легких), образуется при расщеплении одного из глобулинов плазмы крови, расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез;

простагландины - образуются во многих органах и тканях, оказывают местное сосудорасширяющее действие;

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не распространяется на сосуды головного мозга, сердца, легких и работающих мышц. Сосуды этих органов при возбуждении симпатической нервной системы расширяются. Следует также отметить, что не все парасимпатические нервы являются вазодилятаторами, например, волокна парасимпатического блуждающего нерва суживают сосуды сердца.

Сосудосуживающие и сосудорасширяющие нервы находятся под влиянием сосудодвигательного центра. Вазомоторный или сосудодвигательный центр - это совокупность структур, расположенных на различных уровнях ЦНС и обеспечивающих регуляцию кровообращения. Структуры, входящие в состав сосудодвигательного центра, расположены, в основном, в спинном и продолговатом мозге, гипоталамусе, коре больших полушарий. Сосудодвигательный центр состоит из прессорного и депрессорного отделов.

Депрессорный отдел снижает активность симпатических сосудосуживающих влияний и, тем самым, вызывает расширение сосудов, падение периферического сопротивления и снижение артериального давления. Прессорный отдел вызывает сужение сосудов, повышение периферического сопротивления и давления крови.

Активность нейронов сосудодвигательного центра формируется нервными импульсами, идущими от коры больших полушарий головного мозга, гипоталамуса, ретикулярной формации ствола мозга, а также от различных рецепторов, особенно, расположенных в сосудистых рефлексогенных зонах.

Барорецепторы. Колебания артериального давления воспринимаются специальными образованиями, расположенными в стенке сосудов,— барорецепторами, илипрессорецепторами. Возбуждение их происходит в результате растяжения артериальной стенки при повышении давления; следовательно, по принципу реагирования они представляют собой типичные механорецепторы. В световом микроскопе барорецепторы видны как широкие разветвления нервных окончаний остроконечного типа, свободно заканчивающиеся в адвентиции сосудистой стенки.

Классификация.По характеру активностиразличают два вида рецепторов. Рецепторы типа А, в которых максимум импульсации возникает в момент систолы предсердий, ирецепторы типа Б, разряд которых приходится на время диастолы, т.е. при заполнении предсердий кровью.

Физиологические свойства барорецепторов.Все барорецепторы обладают рядом физиологических свойств, которые позволяют им выполнять основную функцию — слежение за величиной артериального давления.

· Каждый барорецептор или каждая группа барорецепторов воспринимает только свои определенные параметры изменения артериального давления. В зависимости от специфики реакций на изменения давления различают три группы барорецепторов.

· При быстром перепаде давления барорецепторы отвечают более выраженными изменениями залповой активности, чем при медленном, постепенном изменении давления. При резком нарастании давления уже на небольшой прирост наблюдается тот же прирост импульсации, как и при плавном изменении давления на значительно большие величины.

· Барорецепторы обладают свойством наращивать импульсацию в геометрической прогрессии на одинаковую величину прироста артериального давления в зависимости от его исходного уровня.

· Большинство барорецепторов воспринимает колеблющееся давление в своем диапазоне. При воздействии на них постоянного давления, что наблюдается при его стойком повышении или снижении, они перестают реагировать учащением импульсации, т.е. адаптируются. По мере увеличения давления (0—140 мм рт.ст.) частота импульсации нарастает. Однако при стойком повышении в диапазоне от 140 до 200 мм рт.ст. наступает явление адаптации — частота импульсации остается без изменений.

Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена. Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).

Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

Регуляция сосудов - это регуляция сосудистого тонуса, который определяет величину их просвета. Просвет сосудов определяется функциональным состоянием их гладкой мускулатуры, а просвет капилляров зависит от состояния клеток эндотелия и гладкой мускулатуры прекапиллярного сфинктера.

Гуморальная регуляция сосудистого тонуса. Эта регуляция осуществляется за счет тех химических веществ, которые циркулируют в кровеносном русле и изменяют ширину просвета сосудов. Все гуморальные факторы, которые оказывают влияние на тонус сосудов, делят на сосудосуживающе (вазоконстрикторы) и сосудорасширяющие(вазодилятаторы).

К сосудосуживающим веществам относятся:

адреналин - гормон мозгового вещества надпочечников, суживает артериолы кожи, органов пищеварения и легких, в низких концентрациях расширяет сосуды мозга, сердца и скелетных мышц, обеспечивая тем самым адекватное перераспределение крови, необходимое для подготовки организма к реагированию в трудной ситуации;

• норадреналин - гормон мозгового вещества надпочечников по своему действию близок к адреналину, но его действие более выражено и более продолжительно;

вазопрессин - гормон, образующийся в нейронах супраоптического ядра гипоталамуса, форму в клетках задней доли гипофиза, действует в основном на артериолы;

• серотонин - вырабатывается клетками стенки кишки, в некоторых участках головного мозга, а также выделяется при распаде кровяных пластинок; .

К сосудорасширяющим веществам относятся:

гистамин - образуется в стенке желудка, кишечника, других органах, расширяет артериолы;

ацетилхолин - медиатор парасимпатических нервов и симпатических холинергических вазодилятаторов, расширяет артерии и вены;

брадикинин - выделен из экстрактов органов (поджелудочной железы, подчелюстной слюнной железы, легких), образуется при расщеплении одного из глобулинов плазмы крови, расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез;

простагландины - образуются во многих органах и тканях, оказывают местное сосудорасширяющее действие;

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не распространяется на сосуды головного мозга, сердца, легких и работающих мышц. Сосуды этих органов при возбуждении симпатической нервной системы расширяются. Следует также отметить, что не все парасимпатические нервы являются вазодилятаторами, например, волокна парасимпатического блуждающего нерва суживают сосуды сердца.

Сосудосуживающие и сосудорасширяющие нервы находятся под влиянием сосудодвигательного центра. Вазомоторный или сосудодвигательный центр - это совокупность структур, расположенных на различных уровнях ЦНС и обеспечивающих регуляцию кровообращения. Структуры, входящие в состав сосудодвигательного центра, расположены, в основном, в спинном и продолговатом мозге, гипоталамусе, коре больших полушарий. Сосудодвигательный центр состоит из прессорного и депрессорного отделов.

Депрессорный отдел снижает активность симпатических сосудосуживающих влияний и, тем самым, вызывает расширение сосудов, падение периферического сопротивления и снижение артериального давления. Прессорный отдел вызывает сужение сосудов, повышение периферического сопротивления и давления крови.

Активность нейронов сосудодвигательного центра формируется нервными импульсами, идущими от коры больших полушарий головного мозга, гипоталамуса, ретикулярной формации ствола мозга, а также от различных рецепторов, особенно, расположенных в сосудистых рефлексогенных зонах.

Барорецепторы. Колебания артериального давления воспринимаются специальными образованиями, расположенными в стенке сосудов,— барорецепторами, илипрессорецепторами. Возбуждение их происходит в результате растяжения артериальной стенки при повышении давления; следовательно, по принципу реагирования они представляют собой типичные механорецепторы. В световом микроскопе барорецепторы видны как широкие разветвления нервных окончаний остроконечного типа, свободно заканчивающиеся в адвентиции сосудистой стенки.

Классификация.По характеру активностиразличают два вида рецепторов. Рецепторы типа А, в которых максимум импульсации возникает в момент систолы предсердий, ирецепторы типа Б, разряд которых приходится на время диастолы, т.е. при заполнении предсердий кровью.

Физиологические свойства барорецепторов.Все барорецепторы обладают рядом физиологических свойств, которые позволяют им выполнять основную функцию — слежение за величиной артериального давления.

· Каждый барорецептор или каждая группа барорецепторов воспринимает только свои определенные параметры изменения артериального давления. В зависимости от специфики реакций на изменения давления различают три группы барорецепторов.

· При быстром перепаде давления барорецепторы отвечают более выраженными изменениями залповой активности, чем при медленном, постепенном изменении давления. При резком нарастании давления уже на небольшой прирост наблюдается тот же прирост импульсации, как и при плавном изменении давления на значительно большие величины.

· Барорецепторы обладают свойством наращивать импульсацию в геометрической прогрессии на одинаковую величину прироста артериального давления в зависимости от его исходного уровня.

· Большинство барорецепторов воспринимает колеблющееся давление в своем диапазоне. При воздействии на них постоянного давления, что наблюдается при его стойком повышении или снижении, они перестают реагировать учащением импульсации, т.е. адаптируются. По мере увеличения давления (0—140 мм рт.ст.) частота импульсации нарастает. Однако при стойком повышении в диапазоне от 140 до 200 мм рт.ст. наступает явление адаптации — частота импульсации остается без изменений.

Транскапиллярный обмен – это обмен веществ между кровью капилляров и органами, тканями. В капиллярах созданы следующие благоприятные условия: А) медленное движение крови; Б) различное давление в артериальном и венозном отделах, капиллярах; В) проницаемость сосудистой стенки.

Транскапиллярный обмен осуществляется за счет:

Диффузия — пассивный транспорт веществ через стенку по градиенту концентрации (ионов, минеральных веществ, веществ, растворимых в воде). В капиллярах идет двусторонняя диффузия. Облегченная диффузия наблюдается, когда образуется комплекс с молекулой-переносчиком и осуществляется диффузия по коэффициенту концентрации этих комплексов. Диффузией обладает СО2 и О2. Они растворяются в липидах и затем диффундируют по всей поверхности стенок капилляров. Газовый состав крови после прохождения через капилляры меняется в 30-40 раз.

Фильтрация — пассивный транспорт, осуществляемый за счет разности давления. Так происходит движение воды и растворенных в ней веществ. В процессе фильтрации участвуют 4 силы:

1. Гидростатическое давление крови — способствует фильтрации (Рr/кр).

2. Гидростатическое давление межтканевой жидкости — препятствует фильтрации (Рr/межтк. ж).

3. Онкотическое давление крови – создается белками крови, которые удерживают жидкую часть крови в сосудах, препятствуют фильтрации (Ронк/кр).

4.Онкотическое давление межтканевой жидкости (Ронк/межтк. ж).

Р онкотическое в капиллярах –- Р онкотическое в межтканевой жидкости = Сила, препятствующая фильтрации.

Сила фильтрации = (Рr/кр ─ Рr/межтк. ж) – (Ронк/кр ─ Рмежтк. ж), отсюда, чем больше Рr/кр, тем больше сила фильтрации.

Р r/кр легко меняется, остальные 3 величины – почти постоянные.

Фильтрация воды осуществляется через щели между эндотелиоцитами, фильтрация жиров – по всей поверхности капилляров.

Активный транспорт – осуществляется с помощью мелких переносчиков, с затратой энергии. Таким образом транспортируются отдельные аминокислоты, углеводы и другие вещества.

Пиноцитоз — микровезикулярный транспорт. Внутри эндотелиоцитов есть везикулы, которые захватывают вещество у наружной поверхности клетки и транспортируют их к внутренней поверхности. В некоторых эндотелиоцитах микровезикулы выстраиваются, образуя микроканал, по которому осуществляется транспорт. Так транспортируются отдельные белки.

На транскапиллярный обмен влияют:

– проницаемость стенки капилляра (Рr/кр ─ Рr/межтк. ж);

– разность концентрации различных веществ;

Механизм образования межтканевой жидкости

Межтканевая (интерстициальная) жидкость — посредник между кровью и тканью. В нее поступают О2 и СО2 из крови и метаболиты из тканей. По своему составу межтканевая жидкость близка к плазме крови. Она образуется в капиллярах большого круга кровообращения.

Фильтрационная теория образования межтканевой жидкости – в основе образования межтканевой жидкости лежит фильтрация.

Обмен жидкости между сосудами и тканями происходит через капиллярную стенку. Эта стенка представляет собой достаточно сложно устроенную биологическую структуру, через которую относительно легко транспортируются вода, электролиты, некоторые органические соединения (мочевина), но значительно труднее – белки. В результате этого концентрации белков в плазме крови (60-80 г/л) и тканевой жидкости (10-30 г/л) неодинаковы.

Согласно классической теории Э. Старлинга (1896) нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидно-осмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением (рис. 1), в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости.

Гидростатическое давление крови в артериальном конце капилляра составляет примерно 25 мм рт. ст., а в венозном конце – 9 мм рт. ст. (см расчет ниже).

Давление тканевой жидкости является величиной отрицательной. Она на 7 мм рт. ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство.

Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление (Р1) – разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное 32 мм рт. ст. (25 – (–7).

А на территории венозного отдела капилляра жидкость идет из межтканевой жидкости внутрь сосуда — это реабсорбция (обратное всасывание веществ).

Сила, осуществляющая реабсорбцию = 7,5 мм рт. ст.

Сила, способствующая фильтрации = Рr/кр ─ Рr/межтк. ж = Р(1)

Сила, препятствующая фильтрации = Ронк/кр ─ Ронк/межтк. ж = Р(2)

Р(1) - Р(2) – обеспечивает силу фильтрации.

В состоянии покоя фильтрация происходит на территории артериального отдела капилляров, так как там Рr/кр = 25 мм рт. ст. (самое высокое), а Ргидр. межтк. ж – (─7 мм рт. ст.)

Рr/кр ─ Рг/межтк. ж = 25 ─ (─7) = 32мм рт. ст.

Ронк/кр (28 мм рт. ст.) ─ Ронк/межтк. ж (4,5 мм рт. ст.) = 23, 5 мм рт. ст.

Сила фильтрации: 32 ─ 23,5 = 8,5 мм рт. ст.

В венозном отделе капилляров Рг/кр = 9 мм рт. ст.

Таким образом: (9 мм рт. ст. ─ (─7 мм рт. ст.)) ─ (28 ─ 4,5) = ─7,5 мм рт. ст.

Итак, на территории венозного отдела капилляра жидкость идет из межтканевой жидкости внутрь сосуда — это реабсорбция (обратное всасывание веществ).

Сила, осуществляющая реабсорбцию = 7,5 мм рт. ст.


В состоянии покоя в артериальном отделе осуществляется фильтрация межтканевой жидкости, которая потом реабсорбируется в венозном отделе. Сколько жидкости профильтровалось в артериальном колене в состоянии покоя, столько же вернулось в венозном отделе. В состоянии активности увеличивается Рr/кр, поэтому процесс фильтрации осуществляется в артериальном и венозном отделах. За счет этого работающие органы получают большее количество О2 и питательных веществ.

Излишек межтканевой жидкости идет в лимфатическую систему, возникает ток межтканевой жидкости, называемой лимфой. В состоянии активности большую роль играют анастомозы. Через них избыток крови поступает из артериального в венозное колено капилляра. Анастомозы разгружают капиллярное русло и способствуют нормальной циркуляции, а значит, транскапиллярному обмену веществ. При недостатке шунтирующих сосудов происходит перегрузка капилляров и, как следствие, нарушение нормальной жизнедеятельности.

Читайте также: