Температура абсолютная температура кратко

Обновлено: 30.06.2024

Абсолютная температура ⭐ — это температура, отсчитываемая от абсолютного нуля (минимально возможной температуры во Вселенной). Абсолютную температуру измеряют в кельвинах (0 K = -273.15 °С). Для примера, абсолютная температура кипения воды равна 373.15 K (т.е. t(°С) + 273,15).

Видео: Абсолютная температура

Измерение абсолютной температуры

Температура газа служит мерой кинетической энергии поступательного движения молекул газа и характеризует степень его нагрева. Температуру газа измеряют приборами, основанными на тех или иных свойствах вещества, меняющихся с изменением температуры. Эти приборы имеют градуировку, т.е. температурную шкалу.

Создателем первого такого прибора — термометра был немецкий ученый Фаренгейт, который за начало шкалы принял уровень, соответствующий температуре таяния смеси, состоящей из равных масс нашатыря и тающего льда. Верхней точкой был уровень, соответствующий температуре кипения воды при нормальном атмосферном давлении. Расстояние между этими двумя уровнями он разделил на 180 частей и, таким образом, получил один градус. В 1723 г. французский физик Реомюр предложил шкалу, основанную на двух опорных точках, соответствующих температурам таяния льда и кипения воды при нормальном атмосферном давлении. Расстояние между двумя точками он разделил на 80 равных частей.

В 1742 г. шведский астроном Цельсий предложил температурную шкалу с теми же опорными точками, на которых построена шкала Реомюра, но расстояние между ними он разделил на 100 частей. Обозначается градус Цельсия — °С.

В настоящее время в термодинамике в качестве основной принята термодинамическая температурная шкала, где нижней границей шкалы является температура абсолютного нуля (практически недостижимая), когда прекращается тепловое движение молекул. Единица температуры по термодинамической температурной шкале получила название Кельвин по имени ученого У. Томпсона, лорда Кельвина, предложившего начало отсчета вести от абсолютного нуля.

Тройной точке воды, т.е. когда в равновесии находятся три фазы воды: лед, жидкость и пар, присвоена температура 273,15 К. Она находится на 0,01 °С выше точки плавления льда.

Рис. Сопоставление шкалы Цельсия и термодинамической шкалы

На рисунке показано соотношение между шкалой Цельсия и шкалой Кельвина, т. е.

Т(К) = t(°С) + 273,15
где Т — температура по термодинамической шкале, К; t — температура по шкале Цельсия, °С.

К преимуществам термодинамической температурной шкалы можно отнести следующее:


Мы продолжаем изучение вопросов, связанных с температурой. На этом уроке, мы, наконец, сможем дать определение температуры. Также мы познакомимся с понятием абсолютной температуры. Именно абсолютная температура используется при расчетах в молекулярной физике.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Определение температуры. Абсолютная температура"


Основываясь на нашем начальном предположении о том, что температура является мерой средней кинетической энергии молекул, мы попытаемся доказать, что средняя кинетическая энергия молекул обладает таким же свойством, как и температура.

Как и было сказано в предыдущих уроках, измерить кинетическую энергию отдельной молекулы крайне сложно. Однако, мы можем выразить среднюю кинетическую энергию молекул газа через макроскопические параметры. Воспользуемся основным уравнением молекулярно-кинетической теории:


Заметим, что концентрация молекул равна отношению числа молекул газа к его объёму:



Итак, мы выразили среднюю кинетическую энергию молекул через три величины, которые легко измеряются. Объём можно задать, поместив газ в герметичный баллон, а давление измерим с помощью манометра. Чтобы найти количество молекул, как вы знаете, нужно количество вещества умножить на число Авогадро:


Вспомним теперь, что количество вещества равно отношению массы к молярной массе:


Молярную массу, как вы знаете, можно подсчитать, используя таблицу Менделеева.


Для проведения опыта мы можем использовать баллоны с водородом и кислородом, давление, объёмы и количество молекул которых, различны.


Чтобы уравнять температуру газов их необходимо привести в тепловое равновесие с одним и тем же телом (как правило, используется тающий лед). Через некоторое время установится тепловое равновесие, то есть температуры кислорода и водорода будут равны 0 о С. Наша цель проверить — уравнялись ли при этом средние кинетические энергии молекул газов, и если это так, то наше начальное предположение верно. Опыты и сопутствующие расчеты говорят о том, что отношение произведения давления и объёма к количеству молекул газа остается постоянным при постоянной температуре, независимо от природы самого газа:


Это говорит нам о том, что средняя кинетическая энергия молекул — это и есть температура.

Необходимо отметить, что данное соотношение все же начинает зависеть от рода газа при очень большом давлении, таком как несколько сотен атмосфер. Однако, мы с уверенностью можем сказать, что до тех пор, пока газ может считаться идеальным, данное соотношение строго определено.

Поскольку температура фактически является мерой энергии, её иногда измеряют в энергетических единицах. Но, дело в том, что в повседневной жизни подобные единицы измерения неудобны. Например, если в баллоне объёмом 10 л находится 1 моль водорода при нормальном давлении, то средняя кинетическая энергия его молекул будет равна 1,68 х 10 −21 Дж. В связи с этим возникает вопрос: как перевести температуру из энергетических единиц измерения в градусы, используемые в повседневной жизни? Ведь, люди могут выбирать какую угодно температурную шкалу, но этот выбор не может повлиять на кинетическую энергию молекул. Поэтому, вводится понятие абсолютной температуры. Будем считать эту температуру прямо пропорциональной температуре, выраженной в энергетических единицах:


В этой формуле мы обозначили коэффициент пропорциональности буквой k.

Учитывая тот факт, что такие величины, как объём, давление и число молекул, не могут быть отрицательными, делаем вывод, что абсолютная температура тоже не может быть отрицательной.


Как видно из формулы, абсолютный ноль температуры — это такая температура, при которой давление газа равно нулю, при постоянном объёме. Такое возможно только в случае, если молекулы газа попросту остановились (это следует из основного уравнения молекулярно-кинетической теории).

Абсолютную шкалу температур предложил лорд Кельвин, в честь которого и названа единица измерения температуры по абсолютной шкале. 1 К равен 1 о С, поэтому перевести градусы Цельсия в кельвины довольно просто: нужно к температуре в градусах Цельсия прибавить 273 градуса:


Таким образом, абсолютный ноль температуры по шкале Цельсия равен −273 градуса. Необходимо отметить, что абсолютный ноль недостижим.

Вернемся теперь к уравнению, которое мы использовали в начале урока:


Также, мы выяснили, что отношение произведения давления и объёма к числу молекул должно быть пропорционально температуре:


Мы получили два уравнения, левые части которых равны. Значит, должны быть равны и правые части:


Итак, мы вплотную подошли к связи между средней кинетической энергией и температурой. Остается только разобраться с коэффициентом пропорциональности.

Этот коэффициент получил название постоянной Больцмана, в честь Людвига Больцмана.


Больцман был первым, кто нашел соотношение между кинетической энергией и температурой. Постоянная Больцмана определяет связь между температурой в энергетических единицах измерения и температурой в кельвинах. Итак, средняя кинетическая энергия молекул равна


Сегодня мы можем повторить эксперимент, с помощью которого можно вычислить постоянную Больцмана. Возьмем газ, который можно считать идеальным, и измерим среднюю кинетическую энергию его молекул тем же способом, который мы использовали в начале урока — то есть, выразив её через макроскопические параметры:


Проведем измерения для двух случаев: в одном случае поместим сосуд в тающий лед, а во втором случае — в кипящую воду.


Тогда, разность между температурами в энергетических единицах измерения должна быть равна произведению разности температуры в кельвинах и постоянной Больцмана:


Отсюда выразим постоянную Больцмана:


Расчеты показывают, что эта величина остается постоянной для любого газа, который можно считать идеальным:


Несмотря на то, что соотношение между температурой и кинетической энергией установлено для газов, оно также выполняется для жидкостей и для твердых тел:


Данное соотношение не выполняется только в том случае, если движение частиц не подчиняется законам механики Ньютона. Это происходит при экстремальных условиях, например при колоссальном давлении, огромной температуре или сильнейших электромагнитных полях.

Пример решения задачи.

Задача. При температуре 200 К средняя скорость молекул одного моля неизвестного газа равна 500 м/с. Считая этот газ идеальным, определите его молярную массу.

АБСОЛЮТНАЯ ТЕМПЕРАТУРА (термодинамическая температура) - температура Т, отсчитываемая от абсолютного нуля.
Понятие абсолютной температуры было введено У. Томсоном (Кельвином) , в связи с чем шкалу абсолютной температуры
называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К) .
1К = 1 °С. Значения абсолютной температуры связаны с температурой по Цельсия шкале (t °С) соотношением t = Т - 273,15 К.

Абсолютная температура - температура по шкале Кельвина.
Шкала Кельвина отсчитывается от 0(минусовых температур нет), 0 градусов по Кельвину примерно равно −273.15 градусов по Цельсию. Величина 1 градуса Кельвина равна величине 1 градуса Цельсия.

температура в которой всё как обычно - комнатная температура -около 20 по цельсию

Мы часто используем слово "температура" в повседневной речи. А что такое температура? В данной статье мы объясним физический смысл этого понятия.

В молекулярной физике и термодинамике рассматриваются макроскопические тела, т. е. тела, состоящие из огромного числа частиц. Например, в стакане воды содержится порядка молекул. Такое грандиозное число с трудом поддаётся осмыслению.

Термодинамическая система

Термодинамической системой называется макроскопическое тело или система тел, которые могут взаимодействовать друг с другом и с окружающими телами. Стакан с водой — пример термодинамической системы.

Термодинамическая система состоит из столь большого числа частиц, что совершенно невозможно описывать её поведение путём рассмотрения движения каждой молекулы в отдельности. Однако именно грандиозность числа молекул делает ненужным такое описание.

Оказывается, что состояние термодинамической системы можно характеризовать небольшим числом макроскопических параметров — величин, относящимся к системе в целом, а не к отдельным атомам или молекулам. Такими макроскопическими параметрами являются давление, объём, температура, плотность, теплоёмкость, удельное сопротивление и др.

Состояние термодинамической системы, при котором все макроскопические параметры остаются неизменными с течением времени, называется тепловым равновесием. В состоянии теплового равновесия прекращаются все макроскопические процессы: диффузия, теплопередача, фазовые переходы химические реакции и т. д.(Следует отметить, что тепловое равновесие является динамическим равновесием. Так, при тепловом равновесии жидкости и её насыщенного пара весьма интенсивно идут взаимные превращения жидкости и пара. Но это — процессы молекулярного масштаба, они происходят с одинаковыми скоростями и компенсируют друг друга. На макроскопическом уровне количество жидкости и пара со временем не меняется).

Термодинамическая система называется изолированной, если она не может обмениваться энергией с окружающими телами. Чай в термосе — типичный пример изолированной системы.

Тепловое равновесие

Фундаментальный постулат, вытекающий из многочисленных опытных данных, гласит: каково бы ни было начальное состояние тел изолированной системы, со временем в ней устанавливается тепловое равновесие. Таким образом, тепловое равновесие — это состояние, в которое любая система, изолированная от окружающей среды, самопроизвольно переходит через достаточно большой промежуток времени.

Температура как раз и является величиной, характеризующей состояние теплового равновесия термодинамической системы.

Температура — это макроскопический параметр, значения которого одинаковы для всех частей термодинамической системы, находящейся в состоянии теплового равновесия. Попросту говоря, температура — это то, что является одинаковым для любых двух тел, которые находятся в тепловом равновесии друг с другом. При тепловом контакте тел с одинаковыми температурами между ними не будет происходить обмен энергией (теплообмен).

В общем же случае при установлении между телами теплового контакта теплообмен начнётся. Говорят, что тело, которое отдаёт энергию, имеет более высокую температуру, а тело, которое получает энергию — более низкую температуру. Температура, таким образом, указывает направление теплообмена между телами. В процессе теплообмена температура первого тела начнёт уменьшаться, температура второго тела — увеличиваться; при выравнивании температур теплообмен прекратится — наступит тепловое равновесие.

Особенность температуры заключается в том, что она не аддитивна: температура тела не равна сумме температур его частей. Этим температура отличается от таких физических величин, как масса, длина или объём. И по этой причине температуру нельзя измерить путём сравнения с эталоном.

Измеряют температуру с помощью термометра.

Для создания термометра выбирают какое-либо вещество (термометрическое вещество), какую-либо характеристику этого вещества (термометрическую величину), и используют зависимость термометрической величины от температуры. При этом выбор термометрического вещества и термометрической величины может быть весьма произвольным.

Так, в бытовых жидкостных термометрах термометрическим веществом является ртуть (или спирт), а термометрической величиной — длина столбика жидкости. Здесь используется линейная зависимость объёма жидкости от температуры.

В идеально-газовых термометрах используется линейная зависимость давления разреженного газа (близкого по своим свойствам к идеальному) от температуры.

Действие электрических термометров (термометров сопротивления) основано на температурной зависимости сопротивления чистых металлов, сплавов и полупроводников.

В процессе измерения температуры термометр приводится в тепловой контакт(В области температур выше (раскалённые газы, расплавленные металлы) используются бесконтактные высокотемпературные термометры — пирометры. Их действие основано на измерении интенсивности теплового излучения в оптическом диапазоне.) с телом, температура которого определяется. Показания термометра после наступления теплового равновесия — это и есть температура тела. При этом термометр показывает свою температуру!

Температурная шкала. Абсолютная температура

При установлении единицы температуры чаще всего поступают следующим образом. Берут две температуры (так называемые реперные точки) — температуру таяния льда и температуру кипения воды при нормальном атмосферном давлении. Первой температуре приписывают значение , второй — значение , а интервал между ними делят на равных частей. Каждую из частей называют градусом (обозначают ), а полученную таким образом температурную шкалу — шкалой Цельсия.

При измерениях по шкале Цельсия с помощью жидкостных термометров возникает одна трудность: разные жидкости при изменении температуры изменяют свой объём по-разному. Поэтому два термометра с различными жидкостями, приведённые в тепловой контакт с одним и тем же телом, могут показать разные температуры. От данного недостатка свободны идеально-газовые термометры — зависимость давления разреженного газа от температуры не зависит от вещества самого газа.

Кроме того, для температурной шкалы идеально-газового термометра существует естественное начало отсчёта (исчезает произвол выбора реперной точки!): это та предельно низкая температура, при которой давление идеального газа постоянного объёма обращается в нуль. Эта температура называется абсолютным нулём температур.

Температурная шкала, началом отсчёта которой является абсолютный нуль, а единицей температуры — градус Цельсия, называется абсолютной температурной шкалой.

Температура, измеряемая по абсолютной шкале, называется абсолютной температурой и обозначается буквой . Единица абсолютной температуры называется кельвином ( ).

Абсолютному нулю ( ) соответствует температура . Поэтому связь абсолютной температуры и температуры по шкале Цельсия даётся формулой:

Читайте также: