Термометрия и калориметрия кратко

Обновлено: 30.06.2024

КАЛОРИМЕТРИЯ, измерение теплоты; более точно – измерение тепловых эффектов (количеств теплоты), сопровождающих физические, химические или биологические процессы. Калориметрия используется для определения удельной теплоемкости (количества тепла, необходимого для повышения температуры единицы массы или объема вещества на один градус), теплоты плавления или испарения (количества тепла, необходимого для плавления или испарения единицы массы или объема вещества) и теплоты реакций (количества тепла, выделяемого или поглощаемого в химических реакциях). Прибор, используемый для таких измерений, называется калориметром.

Применение.

Калориметрия имеет множество практических и теоретических приложений. Например, измерения теплоты сгорания (количества тепла, выделяемого при сгорании единицы массы или объема вещества) весьма важны при выборе топлива. При проектировании реактивных и ракетных двигателей теплота сгорания топлива является наиболее важным параметром для определения получаемой тяги. Многие технологические процессы происходят при очень высоких или очень низких температурах. Количество тепла, которое надо затратить на подогрев или охлаждение используемых в этих процессах материалов, определяет экономическую целесообразность их применения; выбор материалов при конструировании оборудования производится с учетом их теплоемкости.

В теоретических приложениях калориметрические измерения теплоты реакций и теплоемкости веществ могут быть использованы для определения химической стабильности или реакционной способности материалов и даже для определения их молекулярного строения. См. также ТЕПЛОТА; ТЕРМОДИНАМИКА.

Типы калориметров.

Существует много различных типов калориметров. При измерении теплоемкости проточным калориметром к трубке, по которой течет исследуемая среда, подводится известный поток тепла, и измеряется температура среды на входе и выходе; если надо измерить теплоту реакции, количество выделившегося (поглощенного) тепла также определяют по повышению (понижению) температуры реагирующего потока. В жидкостном калориметре исследуемые вещества могут реагировать в растворенном состоянии внутри изолированного сосуда; в этом случае выделяемое (поглощаемое) тепло определяется по измерению температуры сосуда и его содержимого (теплоемкость материалов конструкции обычно определяют тем же самым калориметром, используя в качестве источника тепла электрический нагреватель). При определении теплоты реакции в бомбовом калориметре жидкое или твердое вещество сжигается или взрывается в атмосфере кислорода внутри теплоизолированного сосуда с достаточно толстыми стенками, способного выдержать повышение давления, которым сопровождается процесс взрыва исследуемого вещества. Калориметры могут быть, с одной стороны, довольно миниатюрными, чтобы измерить теплофизические свойства нескольких миллиграммов вещества, и, с другой, достаточно большими, чтобы измерить метаболическое тепло, выделяемое, например, коровой. Калориметры применяются для измерения теплофизических свойств материалов в широком диапазоне температур – от температур, лишь на доли градуса отличающихся от абсолютного нуля (-273,16° С), до температур, превышающих 1000° С.

Высокоточный низкотемпературный адиабатический калориметр.

Адиабатический калориметр для измерений теплоемкости при низких температурах представляет хороший пример устройства для точной калориметрии. Поперечное сечение такого калориметра схематически показано на рисунке. В центре его расположен калориметрический сосуд; затем – адиабатический экран и вакуумный контейнер; далее – сосуд Дьюара (криостат). Вакуумный контейнер крепится к центральной трубке; адиабатический экран подвешивается внутри контейнера на прочных нитях или рыболовной леске. Пространство внутри контейнера вакуумируется для лучшей тепловой изоляции. Этот тип калориметра называется адиабатическим (теплоизолированным), потому что специальные (охранные) нагреватели, расположенные на экране, поддерживают его температуру равной температуре калориметра с точностью 0,01° С (или меньше). Поскольку передача тепла всегда происходит только при наличии разности температур, таким способом в адиабатических калориметрах практически исключаются утечки тепла.

Адиабатический экран представляет собой тонкостенный металлический цилиндр с коническими днищами. Кроме электрических нагревателей, на нем размещаются термопары, позволяющие сравнивать температуру его поверхности с температурой калориметрического сосуда. Адиабатический экран изнутри и калориметрический сосуд снаружи имеют хорошо отражающее покрытие, например алюминиевую фольгу, для уменьшения теплообмена излучением между ними.

Центральная трубка вакуумного контейнера связана с насосом для поддержания высокого вакуума и вывода проводов нагревателей и термометров. Сосуд Дьюара содержит криогенные вещества, которые используются для захолаживания всего устройства и защиты его от внешних тепловых воздействий во время измерений.

Внешние контрольно-измерительные приборы используются для измерения и регулирования температуры различных частей защитного кожуха. Сопротивление термометра, напряжение и ток нагревателя измеряются с помощью электрических приборов очень высокой чувствительности. Например, сопротивление термометра измеряется с точностью до 10 -6 , а другие величины – с точностью до 10 -5 . Такой калориметр позволяет измерять теплоемкость с точностью до 10 -4 (0,01%). Внешние измерения могут быть автоматизированы, однако при этом часто происходит потеря точности.

Для измерения теплоемкости исследуемое вещество помещают в калориметрический сосуд, измеряют его температуру, затем с помощью электрического нагревателя к нему подводят известное количество тепла и тщательно измеряют повышение температуры. Чтобы по этим данным определить теплоемкость исследуемого материала, нужно знать теплоемкость самого калориметра. Она может быть определена путем измерения повышения температуры калориметра при подводе известного количества тепла без испытуемого образца.

Методы и приборы для измерения температуры

Измерение температуры — предмет теоретической и экспериментальной дисциплины — термометрии, часть которой, охватывающая температуры свыше 500° С, называется пирометрией.

Наиболее общее строгое определение понятия температуры, следующее из второго начала термодинамики, формулируется выражением:

где Т — абсолютная температура изолированной термодинамической системы, d Q — приращение тепла, сообщаемого этой системе, и d S — приращение энтропии этой системы.

Приведенное выражение интерпретируется следующим образом: температура есть мера приращения тепла, сообщенного изолированной термодинамической системе и соответствующего приращению энтропии системы, происходящему при этом, или, иначе говоря, возрастанию неупорядоченности ее состояния.

Промышленный термометр

В статистической механике, описывающей фазы системы с учетом микропроцессов, протекающих в макросистемах, понятие температуры определяется через выражение распределения частиц молекулярной системы между рядом невырожденных энергетических уровней (распределения Гиббса).

Такое определение (согласующееся с предыдущим) подчеркивает вероятностный, статистический аспект понятия температуры как основного параметра микрофизической формы передачи энергии от одного тела (или системы) к другому, т. е. хаотического теплового движения.

Малая наглядность строгих определений понятия температуры, справедливых к тому же только для термодинамически равновесных систем, привела к широкому распространению "утилитарного" определения, исходящего из существа явления передачи энергии: температура — это тепловое состояние тела или системы, характеризующееся его способностью обмениваться теплом с другим телом (или системой).

Эта формулировка применима и к термодинамически неравновесным системам, и (с оговорками) к психофизиологическому понятию "сенсорной" температуры, непосредственно воспринимаемой человеком с помощью органов термического осязания.

Метеостанция

"Сенсорная" температуpa субъективно оценивается человеком непосредственно, но лишь качественно и в относительно узком интервале, физическая же температуpa измеряется количественно и объективно, с помощью измерит, приборов, но только косвенно — по значению какой-либо физической величины, зависящей от измеряемой температуры.

Поэтому в последнем случае устанавливают какое-либо опорное (реперное) состояние выбранной для этой цели температурозависимой физической величины и приписывают ему некоторое определенное числовое значение температуры с тем, чтобы любое изменение состояния выбранной физической величины относительно опорного могло быть выражено в единицах температуры.

Совокупность значений температуры, соответствующих ряду последовательных изменений состояния (т. е. ряду значений) выбранной температурозависимой величины, образует температурную шкалу. Наиболее распространенные температурные шкалы: Цельсия, Фаренгейта, Реомюра, Кельвина и Ранкина.

Термометр со шкалами Фаренгейта и Цельсия

Температурные шкалы Кельвина и Цельсия

В 1730 г. Французский естествоиспытатель Рене Антуан Реомюр (1683—1757) на основе предложения Амотона отметил точку таяния льда на шкале термометра как 0, а точку кипения воды 80 о . В 1742 г. ш ведский астроном и физик Андерс Цельсий (1701 — 1744) после двухлетних испытаний термометра Реомюра обнаружил погрешность в градуировке шкалы.

Оказалось, что она в большой степени зависит от атмосферного давления. Цельсий предложил оговорить давление при градуировке шкалы и весь температурный диапазон разбил на 100, но отметку 100 присвоил точке таяния льда. Позднее швед Линней или немец Штрёмер (по разным источникам) поменяли обозначения опорных точек.

Так появилась широко применяемая теперь температурная шкала Цельсия. Ее калибровка производилась при нормальном атмосферном давлении 1013,25 гПа.

Температурные шкалы создавались Фаренгейтом, Реомюром, Ньютоном (последний неосторожно выбрал опорной точкой температуру тела человека. Что ж, и великие ошибаются!) и многими другими. Они не выдержали испытания временем.

Температурная шкала Цельсия принята на I Генеральной конференции по мерам и весам в 1889 г. В настоящее время градус Цельсия — официальная единица измерения температуры, установленная Международным комитетом мер и весов, но с некоторыми уточнениями в определении.

Согласно приведенным доводам нетрудно заключить, что температурная шкала Цельсия не является плодом деятельности одного человека. Цельсий был лишь одним из последних участвовавших в ее разработке исследователей и изобретателей. До 1946 г, шкала называлась просто стоградусной. Только тогда Международный комитет мер и весов присвоил градусу стоградусной шкалы наименование "градус Цельсия".

Старинный ртутный термометр

Несколько слов о рабочем теле термометров. Первые создатели приборов естественно стремились расширить их рабочий диапазон. Единственный жидкий металл в обычных условиях — ртуть.

Созданные термометры годились для измерения температур от —100 до +300° С, что было достаточно для решения большинства практических задач. Например, минимальная температура воздуха —89,2° С (станция Восток в Антарктиде), а максимальная +59° С (пустыня Сахара). Большинство процессов тепловой обработки водных растворов проходило при температурах, не превышающих 100° С.

Прибор для измерения температуры

Основной единицей измерения термодинамической температуры и одновременно одной из основных единиц Международной системы единиц (СИ) является градус Кельвина.

Размер (температурный промежуток) 1 градуса Кельвина определяется тем, что значение термодинамической температуры тройной точки воды установлено равным в точности 273,16°К.

Эта температура, при которой вода равновесно сосуществует в трех фазах: твердой, жидкой и газообразной, принята в качестве основного репера вследствие ее высокой воспроизводимости, на целый порядок лучшей, чем воспроизводимость температур замерзания и кипения воды.

Измерение температуры тройной точки воды — задача технически довольно сложная. Поэтому в качестве репера она была утверждена только в 1954 г. на X Генеральной конференции по мерам и весам.

Градус Цельсия, в единицах которого также может быть выражена термодинамическая температура, по своему температурному промежутку в точности равен градусу Кельвина, но числовое значение любой температуры в градусах Цельсия на 273,15 градусов больше значения той же температуры в градусах Кельвина.

Шкалы Цельсия и Кельвина на термометре

Размер 1 градуса Кельвина (или 1 градуса Цельсия), определенный из числового значения температуры тройной точки воды, при современных точностях измерения не отличается от его размера, определенного (что было принято ранее) как сотая доля температурного промежутка между точками замерзания и кипения воды.

Классификация методов и приборов для измерения температуры

Измерение температуры тела или среды может быть осуществлено двумя принципиально различными косвенными путями.

Первый путь ведет к измерению значений одного из температурозависимых свойств или параметров состояния непосредственно самого тела или среды, второй — к измерению значений температурозависимых свойств или параметров состояния вспомогательного тела, приведенного (прямо или косвенно) в состояние теплового равновесия с телом или средой, температуpa которых измеряется.

Вспомогательное тело, служащее для этих целей и являющееся датчиком комплектного прибора для измерения температуры, называется термометрическим (пирометрическим) зондом, или термоприемником. Поэтому все методы и приборы для измерения температуры разделяются на две принципиально различные группы: беззондовые и зондовые.

Прибор для измерения температуры

Термоприемник или какое-либо вспомогательное устройство прибора может быть приведено в прямое механическое соприкосновение с телом или средой, температура которых измеряется, или же между ними может осуществляться лишь "оптический" контакт.

В зависимости от этого все методы и приборы для измерения температуры делятся на контактные и бесконтактные. Наибольшее практическое значение имеют зондовые контактные и бесконтактные методы и приборы.

Биметаллический термометр

Погрешности при измерении температуры

Всем контактным, в первую очередь зондовым, методам измерения температуры, в отличие от других методов, свойственны т. н. тепловые или термические методические погрешности, обусловленные тем, что комплектный зондовый термометр (или пирометр) измеряет значение температуры только чувствительной части термоприемника, усредненное по поверхности или объему этой части.

Между тем эта температура, как правило, не совпадает с измеряемой потому, что термоприемник неизбежно искажает температурное поле, в которое его вносят. При измерении установившейся постоянной температуры тела или среды между ним и термоприемником устанавливается определенный режим теплообмена.

Постоянная разность температур термоприемника и измеряемой температуры тела или среды характеризует статическую термическую погрешность при измерении температуры.

Если измеряемая температуpa изменяется, то термическая погрешность оказывается функцией времени. Такую динамическую погрешность можно рассматривать как состоящую из постоянной части, эквивалентной статической погрешности, и переменной части.

Последняя возникает потому, что при всяком изменении теплообмена между телом или средой, температура которых измеряется, новый режим теплообмена устанавливается не сразу. Обусловленное отставанием искажение показаний термометра или пирометра, являющееся функцией времени, характеризуется тепловой инерцией термоприемника.

Тепловые погрешности и тепловая инерция термоприемника зависят от тех же факторов, что и теплообмен между телом или средой и термоприемником: от температур термоприемника и тела или среды, от их размеров, состава (а значит и свойств) и состояния, от конструкции, размеров, геометрической формы, состояния поверхности и свойств материалов термоприемника и окружающих его тел, от их взаиморасположения, от того, по какому закону изменяются во времени измеряемая температура тела или среды.

Определение погрешности приборов для измерения температуры

Тепловые методические погрешности при измерении температуры, как правило, в несколько раз превосходят инструментальные погрешности термометров и пирометров. Их снижение достигается применением рациональных методик измерения температуры и конструкций термоприемников и целесообразным монтажом последних на местах применения.

Улучшение теплообмена термоприемника и среды или тела, температура которых измеряется, достигается форсированием полезных и подавлением вредных факторов теплообмена.

Например, при измерении температуры газа в замкнутом объеме увеличивают конвективный теплообмен тероприемника с газом, создавая искусств, быстрое обтекание газом термоприемника ("отсосная" термопара), и снижают лучистый теплообмен со стенками объема, экранируя термоприемник ("экранированная" термопара).

Для снижения тепловой инерции в термометрах и пирометрах с электрическим выходным сигналом применяют также специальные схемы, искусственно сокращающие время нарастания сигнала при быстром изменении измеряемой температуры.

Бесконтактные методы измерения температуры

Возможность применения контактных методов при измерениях определяется не только искажением контактным термоприемником измеряемой температуры, но также реальными физическими и химическими характеристиками материалов термоприемника (коррозионной и механической стойкостью, жаропрочностью и т. д.).

Бесконтактные методы измерения свободны от этих ограничений. Однако важнейшим из них, т.е. основанным на законах температурного излучения, присущи особые погрешности, обусловленные тем, что используемые законы в точности справедливы лишь для абсолютно черного излучателя, от которого по свойствам излучения более или менее значительно отличаются все реальные физические излучатели (тела и среды).

Бесконтактное измерение температуры

В соответствии с законами излучения Кирхгофа любое физическое тело излучает энергии меньше, чем черное тело, нагретое до той же температуры, что и физическое.

Поэтому прибор для измерения температуру, отградуированный по черному излучателю, при измерении температуры реального физического излучателя покажет температуру, меньшую действительной, а именно такую, при которой свойство черного излучателя, использованное при градуировании (энергия излучения, его яркость, его спектральный состав и т. п.), совпадает по своему значению со свойством физического излучателя при данной действительной его температуре, подлежащей определению. Измеренная заниженная псевдотемпература называется черной температурой.

Различные методы измерения приводят к различным, как правило, не совпадающим черным температурам: пирометр радиационный показывает интегральную или радиационную, пирометр оптический — яркостную, пирометр цветовой — цветовую черные температуры.

Переход от измеренных черных к действительным температурам осуществляется графически или аналитически, если известна излучательная способность объекта, температуpa которого измеряется.

Пример использования пирометра

Излучательной способностью называется отношение значений используемого для измерения свойства излучения физического и черного излучателей, имеющих одинаковую температуру: при радиационном методе излучательная способность равна отношению суммарных (по всему спектру) энергий, при оптическом — спектральная излучательная способность равна отношению спектральных плотностей энергетической яркости. При прочих равных условиях наименьшие погрешности от нечерноты излучателя дает пирометр цветовой.

Радикальное решение задачи измерения лучистыми методами действительной температуры нечерного излучателя достигается искусств, созданием для него условий, превращающих его в черный излучатель (например, помещением его в практически замкнутую полость).

В некоторых частных случаях возможно измерение действительной температуры нечерных излучателей обычными пирометрами излучения при применении особых методик измерения температуры (например, подсветки, в лучах трех длин волн, в поляризованном свете и др.).

Распространенные приборы для измерения температуры

Громадный диапазон значений измеряемых температур и неисчерпаемое количество различных условий и объектов измерения обусловливают чрезвычайное разнообразие и многочисленность методов и приборов для измерения температуры.

Приборы для измерения температуры в промышленности

Самые распространенные приборы для измерения температуры:

  • Термоэлектрические пирометры (термометры) ;
  • Электрические термометры сопротивления ;
  • Радиационные пирометры ;
  • Пирометры оптического поглощения ;
  • Оптические яркостные пирометры ;
  • Цветовые пирометры ;
  • Жидкостные термометры расширения ;
  • Газовые манометрические термометры ;
  • Паровые манометрические термометры ;
  • Газовые конденсационные термометры ;
  • Стержневые дилатометрические термометры ;
  • Биметаллические термометры ;
  • Акустические термометры ;
  • Калориметрические пирометры-пироскопы ;
  • Термокраски ;
  • Парамагнитные солевые термометры .

Терморезисторы

Самые популярные электрические приборы для измерения температуры:

Приборы многих видов, перечисленные выше, используются для измерений различными методами. Например, термоэлектрический термометр используется:

  • для контактного измерения температуры сред и тел, а также поверхностей последних без или в сочетании с устройствами, корректирующими тепловое неравновесие термоприемника и объекта измерения;
  • для бесконтактного измерения температуры радиационным и некоторыми спектроскопическими методами ;
  • для смешанного (контактно-бесконтактного) — измерение температуры жидкого металла по методу газовой каверны (измерение радиационным пирометром температуры излучения газового пузыря, выдуваемого в жидком металле на конце погруженной в него трубки).

Вместе с тем многие методы измерения температуры могут быть реализованы приборами различных видов.

Биметаллический термометр для измерения температуры воздуха

Так, например, температуpa наружного и комнатного воздуха может быть измерена приборами по меньшей мере 15 видов. На фотографии — биметаллический термометр.

Попов М.М. Термометрия и калориметрия

2-е изд. перераб. — М.: Издательство Московского Университета, 1954. — 943 с.

Основным содержанием настоящей книги является часть вторая, посвященная калориметрии. Поэтому первая часть книги—термометрия — вспомогательная и должна касаться термометров, применяемых в калориметрии. Вследствие этого, например, в первой части совершенно отсутствует описание техники изготовления различных приборов и методик определения, как слишком низких (ниже 4°К), так и слишком высоких (оптическая пирометрия) температур; отсутствует также описание газовых термометров.
Описания термометра сопротивления, термопары и ртутного термометра, следуя общему плану н цели книги, даны главным образом в разрезе задач калориметрии; поэтому отсутствуют описания разнообразных стандартных термометров сопротивления и термопар, а лишь дано краткое теоретическое введение к применению платинового термометра сопротивления и термопары, а также введено описание лабораторных методов измерения сопротивлений и напряжений.

Термометрия.
Температурные шкалы.
Теплопередача.
Постоянные точки температурной шкалы.
Термометр сопротивления.
Термопара.
Ртутный термометр.
Калориметрия.
Теория и методы калориметрии.
Калориметры переменной температуры и техника работы с ними.
Калориметр постоянной температуры.
Определение теплоемкости твердых и жидких тел.
Определение скрытых теплот.
Определение теплот растворения и разбавления.
Определение теплот адсорбции.
Определение тепловой мощности.
Определение теплоты горения.
Методика термохимических определений.
Вспомогательные методики.
Электрические измерения.
Криостаты, термостаты и регуляторы температур.

281_301-4.jpg

(от лат. calor - тепло и греч. metreo - измеряю), совокупность методов измерения кол-ва теплоты, выделяющейся или поглощающейся в к.-л. процессе. Для определения кол-ва теплоты используют спец. приборы - калориметры. Совокупность частей калориметра, между к-рыми распределяется измеряемое кол-во теплоты, наз. калориметрич. системой. Она включает в себя калориметрич. сосуд, в к-ром протекает изучаемый процесс, инструмент для измерения т-ры (ртутный термометр, термометр сопротивления, термопара или термобатарея, терморезистор, кварцевый термометр и др.; при т-рах выше 1300 К используют оптич. пирометры), электрич. нагреватель и др. Калориметрич. систему защищают экранами или оболочками, предназначенными для регулирования ее теплообмена с окружающей средой. Оболочки м. б. изотермическими или адиабатическими. Разность т-р калориметрич. системы и оболочки контролируют простыми и дифференц. термопарами и термобатареями, терморезисторами и т. д. Т-ру оболочки, снабженную электрич. нагревателем, регулируют автоматически с помощью электронных устройств. Все калориметры (в зависимости от принципа измерения кол-ва теплоты) можно условно разделить на калориметры переменной т-ры, постоянной т-ры и теплопроводящие. Наиб. распространены калориметры переменной температуры, в к-рых кол-во теплоты Q определяется по изменению т-ры калориметрич. системы: Q=W.DT, где W - тепловое значение калориметра (т. е. кол-во теплоты, необходимое для его нагревания на 1 К), найденное предварительно в градуировочных опытах, DT - изменение т-ры во время опыта. Калориметрич. опыт состоит из трех периодов. В начальном периоде устанавливается равномерное изменение т-ры, вызванное регулируемым теплообменом с оболочкой и побочными тепловыми процессами в калориметре, т. наз. температурный ход калориметра. Главный период начинается с момента ввода теплоты в калориметр и характеризуется быстрым и неравномерным изменением его т-ры. В конечном периоде опыта, по завершении изучаемого процесса, температурный ход калориметра снова становится равномерным. В калориметрах с изотермич. оболочкой (иногда наз. изопериболич. калориметрами) т-ра оболочки поддерживается постоянной, а т-ры калориметрич. системы измеряют через равные промежутки времени. Для вычисления поправки на теплообмен, к-рая достигает неск. % от DТ используют метод расчета, основанный на законе охлаждения Ньютона. Такие калориметры обычно применяют для определения теплот сравнительно быстрых процессов (продолжительность главного периода опыта 10-20 мин). В калориметрах с адиабатич. оболочкой т-ру оболочки поддерживают близкой к т-ре калориметрич. системы в продолжение всего опыта (т-ру последней измеряют только в начальном и конечном периодах опыта). Поправка на теплообмен в этом случае незначительна и вычисляется как сумма поправок на неадиабатичность и на ход т-ры. Такие калориметры применяют при определении теплот медленно протекающих процессов. По конструкции калориметрич. системы и методике измерения различают жидкостные и массивные, одинарные и двойные (дифференциальные) калориметры и др. В жидкостном калориметре (рис. 1) сосуд заполнен определенным кол-вом т. наз. калориметрич. жидкости (обычно дистиллированной воды, реже этанола, жидкого NH 3 , вазелинового масла, расплавленного Sn и др.). В сосуд помещают калориметрич. бомбу или ампулу с в-вом. Часто калориметрич. жидкость служит одновременно одним из компонентов к.-л. хим. р-ции. Такие калориметры наиб. часто применяют для работы при комнатных т-рах для измерения теплоемкости твердых и жидких тел, энтальпий сгорания, разложения, испарения, растворения, хим. р-ций, протекающих в р-рах, и др. В массивном калориметре вместо калориметрич. жидкости используют блок из металла с хорошей теплопроводностью (Сu, Al, Ag) с выемками для реакц. сосуда, термометра и нагревателя. Их применяют для измерения энтальпий сгорания, испарения, адсорбции и др., но чаще всего для определения энтальпии в-в при т-рах до 3000 К по методу смешения. Энтальпию в-ва рассчитывают как произведение теплового значения калориметра и изменения т-ры блока, измеренных после сбрасывания нагретого до нужной т-ры образца в гнездо блока. Для определения теплоемкости твердых и жидких в-в в области от 0,1 до 1000 К и энтальпий фазовых переходов используют калориметры-контейнеры (рис. 2), в к-рых калориметрич. сосудом служит тонкостенный контейнер (ампула для в-ва) обычно небольшого размера (от 0,3 до 150 см 3 ), изготовленный из меди, серебра, золота, платины, нержавеющей стали.

Рис. 1. Жидкостной калориметр с изотермической оболочкой: 1 - калориметрич. сосуд; 2 - калориметрич. бомба; 3 и 9 - термометры калориметра и оболочки соответственно; 4 и 7 - нагреватели калориметра и оболочки соответственно; 5 - мешалки с приводом; 6 - изотермич. оболочка, заполненная водой; 8 - змеевик для охлаждения оболочки; 10 - контактный термометр для регулировки т-ры оболочки.

281_301-5.jpg

Калориметры-контейнеры, предназначенные для работы при низких т-рах, кроме системы изотермич. или адиабатич. оболочек, защищают вакуумной рубашкой и помещают в криостат (сосуд Дьюара), заполненный в зависимости от температурной области жидким Не, Н 2 или N 2 . Для работы при повыш. т-рах калориметр помещают в термостатированную электрич. печь. Теплоемкость С = Q/DТобычно определяют методом периодического, реже - непрерывного ввода теплоты.

Рис. 2. Адиабатический калориметр-контейнер для определения теплоемкости твердых и жидких в-в при низких т-рах: 1, 2 - адиабатич. оболочки; 3 - калориметр; 4 - платиновый термометр сопротивления; 5 - нагреватель; 6 - герметичный платиновый контейнер для в-ва; 7 - крышка контейнера.

281_301-6.jpg

Теплоемкость газов и жидкостей при постоянном давлении определяют в проточных калориметрах - по разности т-р на входе и выходе стационарного потока газа или жидкости, мощности этого потока и джоулевой теплоте, выделенной электрич. нагревателем. При измерениях небольших тепловых эффектов, а также теплоемкостей применяют двойной калориметр, имеющий две совершенно одинаковые калориметрич. системы (жидкостные, массивные, тонкостенные), к-рые находятся при одной и той же т-ре и имеют одинаковый теплообмен с оболочкой. Вместо поправки на теплообмен вводят небольшую поправку на неидентичность калориметрич. систем (блоков), определяемую предварительно. При определении тепловых эффектов экзотермич. р-ций в одном из блоков выделяется неизвестное кол-во теплоты исследуемой р-ции x (напр., р-ции полимеризации), а в другой блок вводится известное кол-во теплоты Qтак, чтобы т-ры обоих блоков были равны в продолжение всего опыта, тогда x = Q. В случае эндотермич. р-ций теплота Qвводится в тот блок, в к-ром протекает процесс. В калориметрах постоянной температуры, или изотермических, кол-во теплоты измеряют по кол-ву в-ва, изменившего свое агрегатное состояние (плавление льда, нафталина или испарение жидкости). Теплопроводящие калориметры (иногда их наз. диатермическими) используют в К. теплового потока, в к-рой определение Qосновано на измерении мощности теплового потока dQ/dt(t - время). К этой К. относят микрокалориметрию Тиана-Кальве и дифференциальную сканирующую К. В первой записывают кривые dQ/dt =f(t )при постоянной т-ре, во второй - кривые dQ/dt= f(t, I) при постоянной скорости нагревания и охлаждения. Величину Qопределяют по площади пика на кривой нагревания: Q.m = K.A, где К - калибровочная константа, А - площадь, т - масса в-ва. Теплопроводящие калориметры должны обладать значит. теплообменом с оболочкой, чтобы большая часть вводимой в них теплоты быстро удалялась и состояние калориметра определялось мгновенным значением мощности теплового процесса. Такие калориметры (рис. 3) представляют собой металлич. блок с каналами, в к-рых помещаются цилиндрич. камеры, чаще всего две, работающие как дифференц. калориметр. В камере проводится исследуемый процесс, металлич. блок играет роль оболочки, т-ра к-рой может поддерживаться постоянно с точностью до 10 -6 К. Передача теплоты и измерение разности т-р камеры и блока осуществляется с помощью термобатарей, имеющих до 1000 спаев; эдс измерительной термобатареи и соответствующий тепловой поток пропорциональны малой разности т-р, возникающей между блоком и камерой, когда в ней выделяется или поглощается теплота. Чувствительность калориметров достигает 0,1 мкВт.

Рис. 3. Микрокалориметр Кальве: 1 - калориметрич. камера, окруженная термоспаями детекторной и компенсационной термобатарей; 2 - блок (оболочка) калориметра; 3 - термостатирующая оболочка; 4 - тепловая изоляция; 5 - трубка для введения в-ва в калориметр.

Микрокалориметры типа Кальве используют для изучения кинетики и определения энтальпий медленно протекающих процессов, а также энтальпий растворения в металлич. и оксидных расплавах (т. наз. высокотемпературная К. растворения). Калориметры дифференциально-сканирующей К. применяют для определения теплоемкости, энтальпии фазовых превращений, хим. р-ций с участием газа и др. Для определения теплоемкости в-в при т-рах до 4000 К, обладающих значит. электропроводностью (металлы, сплавы), используют методы модуляционной и импульсной К. В первой измеряют амплитуду колебаний т-ры образца при пропускании через него перем. тока известной частоты, во второй - подъем т-ры при нагр. тонкой проволоки (или стержня), изготовленной из образца, импульсами тока. К импульсной К. относится метод К. с нагревом вспышкой лазера, к-рый применяют для исследования металлич. и керамич. материалов, а также жидких в-в в интервале т-р 80-1100 К. Выбор методики, конструкции и типа калориметра определяется характером и продолжительностью изучаемого процесса, диапазоном т-р, в к-ром проводят измерение, кол-вом измеряемой теплоты и требуемой точностью. Совр. калориметры охватывают диапазон т-р от 0,1 до 4000 К и позволяют измерять кол-во теплоты от 10 -5 до неск. тыс. Дж с длительностью изучаемых процессов от долей с до десятков суток. Точность измерений до 10 -2 %. Данные К. применяют во мн. областях химии, в теплотехнике, металлургии, хим. технологии. Они используются для расчета термодинамич. свойств в-в, расчета хим. равновесий, установления связи между термодинамич. характеристиками в-ва и их св-вами и строением; составления тепловых балансов технол. процессов. Важное значение имеет калориметрич. изучение природы и структуры р-ров, процессов образования минералов. К. теплового потока применяется: в металлургии для определения энтальпий образования жидких и твердых металлич. сплавов, интерметаллич. соед. и др., в физ. химии и биохимии для изучения жидких кристаллов, идентификации и изучения св-в полимеров (напр., степени кристалличности и кинетики кристаллизации, т-р стеклования), изучения кинетики и термодинамики процессов с участием высокомол. соед., в т. ч. биополимеров; в аналит. химии для количеств. анализа смесей, определения чистоты в-в. Основоположником К. считают Дж. Блэка, создавшего в сер. 18 в. первый ледяной калориметр. Термин "калориметр" предложен А. Лавуазье и П. Лапласом в 1780. Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Кальвс Э., Прат А., Микрокалориметрия, пер. с франц., М., 1963; Скуратов С. М., Колесов В. П., Воробьев А. Ф., Термохимия, ч. 1 2, М., 1964-66; Уэндландт У., Термические методы анализа, пер. с англ., М., 1978; Шестак Я., Теория термического анализа, физико-химические свойства твердых неорганических веществ, пер. с англ., М., 1987 Г. А. Шарпатая.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Читайте также: