Тлеющий разряд это кратко

Обновлено: 03.07.2024

  • Тле́ющий разря́д — один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока переходит в дуговой разряд.

В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.

Связанные понятия

Вакуумные электронные приборы — один из типов электровакуумных приборов. Главная особенность приборов данного типа — движение электронов происходит в вакууме.

Индукционная лампа — безэлектродная газоразрядная лампа, в которой первичным источником света служит плазма, возникающая в результате ионизации газа высокочастотным магнитным полем. Для создания магнитного поля баллон с газом лампы размещают рядом с катушкой индуктивности. Отсутствие прямого контакта электродов с газовой плазмой позволяет назвать лампу безэлектродной. Отсутствие металлических электродов внутри баллона с газом значительно увеличивает срок службы и улучшает стабильность параметров.

Электрический пробой — явление резкого возрастания силы тока в твёрдом, жидком или газообразном диэлектрике (или полупроводнике) или воздухе, возникающее при приложении напряжения выше критического (напряжение пробоя). Пробой может происходить в течение очень короткого времени (до 10-8 с) или установиться на длительное время (например, дуговой разряд в газах). В твёрдых телах различают три механизма пробоя.

Упоминания в литературе

Газоразрядные приборы разделяются на приборы тлеющего разряда , дугового разряда, гл. обр. с накаливаемым катодом, искрового разряда, коронного разряда, газоразрядные источники света, газовые лазеры и т. д. Газоразрядные приборы тлеющего разряда (декатроны, тиратроны, цифровые индикаторные лампы, матричные индикаторные панели и др.) наполняются смесью инертных газов. Быстродействие таких приборов не превышает сотен микросекунд (рабочая частота – десятков килогерц). Используются для стабилизации напряжения, коммутации в слаботочных цепях, в качестве индикаторов и т. д. Газоразрядные приборы искрового разряда (искровые разрядники) построены на использовании кратковременного дугового или тлеющего разряда (электрической искры), возникающего в среде между однотипными ненакаленными электродами. Используются для защиты различных радиоустройств или линий связи от перенапряжений, вызванных, напр., грозовыми разрядами. В газоразрядных приборах коронного разряда (стабилитронах и др.) ионизация возникает лишь вблизи анода. Газоразрядные приборы несамостоятельного дугового разряда (газотроны, тиратроны, таситроны) наполняют инертными газами или водородом, имеют накаливаемый катод. В газоразрядных приборах самостоятельного дугового разряда применяется жидкометаллический катод (игнитроны, ртутные вентили, экситроны) или самокалящийся катод (аркотроны). Приборы дугового разряда имеют ограниченное применение (напр., в качестве коммутаторов тока в импульсных схемах, в качестве вентилей в выпрямителях). В значительной степени они вытеснены полупроводниковыми приборами. Широкое распространение получили газоразрядные источники света со строго определённым спектральным составом излучения. Они могут давать видимое или ультрафиолетовое излучение. Свечение газа тлеющего разряда используется в декатронах, цифровых индикаторных лампах и матричных индикаторных панелях. Газовые лазеры (атомарные, ионные, молекулярные) являются источниками когерентных электромагнитных колебаний светового диапазона.

Связанные понятия (продолжение)

Реактивное ионное травление (РИТ) - технология травления, используемая в микроэлектронике. Химически активная плазма используется для удаления материала с подложки. Плазма создаётся при низком давлении при помощи газового разряда. Поступающие из плазмы ионы ускоряются за счёт разности потенциалов между ней и подложкой. Совместное действие химических реакций, ионного распыления и ионной активации приводит к разрушению материала подложки, образованию летучих соединений и десорбции их с поверхности.

Тригатро́н (от англ. trigger — пусковое устройство, пусковой сигнал и электрон) — обычно газонаполненный или, реже, заполненный жидким диэлектриком трёхэлектродный электронный прибор — разновидность управляемого искрового разрядника с холодным катодом для коммутации больших токов с высокими напряжениями (обычно 10—100 кВ, 20—100 кА, коммутируемые токи достигают миллионов ампер).

Баре́ттер (англ. barretter, iron-hydrogen resistor) — электронный газонаполненный прибор, двухполюсник — стабилизатор тока.

Нить накала — закрученная нить из тугоплавкого материала (вольфрама или вольфрамовых сплавов), которая благодаря своему сопротивлению превращает электрический ток в свет и тепло (тепловое действие тока). Используется в электрических лампочках.

Га́зовый разря́д — совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Обычно протекание тока становится возможным только после достаточной ионизации газа и образования плазмы. Ионизация может происходить, в частности, в результате столкновений электронов, ускорившихся в электромагнитном поле, с атомами газа. При этом возникает лавинное увеличение числа заряженных частиц, поскольку в процессе ионизации образуются новые электроны.

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Плазмотро́н — техническое устройство, в котором при протекании электрического тока через разрядный промежуток образуется плазма, используемая для обработки материалов или как источник света и тепла. Буквально, плазмотрон означает — генератор (производитель) плазмы.

Накачка лазера — процесс перекачки энергии внешнего источника в рабочую среду лазера. Поглощённая энергия переводит атомы рабочей среды в возбуждённое состояние. Когда число атомов в возбуждённом состоянии превышает количество атомов в основном состоянии, возникает инверсия населённости. В этом состоянии начинает действовать механизм вынужденного излучения и происходит излучение лазера или же оптическое усиление. Мощность накачки должна превышать порог генерации лазера. Энергия накачки может предоставляться.

Пространственный заряд — распределённый нескомпенсированный электрический заряд одного знака. Пространственные заряды возникают в вакуумных и газоразрядных лампах в пространстве между электродами, а также в неоднородных областях полупроводниковых приборов, и сильно влияют на прохождение тока через эти области, приводя к нелинейным вольт-амперным характеристикам таких приборов.

Электролити́ческие конденсаторы — разновидность конденсаторов, в которых диэлектриком между обкладками является плёнка оксида металла между металлом электрода электролита.

Рентге́новская тру́бка — электровакуумный прибор, предназначенный для генерации рентгеновского излучения.

Электрический разряд — процесс протекания электрического тока, связанный со значительным увеличением электропроводимости среды относительного её состояния.

Управляющая сетка — один из электродов электронной лампы, обычно ближайший к катоду, чаще всего выполняется в виде спирали вокруг катода, поддерживаемой двумя параллельными опорами.

Ионизацио́нная ка́мера — газонаполненный датчик, предназначенный для измерения уровня ионизирующего излучения.

Вихревые токи, или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревой индукционный объёмный электрический ток, возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.

Электри́ческая дуга́ (во́льтова дуга́, дугово́й разря́д) — один из видов электрического разряда в газе.

Тиратро́н — ионный (газоразрядный) прибор для управления электрическим током с помощью напряжений, поданных на его электроды.

Фотопроводи́мость — явление изменения электропроводности вещества при поглощении электромагнитного излучения, такого как видимое, инфракрасное, ультрафиолетовое или рентгеновское излучение.

Электролюминофор — вещество, способное излучать видимый свет под воздействием электромагнитного поля.

Аквада́г — суспензия мелкодисперсного графита в воде с добавками гелеобразователей, применяемая для образования на внутренней, иногда и на внешней поверхности колбы электронно-лучевых трубок, кинескопов тонкого электропроводящего слоя графита. Также аквадагом называют собственно этот слой.

Электронная пушка, электронный прожектор — устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации. Чаще всего используется в кинескопах и других электронно-лучевых трубках, СВЧ-приборах (например в лампах бегущей волны), а также в различных приборах таких как электронные микроскопы и ускорители заряженных частиц.

Опти́ческий разря́д — вид высокочастотного разряда в газах, наблюдающегося для частот излучения, лежащих в оптическом диапазоне. Обычно оптические разряды инициируются мощным лазерным излучением. Различают два основных вида оптических разрядов: оптический пробой (или лазерная искра) и непрерывный оптический разряд.

Газоразря́дная ла́мпа — источник света, излучающий энергию в видимом диапазоне. Физическая основа — электрический разряд в газах. В последнее время принято называть газоразрядные лампы разрядными лампами.

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления.

Газовый ла́зер — лазер, в котором в качестве активной среды используется вещество, находящееся в газообразном состоянии (в отличие от твёрдых тел в твердотельных лазерах и жидкостей в лазерах на красителях).

Антимони́д и́ндия — кристаллическое бинарное неорганическое химическое соединение, соединение индия и сурьмы. Химическая формула InSb.

Вакуумме́тр (от вакуум и греч. metreo — измеряю) — вакуумный манометр, прибор для измерения давления разрежённых газов.

Ток смещения, или абсорбционный ток, — величина, прямо пропорциональная скорости изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля.

Механическое реле (англ. mechanical relay) - реле, реагирующее на изменение механических величин (перемещения, скорости, ускорения, расхода, давления, силы, момента, мощности) или механических параметров веществ (упругости, вязкости, плотности и т.п.). В большинстве случаев оно представляет собой датчики различных механических величин, имеющие релейный выход или воздействующие на релейные элементы.

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).

Декатро́н — многоэлектродная газоразрядная лампа с холодным катодом, предназначенная для работы в цифровых схемах счётчиков, регистров сдвига, коммутаторов (Коммутирующие декатроны), делителей частоты. Как правило, на одной лампе реализуется десятиразрядный (декадный) счётчик, от этого и происходит название лампы (дека-: десять). Декатроны были вытеснены полупроводниковыми интегральными схемами в 1970-е годы. Лампы-счётчики, в которых коэффициент деления отличен от десяти, также называются полиатро́нами.

Озонатор — устройство для получения озона (O3). Озон является аллотропной модификацией кислорода, содержащей в молекуле три атома кислорода. В большинстве случаев исходным веществом для синтеза озона выступает молекулярный кислород (O2), а сам процесс описывается уравнением 3O2 → 2O3. Эта реакция является эндотермичной и легко обратимой. Поэтому на практике применяются меры, способствующие максимальному смещению её равновесия в сторону целевого продукта.

Скотофор — это материал, обладающий обратимым свойством потемнения и обеления при воздействии определенных типов излучения. Название означает носитель тьмы, в отличие от фосфора, что означает носитель света.. Скотофор темнеет при воздействии интенсивных излучений, таких как солнечный свет. Минералы, показывающие такое поведение включают в себя гакманит, содалит, сподумен и тугтупит. Некоторые чистые галогениды щелочных металлов также показывают такое поведение.

Магнетронное распыление — технология нанесения тонких плёнок на подложку с помощью катодного распыления мишени в плазме магнетронного разряда — диодного разряда в скрещенных полях. Технологические устройства, предназначенные для реализации этой технологии, называются магнетронными распылительными системами или, сокращённо, магнетронами (не путать с вакуумными магнетронами — устройствами, предназначенными для генерации СВЧ колебаний).

Ме́дно-за́кисный выпрями́тель, или ку́проксный выпрямитель, иногда называемый металлический выпрямитель жаргонное название — ку́прокс, — выпрямительный вентиль, полупроводниковый диод в качестве полупроводникового материала у которого используется закись меди.

Индукти́вно-свя́занная пла́зма (ИСП), англ. inductively coupled plasma, ICP — плазма, образующаяся внутри разрядной камеры, горелки или иного плазменного реактора при приложении высокочастотного переменного магнитного поля.

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

- электрический разряд в газе, характеризующийся термодинамич. неравновесностью и квазинейтральностью возникающей плазмы. Эфф. темп-ра электронов в T. р. существенно выше темп-ры газа и электродов, термоэмиссия с к-рых отсутствует. T. р. делятся на 2 класса: самостоятельный и несамостоятельный (с внеш. ионизатором). Каждый из этих разрядов подразделяется на виды в зависимости от рода источника электрич. питания: импульсный, стационарный, переменного тока. Каждый вид T. р. может гореть в покоящемся газе и в потоке газа. Самостоятельные разряды отличаются геометрией: плоской и цилиндрической.

Наиб. подробно изучен T. р., горящий в стеклянных трубках, к-рый широко применяется в технике: лампы дневного света, разл. осветит. приборы, газовые лазеры малой и ср. мощности. T. р., горящий между плоскими электродами, используется в тиратроне и импульсных лазерах, T. р., горящий в потоке газа,- в плазмохим. реакторах и для накачки активной среды мощных непрерывных и импульсно-периодич. газовых лазеров.

Общие свойства. T. р. получил своё название из-за наличия на одном из электродов (катоде) т. н. тлеющего свечения (TC, рис. 1). Это свечение обусловлено большим падением потенциала в узком слое объёмного заряда вблизи катода. Вблизи анода также имеется тонкий слой объёмного заряда, наз. анодным слоем (AC). Остальная часть межэлектродного промежутка занята квазинейтральной плазмой. К зоне TC примыкает область фарадеева тёмного пространства (ФТП), переходящая в положительный столб (ПС), к-рый является самостоят. частью разряда, не зависящей от др. слоев разряда.

5021-18.jpg

Рис. 1. Внешний вид и распределение напряжённости электрического поля в тлеющем разряде в трубке: 1 - катодный слой; 2- тлеющее свечение; 3- фарадеево тёмное пространство; 4 - положительный столб; 5 - анодный слой.

Толщина катодного слоя (КС) и его характерные времена весьма малы, поэтому он наиб. автономен и его свойства являются общими для большинства видов T. р. Наличие большого скачка потенциала на КС стационарного T. р. (200-400 В) обусловлено тем, что поле в КС должно обеспечивать интенсивную ионизацию и усиление ионного и электронного токов. Ширина КС d равна неск. длинам ионизации электроном атомов или молекул газа. Если ср. плотность тока на катоде меньше величины нормальной плотности тока j н , то TC покрывает лишь часть катода. При увеличении тока площадь, занятая током, увеличивается пропорционально току, а напряжение на КС постоянно и равно нормальному катодному падению. Это важное свойство T. р. наз. законом нормальной плотности тока. Гидродинамич. модель (Энгеля - Штеенбека) однородного вдоль катода КС постулирует, что величины U н и j н равны мин. напряжению и соответствующей ему плотности тока теоретич. вольт-амперной характеристики (BAX). Эта модель правильно описывает подобия законы, наблюдаемые экспериментально: j н/p 2 , pd н, U н зависят только от рода газа и материала катода. Однако количеств. совпадение теории с экспериментом носит скорее случайный характер. Постулат Энгеля - Штеенбека и закон нормальной плотности тока нашли подтверждение в рамках двумерных нестационарных гидродинамич. ур-ний, решённых численными методами (рис. 2).

5022-1.jpg

Рис. 2. Распределение плотности тока на катоде в тлеющем разряде в азоте (расчёт) при давлении р = 5тор, межэлектродном расстоянии 1 см; а - при токе I=0,75 mА, б - при I=1,5 mA.

Аналогичные явления имеют место на аноде T. р. Электроны, выходящие из плазмы ПС, ускоряются на скачке потенциала AC и также, как и вблизи катода, производят ионизацию газа. Однако здесь ионизация не столь сильна, но она необходима, т. к. эмиссия ионов с холодного анода отсутствует. В стационарном T. р. закон нормальной плотности тока проявляется в покоящемся газе, при отсутствии потока газа. Гидродинамич. модель плоского анодного слоя, учитывающая кинетич. эффекты, объясняет законы подобия: j н /p 2 , U н зависят только от рода газа. Неустойчивость плоского AC имеет теоретич. объяснение в рамках гидродинамич. ур-ний, в этом приближении структура стационарного анодного пятна определяется диффузией электронов.

Свойства др. областей T. p. (TC, ФТП и ПС) довольно сильно зависят от вида разряда. Рассмотрим их на примере классич. вида T. р.- разряда в трубке с электродами на концах.

T. р. постоянного тока в трубке. Поскольку толщина КС порядка длины ионизации, часть электронов, ускоряясь на катодном скачке потенциала, набирает энергию, равную этому потенциалу. В результате интенсивной ионизации газа этим пучком электронов в области TC образуется светящийся слой плазмы большой плотности. Величина электрич. поля здесь близка к нулю. По мере продвижения от области TC по направлению к аноду плотность плазмы падает из-за рекомбинации и амбиполярной диффузии, электрич. поле растёт, но ещё недостаточно для ионизации и возбуждения атомов (область ФТП). Далее, в области ПС электрич. поле достигает величины, при к-рой ионизация электронами, набирающими энергию в этом поле, становится существенной. Для электрич. поля в ПС справедлив закон подобия E/p=f(pR), вытекающий из равенства скоростей ионизации и потерь за счёт амбиполярной диффузии к стенкам (теория Шоттки). BAX ПС не зависит от тока, плотность плазмы пропорциональна плотности тока. Для молекулярных газов с ростом тока необходимо учитывать процессы объёмной рекомбинации, приводящие к слабому росту напряжения на ПС, при дальнейшем увеличении тока происходит нагрев газа (для молекулярных газов). В атомарных газах при увеличении тока в первую очередь газ разогревается, плотность его уменьшается и, как следствие, уменьшается напряжение на ПС. BAX при этом падающая.

Электроны в ПС термодинамически неравновесны. Их эфф. темп-pa существенно превосходит темп-ру атомов и молекул и составляет 2-3 эВ. Это обстоятельство и однородность E/p в длинных трубках используются для создания инверсной населённости атомов и молекул в газовых лазерах.

5022-2.jpg

Плоский самостоятельный T. р. Потребности практики в поддержании T. р. в больших объёмах привели к реализации плоских разрядов, где расстояния между боковыми стенками превышают межэлектродное расстояние L. Плоский разряд используют при средних (10-100 тор) и высоких (>100 тор) давлениях. Плоский T. р. сохраняет все осн. черты T. р. в трубке, однако область ФТП определяется балансом процессов амбиполярного дрейфа и рекомбинацией, а потери за счёт диффузии к боковым стенкам несущественны. Поскольку характерный размер ФТП L ф в этом случае не зависит от давления газа, T. р. оказывается существенно неоднородным и при ср. давлениях. Напр., для азота L ф [см ] =0,1/j [A· см -2 ]. Вольт-амперная характеристика ФТП растущая:

В сильноточных разрядах повышенного давления все неоднородные области КС, AC, ФТП малы. При средних и высоких давлениях нормальная плотность тока на катоде существенно превышает плотности тока, используемые на практике. Для того чтобы избежать стягивания тока на катоде (см. Контракция газового разряда )и следующего за этим образования дуги, катод делят на секции, искусственно распределяя ток в среднем равномерно по катоду (рис. 3, а). Такой катод представляет из себя набор штырей, присоединённых через сопротивления к общей шине. При возрастании тока, стекающего на один штырь, напряжение на нём падает, что приводит к ограничению тока. Избежать контракции можно также за счёт поддержания разряда короткое время (~1 мкс), чтобы неустойчивость не успела развиться, т. е. с помощью спец. системы питания реализуют импульсный T. р. Однако и в этом случае необходимо принимать спец. меры для однородного пробоя газа, т. б - балластные сопротивления; б- импульсного: 1- катодная пластина, 2- анод, 3-ёмкость вспомогательного разряда; в -ёмкостного самостоятельного разряда: 1 - диэлектрические пластины, 2- электроды.

T. р. комбинированным и переменного тока. Хотя технически эти виды разряда отличаются весьма существенно, их роднит общность механизма протекания тока. В обоих разрядах ток течёт по рекомбинирующей плазме; ионизация осуществляется в течение короткого промежутка времени периодически с частотой, большей обратного времени рекомбинации. В т. н. комбинир. разряде ионизация происходит при подаче вспомогат. высоковольтных импульсов напряжения на штырьки. Осн. разряд поддерживается между катодом и анодом от источника пост. напряжения. Поскольку плотность плазмы не зависит от пост. напряжения, такой разряд в промежутке между импульсами является несамостоятельным. T. о., комбинир. T. р. состоит из 2 разрядов: самостоятельного и несамостоятельного.

В разряде переменного тока ионизация осуществляется в момент макс. напряжения на разрядном промежутке, остальное время такой T. р. также является несамостоятельным. Характерная особенность такого разряда - простота реализации секционирования катода: его покрывают изоляционным слоем с большой диэлектрич. проницаемостью (рис. 3, в), являющимся реактивным балластным сопротивлением. Использование такого балласта значительно повышает кпд разряда по сравнению с разрядом пост. тока с активным сопротивлением (рис. 3, а). Механизм протекания тока в T. р. переменного тока существенно зависит от частоты источника питания и проводимости плазмы s. При низких частотах (10-100 кГц), когда w/4ps > 1 и замыкание тока КС и AC осуществляется токами смещения, необходимость в интенсивной ионизации отпадает, приэлектродные BAX обладают положит. дифференц. сопротивлением, и эти слои оказывают стабилизирующее влияние на разряд.

Несамостоятельный T. р. отличается от самостоятельного тем, что проводимость его поддерживается с помощью внеш. ионизатора (рис. 4). Поэтому важнейшей характеристикой T. p. E/p можно управлять в широких пределах и независимо от тока. Широко распространён несамостоятельный T. р., поддерживаемый пучком быстрых электронов (~200 кэВ). Чем больше ток пучка, тем выше концентрация разрядной плазмы. Структура несамостоятельного T. р. похожа на структуру самостоятельного T. р. На КС внеш. ионизация существ. влияния не оказывает, т. к. ударная ионизация превосходит внешнюю. Этот слой может контрагировать, как и в самостоят. T. р. Однако характер контракции здесь иной. Разряд на катоде разбивается на множество пятен (рис. 5). Поскольку ПС несамостоятельного T. р. обладает большим положит. дифференц. сопротивлением, он оказывает стабилизирующее воздействие на КС и препятствует слиянию пятен. Как и в самостоят. разряде, контракция на катоде не возникает при использовании импульсов малой длительности ( 6 см/с) и существенно изменяют нек-рые характеристики ПС T. р.: и т. д.

По внеш. проявлению на доменную неустойчивость похожи страты. Однако они имеют др. природу и объясняются действием разл. механизмов усиления ионизации, напр. за счёт ступенчатой ионизации и электрон-электронных соударений.

Лит.: Браун С., Элементарные процессы в плазме газового разряда, [пер. с англ.], M., 1961; Грановский В. Л., Электрический ток в газе. Установившийся ток, M., 1971; Веденов А. А., Физика электроразрядных СО 2 -лазеров, M., 1982; Баранов В. Ю., Напартович А. П., Старостин A. H., Тлеющий разряд в газах повышенного давления, в кн.: Итоги науки и техники, сер. Физика плазмы, т. 5, M., 1984; Велихов E. П., Ковалев А. С., Рахимов А. Т., Физические явления в газоразрядной плазме, M., 1987; Райзер Ю. П., Физика газового разряда, M., 1987; Голубев В. С., Пашкин С. В., Тлеющий разряд повышенного давления, M., 1990; Королев Ю. Д., Месяц Г. А., Физика импульсного пробоя газов, M., 1991. Г. Г. Гладуш.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Тлеющий разряд. Общее описание тлеющего разряда.

Тлеющий разряд — самостоятельный электрический разряд в газе с холодными электродами при токах -5 —1 А, имеющий характерную структуру в виде чередующихся светящихся участков различного цвета и различной интенсивности свечения. Характерной чертой тлеющего разряда является большая величина падения потенциала вблизи катода, составляющая 100 В и выше, в то время как в дуговом разряде она имеет порядок величины потенциала ионизации газа (около 10 В). В зарубежной литературе эта форма разряда называется glow discharge.

Специфической особенностью тлеющего разряда, по сравнению с таунсендовским разрядом (разряд с холодными электродами и очень малой плотностью тока), является значительная роль электрического поля объемных зарядов. Это приводит к неравномерному распределению потенциала в разрядном промежутке и к существенному отличию напряжения зажигания от напряжения горения разряда.

Место тлеющего разряда среди других типов разряда можно представить с помощью рис. 1.

Общий вид вольтамперной характеристики газового разряда и основные виды газового разряда

Рис. 1. Общий вид вольтамперной характеристики газового разряда и основные виды газового разряда

При токах 10 -5 —10 -4 А существует переход от темного таунсендовского к нормальному тлеющему разряду, характеризующемуся падающим участком вольтамперной характеристики. В диапазоне токов 10 -4 —10 -2 А имеет место нормальный тлеющий разряд, вольтамперная характеристика которого представляет прямую, параллельную оси тока.

Таким образом, в нормальном тлеющем разряде напряжение между электродами не зависит от силы тока. В нормальном тлеющем разряде только часть поверхности катода покрыта разрядом. С увеличением силы тока часть поверхности, занимаемая разрядом, возрастает так, что плотность тока остается постоянной. Природа сил, вызывающих расширение поверхности катода, принимающей участие в разряде, остается пока не выясненной. Постоянство напряжения горения нормального тлеющего разряда при изменении в широких пределах разрядного тока используется в газоразрядных стабилизаторах напряжения — приборах, поддерживающих постоянной величину входного напряжения при изменении потребляемого схемой тока.

При токах 10 -2 —1А возникает аномальный тлеющий разряд с возрастающей вольтамперной характеристикой. При еще больших токах наблюдается переход от тлеющего разряда к дуге с падающей вольтамперной характеристикой. Аномальный тлеющий разряд занимает всю поверхность катода, и поэтому при увеличении силы тока плотность тока также возрастает.

Характерная структура нормального тлеющего разряда показана на рис. 2. К катоду примыкают катодные части разряда, затем следует положительный столб, вблизи анода расположена сравнительно короткая анодная область.

Структура тлеющего разряда

Рис. 2. Структура тлеющего разряда:

1,3,5,7 - темные пространства: 1 - астоново, 3 - катодное, 5 - фарадеево, 7 - анод­ное; 2, 4, 6 - светящиеся зоны: 2 - катодный слой, 4 - отрицательное свечение, 6 - положительный столб, 8 - анодное свечение

Основные процессы, обеспечивающие самостоятельный разряд, осуществляются в катодных частях разряда и на самом катоде. Тлеющий разряд не может существовать без этих явлений. При изменении положения катода в пространстве катодные части перемещаются вместе с ним, не изменяя своей структуры. Положительный столб, напротив, не является существенной частью разряда. Если при существующем разряде приближать анод к катоду, то сокращается именно эта область разряда. Анодные части также не являются необходимыми для существования разряда, они представляют собой переходную область между положительным столбом и металлическим анодом.

В катодных частях разряда преобладающим является направленное движение заряженных частиц (электронов и положительных ионов), тогда как положительный столб представляет собой типичный пример газоразрядной неизотермической низкотемпературной плазмы, в которой доминирует хаотическое движение зарядов. В соответствии с этим роль стенок, ограничивающих ионизованный газ в катодных частях, незначительна, а в положительном столбе она является существенной.

Тлеющий разряд - это самостоятельный электрический разряд в газе с холодными электродами при токах 10 -5 -1 А. Он имеет характерную структуру в виде чередующихся светящихся участков различного цвета и различной интенсивности свечения. Характерной чертой тлеющего разряда является большая величина падения напряжения вблизи катода, составляющая более ста вольт. В зарубежной литературе эта форма разряда называется glow discharge.

Характерная структура нормального тлеющего разряда показана на рис. 2. К катоду примыкают катодные части разряда, затем следует положительный столб, вблизи анода расположена сравнительно короткая анодная область.

Основные процессы, обеспечивающие самостоятельный разряд, происходят в катодных частях разряда и на самом катоде. Тлеющий разряд не может существовать без этих процессов. При изменении положения катода в пространстве катодные части перемещаются вместе с ним, не изменяя своей структуры. Положительный столб, напротив, не является существенной частью разряда. Если при существующем разряде приближать анод к катоду, то сокращается именно эта область разряда. Анодные части также не являются необходимыми для существования разряда, они представляют собой переходную область между положительным столбом и металлическим анодом.

В катодных частях разряда преобладающим является направленное движение заряженных частиц (электронов и положительных ионов), тогда как положительный столб представляет собой типичный пример газоразрядной плазмы, в которой доминирует хаотическое движение зарядов. В соответствии с этим роль стенок, ограничивающих ионизованный газ в катодных частях, незначительна, а в положительном столбе она является существенной.

Прежде чем переходить к описанию явлений, происходящих в различных областях тлеющего разряда, остановимся коротко на общей характеристике процессов, обеспечивающих существование самостоятельного разряда.

Из катода эмитируются электроны вследствие бомбардировки его поверхности ионами, ускоренными сильным полем вблизи катода, и быстрыми атомами, а также вследствие фотоэффекта, возникающего благодаря рекомбинационному излучению компонентов плазмы. Эти электроны, ускоряясь в направлении анода, приобретают энергию, достаточную для ионизации атомов. Новые электроны, возникшие при ионизации газа, снова ускоряются полем, а положительные ионы летят к катоду и, бомбардируя его поверхность, вызывают эмиссию новых электронов.

Если условия ионизации газа в катодных частях и инжекции электронов из катода таковы, что каждый эмитируемый катодом электрон производит столько актов ионизации и возбуждения атомов, что в результате фотоэффекта и бомбардировки катода ионами и атомами возникает новый электрон у катода, то имеет место динамическое равновесие вновь возникающих зарядов и уходящих на катод или в положительный столб. Таким образом происходит самоподдержание процесса, разряд не зависит от посторонних источников ионизации, т. е. является самостоятельным. Роль положительного столба заключается в том, чтобы обеспечить замкнутую цепь тока в разряде. Если анод придвинут к катоду так близко, что остаются только катодные части, то замкнутая цепь тока обеспечена без положительного столба, условия регенерации заряженных частиц выполнены, и тлеющий разряд может существовать. При дальнейшем приближении анода разряд либо прекращается (гаснет), так как условия восстановления зарядов не выполнены, либо требует для своего существования более высокого анодного напряжения, при котором идут более интенсивно процессы, необходимые для самоподдержания разряда (затрудненный разряд).

Как видно из рис. 2, в тлеющем разряде можно выделить несколько характерных областей. Непосредственно к катоду примыкает темное астоново пространство. Электроны, эмитируемые катодом, имеют малые скорости (порядка электрон-вольта), которые недостаточны для возбуждения атомов газа, и поэтому вблизи катода во всех газах имеется область, где свечение газа отсутствует. В сильном электрическом поле электроны ускоряются и, пройдя астоново темное пространство, приобретают энергию, достаточную для возбуждения атомов. Светящаяся область за астоновым темным пространством соответствует энергиям электронов, близким к максимуму функции возбуждения атомов данного газа. Ионизации газа в этой области еще нет, так как вероятность ионизации при этих энергиях еще мала. Эту область называют первым катодным слоем или катодной светящейся пленкой. Излучение имеет линейчатый спектр. За катодной светящейся пленкой следует катодное темное пространство, называемое также гитторфовым или круксовым темным пространством.

Иногда катодным темным пространством называют всю область от катода до границы следующей части - отрицательного тлеющего свечения. На эту область приходится значительная доля напряжения, называемая катодным падением потенциала; напряженность поля здесь значительно выше, чем в других частях разряда. В этой области свечение газа слабее, так как энергия электронов значительно выше энергии максимума функции возбуждения. Этой энергии достаточно, чтобы вызвать ионизацию газа.

Возникающие при ионизации атомов электроны ускоряются полем и движутся в стороны анода к границе отрицательного тлеющего свечения. Положительные ионы так же ускоряются полем и движутся к катоду. Поток ионов, направляющихся к катоду, можно наблюдать по вызываемому ими свечению газа за катодом, если в катоде сделать отверстие. В этом случае ионы пролетают в закатодное пространство, образуя закатодные или каналовые лучи. Если на их пути поставить цилиндр Фарадея и подавать на него положительный потенциал, тормозящий ионы, то получают данные об энергии ионов. Аналогичным образом, изучая поток электронов через отверстие в аноде, придвинутом к катодной границе катодных частей разряда, можно получить сведения о распределении электронов по энергиям.

При низких давлениях и высоких анодных напряжениях (аномальный разряд) поток электронов, движущихся к границе отрицательного свечения, почти моноэнергетический с энергией, равной еоик. Скорость движения ионов значительно меньше скорости движения электронов, благодаря чему в области катодного темного пространства возникает избыточный объемный заряд, образуемый положительными ионами. Этот заряд сильно искажает электрическое поле в этой области. Вопрос о распределении поля в тлеющем разряде, представляющего суперпозицию внешнего поля и поля объемного заряда, является важным вопросом для теории этого типа разряда.

В нормальном тлеющем разряде величина катодного падения потенциала ик зависит от степени чистоты газа и материала катода. Кроме катодного падения потенциала, нормальный тлеющий разряд характеризуется также нормальной плотностью тока i и шириной темного катодного пространства.

За областью катодного темного пространства следует отрицательное тлеющее свечение. Эта часть разряда имеет резкую границу со стороны катода и размытую со стороны анода. В ней электрическое поле мало. Ионизованный газ представляет собою почти квазинейтральную плазму, которая пронизывается потоком быстрых электронов из катодного темного пространства. На роль быстрых электронов в этой области указывает прямая связь между энергией электронов и длиной отрицательного тлеющего свечения. Кроме быстрых электронов, в отрицательном тлеющем свечении имеется значительное число медленных электронов, испытавших в катодном темном пространстве неупругие столкновения и потерявших при этом большую часть своей энергии. Эти электроны обладают энергиями, близкими к максимуму функции возбуждения, и вызывают свечение газа с линейчатым спектром, определяемым природой атомов. Кроме того, излучение отрицательного свечения может быть вызвано рекомбинацией зарядов, вероятность которой велика у медленных электронов.

В сторону анода напряженность поля несколько возрастает, и интенсивность свечения этой области разряда постепенно падает вследствие уменьшения вероятности рекомбинации. Роль ионов, возникающих в отрицательном свечении и диффундирующих в катодное темное пространство, по-видимому, невелика для поддержания нормального разряда. Их значение возрастает в аномальных разрядах с большой плотностью тока.

Следующее за отрицательным тлеющим свечением фарадеево темное пространство является переходной областью от катодных частей к положительному столбу. Здесь электроны приобретают энергию в слабом электрическом поле, но эта энергия проявляется в их хаотическом движении. В начале положительного столба она возрастает настолько, что имеет место заметное возбуждение и ионизация атомов газа электронами. Существенное отличие фарадеева темного пространства от катодного темного пространства состоит в том, что в первом энергия электронов слишком мала для возникновения свечения газа, а в последнем слишком велика.

Положительный столб бывает не только в тлеющем разряде, но и в дуге низкого давления с накаленным катодом. Плазма высокочастотного разряда также во многом напоминает положительный столб. Свойства положительного столба в различных видах разряда низкого давления в значительной степени идентичны. Во многих случаях (по мнению некоторых исследователей) положительный столб имеет слоистую структуру в виде неподвижных или движущихся вдоль оси трубки слоев, называемых стратами.

Вблизи анода имеется узкое темное пространство и анодное свечение. Появление этих частей связано с граничными условиями на аноде. Электроны притягиваются анодом, положительные ионы отталкиваются. Перед анодом образуется отрицательный объемный заряд, вызывающий изменение потенциала порядка потенциала ионизации газа. Если приблизить анод к катоду настолько, что он попадает в фарадеево темное пространство, то анодное падение потенциала исчезает.

Цвет различных частей разряда зависит от газа, в котором он происходит. Чаще всего разряд происходит с металлическими электродами. Но он может существовать также с покрытыми стеклом металлическими электродами или с неметаллическими электродами. Электропроводность неметаллических электродов или стекла связана с их нагреванием в разряде. Физические процессы на поверхности таких электродов недостаточно изучены.

Тлеющий разряд в неоне

Тле́ющий разря́д — один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока переходит в дуговой разряд.

В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.

Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы.

Читайте также: