Темная энергия и антитяготение кратко

Обновлено: 02.07.2024

Однако уже в следующем, 2000-м году парадокс Хаббла-Сэндиджа был рязъяснен. Разгадку подсказало новейшее замечательное событие в космологии - открытие темной энергии. Многое в космологии стало благодаря этому открытию на свои места.

Темная энергия темна по крайней мере в двух смыслах. Во-первых, она невидима - не излучает света, не поглощает и не отражает его. Во-вторых, ее физическая природа и микроскопическая структура полностью неизвестны.

И тем не менее с темной энергией, как мы увидим, вполне можно работать, изучать ее роль в реальном мире. Для этого, правда, нужно принять те или иные исходные предположения, хотя бы минимальные, о ее свойствах. Простейший (и как кажется, самый правдоподобный) из обсуждающихся сейчас вариантов связывает темную энергию с космологической постоянной (лямбда). Эта универсальная константа была введена в космологию Эйнштейном в 1917 г., когда он применил только что созданную им общую теорию относительности к изучению мира, рассматриваемого как некое единое целое. Эйнштейн решил эту задачу и представил результат в виде физико-математической модели Вселенной. Модель описывала Вселенную как статическую, вечную и неизменную как целое физическую систему. Во Вселенной Эйнштейна притяжение всех тел природы друг к другу. отсутствовало. Ньютоновское всемирное тяготение при этом, однако, не отменялось; но помимо него в эйнштейновской модели действовал еще один силовой фактор - всемирное антитяготение, которое полностью компенсировало взаимное тяготение космических тел в масштабе всей Вселенной.

Ничего подобного прежняя, до-эйнштейновская физика не знала. Но антитяготение не вытекало в действительности и из общей теории относительности. Это была совершенно новая идея. Тем не менее она органично и в исключительно экономной форме была введена в структуру общей теории относительности, в ее математические уравнения. Антитяготение было представлено в этих уравнениях всего одной и притом постоянной физической величиной, которая и получила позднее название космологической константы. Она обеспечивала в модели Эйнштейна компенсацию всемирного тяготения - без нее теория не допускала бы статичности мира.

В 1922 г. Фридман доказал, что уравнения общей теории относительности - даже при наличии в них космологической константы - допускают не только статические модели, но и модели с эволюцией, в которых Вселенная как целое могла расширяться или сжиматься. Фридман явно предпочитал модель расширяющейся Вселенной. Если эйнштейновская константа положительна по величине, то теория Фридмана (в ней эта константа с самого начала предусмотрительно учитывалась) может описывать не только космологическое расширение с замедлением, но и космологическое расширение с ускорением. Основанная на таком подходе глобальная космологическая модель очень хорошо согласуется с наблюдаемым сейчас феноменом ускоряющегося космологического расширения.

Спустя четыре десятилетия, в 1965 г., Э.Б. Глинер, работавший тогда в ленинградском Физтехе, заметил, что по своей роли и месту в общей теории относительности космологическая постоянная соответствует некоторой сплошной среде, которая строго равномерно заполняет все пространство Вселенной и имеет всюду и всегда постоянную плотность. Связь плотности этой среды с эйнштейновской космологической постоянной такова:

Здесь и - скорость света и гравитационная постоянная. Мы записали здесь "массовую" плотность, то есть массу, приходящуюся на единицу объема. Как известно, масса и энергия связаны между собой знаменитой формулой ; чтобы пересчитать плотность массы на плотность энергии, нужно умножить первую на .

Эта среда весьма необычна: ее плотность положительна, а давление отрицательно, причем по абсолютной величине давление равно плотности (эти две физические величины имеют одинаковую размерность):

Связь между давлением и плотностью среды называют ее уравнением состояния. Как первым указал Глинер, записанное выше уравнение состояния характерно для физического вакуума. Такое и только такое уравнение состояния удовлетворяет определению вакуума как среды, относительно которой движение и покой неразличимы. Это и только это соотношение между плотностью и давлением совместимо с понятием вакуума как формы энергии с всюду и всегда постоянной плотностью, - и притом в любой системе отсчета.

Мы будем называть эту особую космическую среду вакуумом Эйнштейна-Глинера и считать, что открытая астрономами темная энергия - это энергия вакуума. (Буква , которой мы снабдили выше плотность и давление, и означает вакуум.) Кроме ясности и простоты, такая интерпретация привлекательна еще и в том - самом важном, в действительности, - отношении, что наблюдения, в которых темная энергия была открыта, полностью с нею согласуются. По данным на сегодняшний день, отношение давления темной энергии к ее плотности энергии составляет . Похоже, что иные, более сложные и, в общем, произвольные варианты интерпретации темной энергии постепенно вытесняются наблюдениями.

Стоит заметить, что отрицательное давление, с которым мы встречаемся в уравнении состояния вакуума, - не вполне обычное явление в физике. При "нормальных условиях" давление в "нормальной" жидкости или газе как правило положительно. Но и в жидкости (например, в потоках воды у винта парохода) и в твердых телах (например, во всесторонне растянутой стальной болванке) отрицательное давление тоже может возникать. Это требует особых, специальных условий, но само по себе не является чем-то исключительным. Однако в случае вакуума ситуация совсем особая. Давление вакуума не только отрицательно, но к тому же равно - по абсолютной величине - его плотности энергии. Ничего подобного нет ни в одной другой среде. Это абсолютно и исключительно свойство одного вакуума и только его.

О вакууме в физике говорят давно, с 1920-х годов, когда возникла квантовая механика. Из этой науки вытекало, в частности, что у всех полей и частиц природы имеется состояние минимальной энергии, которое и называется вакуумом. Вакуум - не пустота, и минимальная энергия полей и частиц, вообще говоря, не равна нулю. Физический вакуум обладает определенной энергией, и эта энергия действительно может характеризоваться (на макроскопическом уровне описания) значениями плотности и давления. Однако пока не установлено, действительно ли вакуум Эйнштейна-Глинера тождествен вакууму физических полей. Подробнее о космологической постоянной, о вакууме и его темной энергии можно прочитать, например, в книге А.М. Черепащука и А.Д. Чернина "Вселенная, жизнь, черные дыры", Век-2, 2003). Поэтому не будем здесь входить во все аспекты этой большой темы, а обсудим только то, что требуется для понимания парадокса Хаббла-Сэндиджа и для построения локальной космологии.

Как выяснилось, темная материя — это еще не все сюрпризы космологии! В 1999 году произошел еще один космологический переворот.

После революционных работ Фридмана и до конца ХХ века в космологии речь шла о выборе между тремя основными моделями Вселенной: замкнутой, параболической и гиперболической. Обратим внимание, что в любой из моделей расширение должно замедляться . Вопрос стоял так: достаточно ли во Вселенной материи, чтобы со временем расширение сменилось сжатием, или она так и будет расширяться до бесконечности?

Если попытаться измерить это замедление, то можно оценить среднюю плотность материи во Вселенной. Идея такова: наблюдая галактики, удаленные от нас на расстояние в 10 миллиардов световых лет, мы видим Вселенную такой, какой она была 10 миллиардов лет назад. В частности, мы видим, с какой скоростью она в то время расширялась. Сравнив эту скорость с текущей скоростью расширения Вселенной (измеренной для более близких галактик), мы можем определить, насколько снизилась эта скорость за несколько миллиардов лет и рассчитать таким образом замедление. Но беда в том, что у астрономов не было независимого способа измерения расстояний до самых далеких галактик — ведь после открытия закона Хаббла эти расстояния рассчитывали с помощью именно закона Хаббла, предполагая скорость расширения неизменной!

Только к концу ХХ века удалось, наконец, решить эту задачу. И результаты получились просто ошеломляющие: расширение Вселенной не замедляется, а убыстряется!

Единственно возможное объяснение этого ускорения: во Вселенной существует некая субстанция, обладающая антигравитацией. Антигравитация действует на разбегающиеся галактики и стремится еще более отдалить их друг от друга — из-за этого скорость расширения Вселенной возрастает. Эту таинственную субстанцию назвали темной энергией.

Темная энергия: открытие, свойства и влияние во Вселенной

Темная энергия равномерно заполняет все пространство Вселенной и создает всемирное антитяготение. Обратите внимание: отталкиваются не сами космические тела — их расталкивает среда, в которую они погружены. Самое поразительное, что это всемирное отталкивание усиливается с ростом расстояния между телами, в отличие от гравитационного тяготения.

Чтобы представить себе величину силы всемирного отталкивания, создаваемого темной энергией, вообразим, что два атома водорода помещены в пространство, в котором нет ничего, кроме темной энергии. Антигравитация темной энергии будет сильнее гравитационного притяжения атомов, если расстояние между ними больше полуметра.

В окружающем нас космосе в каждом кубическом метре миллионы атомов, поэтому их обычное притяжение маскирует эффект темной энергии. В ранней Вселенной гравитация тоже была доминирующей силой. Но начиная с какого-то момента, из-за расширения Вселенной, плотность вещества стала так мала, что антигравитация темной энергии стала преобладать. Мы живем как раз в такую эпоху.

Есть еще один аргумент в пользу темной энергии. Тщательное изучение особенностей реликтового теплового излучения приводит к выводу, что мир наш в целом всё же не искривленный, а плоский, как в параболической модели. Но плотности материи (видимой и темной) имеется всего около четверти от критической. Нехватку плотности как раз может восполнить темная энергия.

Природа темной энергии, конечно же, главная загадка физики и космологии XXI века. Уже есть разные теории и догадки на этот счет. Поистине, космология и физика творятся сейчас на наших глазах.

Темная энергия: открытие, свойства и влияние во Вселенной

Итак, мы живем в эпоху, когда антигравитация темной энергии уже доминирует над обычным тяготением, Вселенная расширяется ускоряющимися темпами и будет расширяться всё быстрее и быстрее, до бесконечности.

Артур Чернин

Темная энергия и всемирное антитяготение

В 2000 году его присутствие было замечено также и на относительно малых расстояниях порядка 1 Мпк, в нашем ближайшем галактическом окружении.

В наблюдениях темная энергия предстает перед нами как объект, для которого вполне пригодно макроскопическое (то есть усредненное по определенным пространственным масштабам) описание. Макроскопическим уровнем приходится в основном ограничиваться пока и в теории. Но даже и в этом случае мы сталкиваемся с затруднениями, когда требуется (например, для педагогических целей) дать ей какое-то общее определение, — особенно в случае, если темная энергия необязательно тождественна энергии ЭГ-вакуума. Действительно, важнейшее отличительное свойство темной энергии понятно — она источник всемирного антитяготения: но не ясно, под какое более общее понятие физики ее можно было бы подвести. Если, однако, не стремиться к слишком большой строгости, то темную энергию можно и в самом общем случае понимать феноменологически как некую сплошную среду, заполняющую все пространство мира. Тогда она оказывается в одном ряду с другими компонентами космической среды, заполняющими то же пространство.

image

Это то, что заставляет Вселенную ускоряться, если на самом деле существует некая сущность с таким свойством.

Но это какое-то объяснение простыми словами. Можно ли это объяснить более абстрактно и научно?

Значит ли это, что постоянная Хаббла, измеряющая скорость расширения, растёт?

Если Вселенная замедляется, постоянная Хаббла уменьшается. Если постоянная Хаббла увеличивается, Вселенная ускоряется. Но существует промежуточный режим, при котором Вселенная расширяется, но постоянная Хаббла уменьшается – и мы думаем, что наша Вселенная живёт именно в таком режиме. Скорости отдельных галактик увеличиваются, но удвоение размера Вселенной отнимает всё больше и больше времени.

Иначе говоря: закон Хаббла соотносит скорость галактики v с расстоянием до неё d в уравнении v = H * d. Эта скорость может увеличиваться, даже если параметр Хаббла уменьшается; если он уменьшается медленнее, чем растёт расстояние.

А что, астрономы реально ждали миллиард лет, чтобы провести повторное измерение скоростей галактик?

Нет. Мы меряем скорости очень удалённых галактик. Поскольку свет перемещается с фиксированной скоростью, один световой год за год, мы смотрим в прошлое. Реконструкция истории скоростей и их отличия в прошлом открывает нам факт ускорения Вселенной.

А как измерить расстояние до удалённой галактики?

К сожалению, стандартных свечей не существует.

Так как же они поступили?

К счастью, у нас есть метод, чуть уступающий наилучшему: стандартизируемые свечи. Сверхновые особого типа, типа Ia, очень яркие, и обладают не совсем, но примерно одинаковой яркостью. К счастью в 1990-х Марк Филипс открыл удивительное взаимоотношение между собственной яркостью и временем, которое требуется сверхновой для того, чтобы потускнеть после достижения максимальной яркости. В итоге, если мы измеряем яркость, и она со временем падает, мы можем сделать поправку на эту разницу, и построить универсальную шкалу яркостей, которую можно использовать для измерения расстояний.

А почему сверхновые типа Ia оказались стандартизируемыми свечами?

Мы точно не уверены – в основном, всё подсчитано эмпирически. Но есть идея – мы думаем, что эти сверхновые получаются, когда белые карлики притягивают материю снаружи, пока не достигнут предела Чандрасекара и не взорвутся. И поскольку это ограничение одинаково по всей Вселенной, неудивительно, что у сверхновых получается схожая яркость. Отклонения, вероятно, происходят из-за разных составов звёзд.

А как узнать, когда возникнет сверхновая?

Никак. Они появляются редко, где-то раз в сто лет для средней галактики. Поэтому нужно смотреть сразу на кучу галактик широкоугольными камерами. Конкретно, сравниваются изображения неба, сделанные в разные моменты времени, отстоящие на несколько недель друг от друга (обычно изображения делаются в новолуние, когда небо темнее всего) – как раз такое время требуется сверхновым, чтобы резко прибавить в яркости. При помощи компьютеров изображения сравниваются в поисках новых ярких точек. Затем эти точки изучаются, чтобы выяснить, действительно ли это сверхновые типа Ia. Это, конечно же, очень тяжело, и было бы невозможным, если бы не ряд последних технологических новшеств – камеры с ПЗС-матрицами и гигантские телескопы. Сегодня можно быть уверенным, что в результате наблюдений сверхновые можно будет собирать десятками – но когда Перлмуттер начинал работу со своей группой, это было совсем не очевидно.

И что же они обнаружили, проделав такую работу?

Большинство астрономов (почти все) ждали, что Вселенная будет замедляться – галактики будут притягиваться друг к другу через гравитацию, что и замедлит их движение. Но оказалось, что удалённые сверхновые получаются более тусклыми, чем это ожидалось – признак того, что они расположены дальше, чем было предсказано, то есть, Вселенная ускоряется.

Почему космологи так быстро приняли этот результат?

Ещё до объявления результатов в 1998 году было ясно, что с Вселенной что-то не так. Было похоже на то, что возраст Вселенной был меньше, чем возраст её старейших звёзд. Материи было меньше, чем предсказывали теоретики. На крупных масштабах структуры были не такие выраженные. Открытие тёмной энергии решило все эти проблемы одним махом. Всё встало на свои места. Поэтому, хотя люди справедливо осторожничали, после этого наблюдения Вселенная стала намного понятнее.

А откуда мы знаем, что сверхновые выглядят тусклее не из-за того, что их что-то заслоняет, или из-за того, что в прошлом всё было по-другому?

А правда, что есть независимые доказательства существования тёмной энергии?

Ну ладно, и что такое тёмная энергия?

Рад, что вы спросили! У тёмной энергии есть три главных свойства. Во-первых, она тёмная. Мы не видим её, и насколько нам говорят измерения, она вообще не взаимодействует с материей (если взаимодействует, то это превосходит возможности наших наблюдений). Во-вторых, она равномерно распределена. Она не скапливается в галактиках и скоплениях, или же мы обнаружили бы её, изучая их динамику. В-третьих, она постоянна. Плотность тёмной энергии (количество энергии на кубический световой год) остаётся постоянным по мере расширения Вселенной. Она не рассеивается, подобно материи.

Интересная история. А чем конкретно может оказаться тёмная энергия?

А что, вакуумная энергия ничем не отличается от космологической константы?

А разве вакуумная энергия происходит не от квантовых флуктуаций?

Не совсем. Целая гора всяких явлений может создавать энергию пустого пространства, и некоторые из них полностью классические, не имеющие ничего с квантовыми флуктуациями. Но к классическим явлениям, приводящим к возникновению этой энергии, добавляются ещё и квантовые флуктуации. Они довольно сильные, и это приводит нас к проблеме космологической константы.

Что за проблема космологической константы?

Если бы нам была известна только классическая механика, то космологическая константа была бы просто числом – для неё не было бы причин быть особенно большой или малой, положительной или отрицательной. Мы просто измерили бы её и успокоились.

Но наш мир не классический, а квантовый. И в квантовой теории поля классические величины должны подвергаться квантовым поправкам. В случае энергии вакуума эти поправки имеют вид энергии виртуальных частиц, флуктуации которых происходят в вакууме пустого пространства.

Мы можем сложить количество энергии, получающееся в этих флуктуациях, и получим бесконечность. Это, по-видимому, неправда, и мы подозреваем, что преувеличиваем подсчёт. Например, в этот грубый подсчёт входят флуктуации всех размеров, включая длины волн меньше планковской длины, на которых, возможно, пространство-время теряет свою концептуальную достоверность. Если мы просуммируем только длины волн большие, чем планковская длина, мы получим прикидку величины космологической константы.

И в результате выходит в 10 120 больше наблюдаемого значения. Эта разница и есть проблема космологической константы.

Почему космологическая константа такая маленькая?

Никто не знает. Пока мы не умели работать со сверхновыми, многие физики верили в существование скрытой симметрии или динамического механизма, обнуляющего космологическую константу, поскольку мы были уверены в том, что она меньше наших оценок. Теперь же нам нужно объяснить как то, почему она маленькая, так и то, почему она ненулевая. А, кроме того, существует проблема совпадения – почему совпадают порядки величин плотности тёмной энергии и материи.

Нам нужна простая формула, предсказывающая космологическую константу как функцию всех остальных констант природы. У нас её нет, но мы стараемся её вывести. Предлагаемые варианты работают с квантовой гравитацией, дополнительными измерениями, червоточинами, суперсимметрией, нелокальностью и другими интересными, но умозрительными идеями. Пока ещё ничего не прижилось.

Влияли ли какие-либо эксперименты на развитие теории струн?

Да: ускорение Вселенной. До этого теоретики предполагали необходимость описания Вселенной с нулевой энергией вакуума. Когда же появился шанс отличия её от нуля, встал вопрос, можно ли впихнуть этот факт в теорию струн. Оказалось, что это не так сложно сделать. Проблема в том, что если найти одно решение, находится абсурдно большое количество других. Такой ландшафт теории струн убивает надежду на одно уникальное решение, способное объяснить реальный мир. Это было бы неплохо, но науке приходится брать то, что предлагает природа.

Что за проблема совпадения?

При расширении Вселенной материя размывается, а плотность тёмной энергии остаётся постоянной. Значит, относительная плотность тёмной энергии и материи со временем сильно меняется. В прошлом материи было больше, в будущем тёмная энергия будет доминировать. Но сегодня их примерно поровну. Когда числа могут отличаться в 10 100 раз или больше, разница в три раза не считается. С чего это нам так повезло родиться, когда тёмной энергии достаточно много, чтобы её открыли, и достаточно мало, чтобы такие попытки заслужили нобелевку? Либо это совпадение (почему бы и нет), либо мы живём в какое-то особенное время. Частично по этой причине люди так охотно принимают антропный принцип. Вселенная получается какой-то несообразной.

Если у тёмной энергии постоянная плотность, а пространство расширяется, значит ли это, что энергия не сохраняется?

Да, и это нормально.

В чём разница между тёмной энергией и энергией вакуума?

Тёмная энергия – общепринятый термин равномерно распределённой и постоянной субстанции, заставляющей Вселенную ускоряться. Энергия вакуума – один из кандидатов на роль тёмной энергии, который идеально распределён и постоянен.

Так что, есть другие кандидаты на роль тёмной энергии?

Да. Вам нужно просто что-то довольно равномерно распределённое и постоянное. Выясняется, что большинство таких вещей теряют плотность, поэтому найти источники постоянной энергии непросто. Простейшая и лучшая из идей – квинтэссенция, просто скалярное поле, заполняющее Вселенную, и медленно изменяющееся со временем.

А идея квинтэссенции естественна?

Не особенно. Изначально планировалось, что рассмотрев нечто динамическое и изменяющееся, а не просто фиксированное, можно найти какое-то хитроумное объяснение тому, почему тёмная энергия такая слабая, и может быть объяснить и проблему совпадения. Но эти надежды не оправдались.

Как ещё мы можем проверить идею квинтэссенции?

Напрямую – использовать сверхновые, только умнее. В общем: построить карту расширения Вселенной с такой точностью, чтобы было видно, меняется ли со временем плотность тёмной энергии. Обычно это представляется в виде попытки измерения параметра w уравнения состояния тёмной энергии. Если w равен -1, то тёмная энергия постоянна – это энергия вакуума. Если w чуть больше -1, плотность тёмной энергии уменьшается. Если оно чуть меньше -1 (например, -1,1), то плотность тёмной энергии растёт. По многим теоретическим причинам это опасно, но мы всё же должны следить за этим.

Что такое w?

Он называется параметром уравнения состояния, потому что связывает давление тёмной энергии p с его плотностью энергии ρ, через w = p/ρ. Конечно, никто не измеряет давление тёмной энергии, поэтому определение довольно глупое – но это просто исторический случай. Имеет значение то, как тёмная энергия меняется со временем, но в ОТО это напрямую связано с параметром уравнения состояния.

Значит ли это, что давление тёмной энергии отрицательное?

Почему тёмная энергия заставляет Вселенную ускоряться?

Потому что она постоянная. Эйнштейн говорит, что энергия заставляет пространство-время искривляться. В случае Вселенной, это искривление проявляется в виде искривления пространства (а не пространства-времени) и расширения Вселенной. Мы измерили кривизну пространства, и она по сути нулевая. Поэтому постоянная энергия приводит к постоянной скорости расширения. В частности, параметр Хаббла близок к константе, и если вспомнить закон Хаббла, v = H*d, вы поймёте, что если H – практически постоянная, то v будет увеличиваться из-за увеличения расстояний. Вот вам и ускорение.

Если отрицательное давление подобно натяжению, почему она не стягивает всё вместе, а расталкивает в стороны?

На самом деле тёмная энергия заставляет Вселенную ускоряться, потому что она постоянная.

Похожа ли тёмная энергия на антигравитацию?

Нет. Тёмная энергия это не антигравитация, а просто гравитация. Представьте мир с нулевой тёмной энергией, за исключением двух пузырей тёмной энергии. Эти два пузыря не отталкиваются, они притягиваются. Но внутри пузырей тёмная энергия расталкивает пространство, и оно расширяется. Такие вот чудеса неэвклидовой геометрии.

Это новая отталкивающая сила?

Нет. Это просто новы тип источника старой силы – гравитации. Никаких новых сил.

В чём разница между тёмной энергией и тёмной материей?

Это абсолютно разные вещи. Тёмная материя – это некая, пока не открытая нами, частица. Мы знаем о её существовании, потому что видим, как она влияет при помощи гравитации на различные объекты (галактики, скопление, крупномасштабные структуры, реликтовое излучение). Она составляет 23% от Вселенной. Но по сути, это старая добрая материя, просто такая, которую мы (пока) не можем зафиксировать. Она скапливается под воздействием гравитации и рассеивается при расширении Вселенной. Тёмная энергия, с другой стороны, не скапливается и не рассеивается. Она не сделана из частиц, это нечто совсем другое.

Это возможно. Существует не менее двух популярных подходов к этой идее: гравитация f®, которую помогали разрабатывать Марк Филипс и я, и гравитация DGP – Двали, Габададзе и Порати. Первый подход – феноменологический, в нём просто меняется уравнение поля Эйнштейна через исправление действия в четырёх измерениях, а второй использует дополнительные измерения, которые можно зафиксировать только на больших расстояниях. У обеих есть проблемы – не обязательно непреодолимые, но серьёзные – с новыми степенями свободы и сопутствующей этому нестабильностью.

Модифицированная гравитация достойна серьёзного рассмотрения. Но, как и в случае с квинтэссенцией, она порождает больше проблем, чем решает, по крайней мере, пока. Я предпочитаю следующие прогнозы шансов на успех: космологическая константа: 0,9, динамическая тёмная энергия = 0,09, модифицированная гравитация = 0,01.

Что тёмная энергия говорит о будущем Вселенной?

Зависит от того, что такое тёмная энергия. Если это вечная космологическая постоянная, то Вселенная продолжит расширяться, охлаждаться и опустошаться. В результате не останется ничего, кроме пустого пространства.

Космологическая постоянная может быть постоянной временно; то есть, в будущем может произойти фазовый переход, после которого энергия вакуума уменьшится. Тогда Вселенная, возможно, реколлапсирует.

Если тёмная энергия динамическая, то возможно всё. Если она динамическая и увеличивающаяся (w меньше -1 всегда), мы даже можем получить Большой разрыв.

Что же дальше?

Мы хотели бы разобраться с тёмной энергией (или модифицированной гравитацией) путём улучшенных космологических наблюдений. Это означает измерения параметра уравнения состояния, а также улучшение наблюдений за гравитацией в галактиках и кластерах для сравнения различных моделей. К счастью, в то время как в США отказываются от амбициозных научных проектов, Европейское космическое агентство разрабатывает спутник для измерения тёмной энергии. Разрабатываются и наземные научные проекты, и большой обзорный телескоп (Large Synoptic Survey Telescope) должен дать нам очень много после его запуска.

Но ответ может оказаться скучным – тёмная энергия будет простой космологической константой. Это просто одно число, и что с ним можно сделать? В этом случае нам, очевидно, потребуются улучшенные теории, а также вклад из смежных эмпирических источников данных – ускорителей частиц, поисков пятой силы, проверок гравитации – отовсюду, где можно получить информацию о том, как пространство-время и квантовая теория поля сочетаются на базовом уровне.

Читайте также: