Связь информатики с другими науками кратко

Обновлено: 07.07.2024

Информатика как наука занимается изучением информационных процессов и методов их автоматизации на основе программно-аппаратных средств вычислительной техники и средств связи.

Исторически информатика изучала научную информацию и способы ее структуризации, систематизации, хранения и распространения. Появление средств вычислительной техники позволило автоматизировать часть указанных операций. Дальнейшее изучение процессов возникновения, накопления информации, ее структуризации, передачи, обработки и представления потребовало создания специального аппарата, позволяющего описывать, анализировать и систематизировать различные фазы информационных процессов. Так возник аппарат информационного моделирования. Наличие частных моделей информационных процессов позволило целенаправленно использовать средства вычислительной техники исвязи, которые, в свою очередь, совершенствовались для большего удовлетворения потребностей информатики.

Начиная с 1980-х гг различные фазы преобразования информации стали рассматриваться как единый информационный процесс, направленный на удовлетворение информационных потребностей человечества. В этом проявился выход информатики на глобальный уровень, позволяющий говорить о том, что человечество осознало информацию как ресурс развития общества, а информатику как науку, развитие которой позволит обеспечить полное использование этого ресурса. С информатикой связывают решение принципиально новых проблем человечества: создание информационной модели мира; расширение творческого аспекта деятельности человека; переход к безбумажной информатике; доступность информационного ресурса каждому члену общества.

Информатика - практическая наука. Ее достижения должны проходить подтверждение практикой и приниматься в тех случаях, когда они соответствуют критерию повышения эффективности. В составе основной задачи информатики сегодня можно выделить следующие направления для практических приложений:

- архитектура вычислительных систем (приемы и методы построения систем, предназначенных для автоматической обработки данных);

- интерфейсы вычислительных систем (приемы и методы управления аппаратным и программным обеспечением);

- программирование (приемы, методы и средства разработки компьютерных программ);

- преобразование данных (приемы и методы преобразования структур данных);

- защита информации (обобщение приемов, разработка методов и средств защиты данных);

- автоматизация (функционирование программно-аппаратных средств без участия человека);

- стандартизация (обеспечение совместимости между аппаратными и программными средствами, а также между форматами представления данных, относящихся к различным типам вычислительных систем).

Информатика - очень широкая сфера научных знаний, возник­шая на стыке нескольких фундаментальных и прикладных дис­циплин.

Задача информатики состоит в исследовании свойств формаль­ных моделей и дальнейшем их развитии, а также в установлении связи между формальными моделями и реальным миром в данной предметной области.

Естественные науки - физика, химия, биология и другие - имеют дело с объек­тивными сущностями мира, существующими независимо от нашего сознания. Отнесение к ним информатики отражает единство законов обработки информации в системах самой разной природы - искусственных, биологических, общественных.


Рис. 2.1. К вопросу о месте информатики в системе наук

Однако многие ученые подчеркивают, что информатика имеет характерные чер­ты и других групп наук - техническихи гуманитарных(или общественных).

Черты технической науки придают информатике ее аспекты, связанные с созда­нием и функционированием машинных систем обработки информации. Науке информатике присущи и неко­торые черты гуманитарной (общественной) науки, что обусловлено ее вкладом в развитие и совершенствование социальной сферы. Таким образом, информатика является комплексной, междисциплинарной отраслью научного знания, как это изображено на рис. 2.1.

Как комплексная научная дисциплина информатика связана с (рис. 2.2):

- философией и психологией — через учение об информации и теорию познания;

- математикой — через теорию математического моделирова­ния, дискретную математику, математическую логику и тео­рию алгоритмов;

- лингвистикой — через учение о формальных языках и знако­вых системах;

- кибернетикой — через теорию информации и теорию управ­ления;


Рис. 2.2. Связь информатики с другими науками

Роль информатики в развитии общества чрезвычайно велика. Она является научным фундаментом процесса информатизации об­щества. С ней связано прогрессивное увеличение возможностей компьютерной техники, развитие информационных сетей, создание новых информационных технологий, которые приводят к значи­тельным изменениям во всех сферах общества: в производстве, на­уке, образовании, медицине и т. д.

Современное человечество живет в период перехода от индустриального общества к информационному. Процесс, обеспечивающий этот переход, получил название информатизации.

Информатизация – процесс создания, развития и всеобщего применения информационных средств и технологий, обеспечивающих достижение и поддерживание уровня информативности всех членов общества, необходимого и достаточного для кардинально улучшения качества труда и условий жизни в обществе.

Неизбежность информатизации общества обусловлена резким возрастанием роли и значения информации.

Информационное общество характеризуется высокоразвитой информационной сферой, которая включает деятельность человека по созданию, переработке, хранению, передаче и накоплению информации.

Информационное общество имеет следующие основные признаки:

- большинство работающих в информационном обществе (около 80%) занято в информационной сфере, т.е. сфере производства информации и информационных услуг;

- обеспечены техническая, технологическая и правовая возможности доступа к любому члену общества практически в любой точке территории и в приемлемое время к нужной ему информации;

- информация становится важнейшим стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

Информатизация – необходимое условие научно-технического, социального, экономического и политического прогресса в обществе.

Научным фундаментом процесса информатизации общества является научная дисциплина – информатика.

Предмет информатики составляют следующие понятия:

- аппаратное обеспечение средств вычислительной техники;

- программное обеспечение средств вычислительной техники;

- средства взаимодействия аппаратного и программного обеспечения;

- средства взаимодействия человека с аппаратными и программными средствами.

Как видно из этого списка, в информатике особое внимание уделяется вопросам взаимодействия. Для этого даже есть специальное понятие — интерфейс. Методы и средства взаимодействия человека с аппаратными и программными средствами называют пользовательским интерфейсом. Соответственно, существуют аппаратные интерфейсы, программные интерфейсы и аппаратно-программные интерфейсы.

Основной задачей информатики является систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники. Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а также в методическом обеспечении новых технологических исследований.

Информационная технология – это системно-организованная для решения задач управления совокупность методов и средств реализации операций сбора, регистрации, передачи накопления, поиска, обработки и защиты информации на базе применения развитого программного обеспечения, используемых средств вычислительной техники и связи, а также способов, с помощью которых информация предлагается клиентам.

Под новой информационной технологией понимается технология, которая основывается на применении компьютеров, активном участии пользователей в информационном процессе, высоком уровне дружественного пользовательского интерфейса, широком использовании пакетов прикладных программ общего и проблемного назначения, доступа пользователя к удаленным базам данных и программам благодаря вычислительным сетям ЭВМ.

Информационная система осуществляет сбор, передачу и переработку информации об объекте, снабжающую работников различного уровня информацией для реализации функции управления.

Ядро современной информатики образуют три составные части, каждая из которых может рассматриваться как относительно самостоятельная научная дисциплина.

Теоретическая информатика — часть информатики, занимающаяся изучением структуры и общих свойств информации и информационных процессов, разработкой общих принципов построения информационной техники и технологии.


Связь информатики с другими науками:

· Философия и психология: Учение об информации и теории познания

· Математика: Теория математического моделирования; Дискретная математика; Математическая логика; Теория алгоритмов

· Лингвистика: Учение о формальных языках и знаковых системах

· Кибернетика: Теория информации и теория управления

· Физика, химия, электроника и радиотехника: Все аспекты разработки и создания аппаратных средств информатизации

Теоретическая информатика занимается теорией формальных языков и автоматов, теориями вычислимости и сложности, теорией графов, криптологией, логикой (включая логику высказываний и логику предикатов), формальной семантикой и предлагает основы для разработки Компиляторов языков программирования.

Практическая информатика обеспечивает фундаментальные понятия для решения стандартных задач, таких, как хранение и управление информацией с помощью структур данных, построения алгоритмов, модели решения общих или сложных задач. Примеры включают в себя алгоритмы сортировки и быстрого преобразования Фурье.

Одной из центральных тем практической информатики является инженерия программного обеспечения. Речь идет о систематическом процессе разработок от идеи до готового программного обеспечения.

Практическая информатика предоставляет также необходимые инструменты для разработки программного обеспечения, например, компиляторы.

Техническая информатика занимается аппаратной частью вычислительной техники, например основами микропроцессорной техники, компьютерных архитектур и распределенных систем. Таким образом, она обеспечивает связь с электротехникой.

Еще одним важным направлением является связь между машинами. Она обеспечивает электронный обмен данными между компьютерами и, следовательно, представляет собой техническую базу для Интернета.

Прикладная информатика объединяет конкретные применения информатики в тех или иных областях жизни, науки или производства, например, бизнес-информатика, компьютерная лингвистика.

Естественная информатика — это естественнонаучное направление, изучающее процессы обработки информации в природе, мозге и человеческом обществе. Она опирается на такие классические научные направления, как теории эволюции, морфогенеза и биологии развития, системные исследования, исследования мозга, ДНК, теория менеджмента и группового поведения, история и другие.

1. Теоретическая информатика (Математическая логика, Вычислительная математика, Теория информации, Системный анализ, Теория принятия решений)

2. Искусственный интеллект (Психолингвистика, Когнитивная психология, Робототехника, Экспертные системы)

3. Программирование (Прикладное, Системное: Операционные системы, Трансляторы, языки программирования)

6. Кибернетика (Автоматическое управление, Бионика, Распознавание образов, Гомеостатика, Математическая лингвистика)

1. Теоретическая информатика. Теоретический раздел любой науки базируется на математических методах исследования. Это относится и к информатике. Она использует методы математики для построения и изучения моделей обработки, передачи и использования информации, создаёт тот теоретический фундамент, на котором строится всё здание информатики.

2. Искусственный интеллект. Это направление информатики - самое молодое, возникшее в середине 70-х годов. Однако именно искусственный интеллект определяет стратегические направления развития информатики. Основная цель работ в области искусственного интеллекта - стремление проникнуть в тайны творческой деятельности людей, их способности к овладению знаниями, навыками и умениями. Для этого необходимо раскрыть те глубинные механизмы, с помощью которых человек способен научиться практически любому виду деятельности.

3. Программирование. Программирование как научное направление возникло с появлением вычислительных машин и только программное обеспечение определяет эффективность использования ЭВМ. В настоящее время это достаточно продвинутое направление информатики. В этой области работает значительный отряд специалистов, которые подразделяются на системных и прикладных программистов.

4. Прикладная информатика. Достижения современной информатики широко используются в различных областях человеческой деятельности: в научных исследованиях (АСНИ - автоматизированные системы для научных исследований), в разработке новых изделий (САПР - системы автоматизированного проектирования), в информационных системах (АИС - автоматизированные информационные системы), в управлении (АСУ - автоматические системы управления), в обучении (АОС - автоматизированные обучающие системы) и др.

6. Кибернетика. Термин "кибернетика" ( от греческого "кормчий") появился летом 1947 г. как результат обсуждения новой терминологии группой ученых во главе с Норбертом Винером, в течение ряда лет проводивших исследования в различных областях научных знаний (математической статистики, электросвязи, нейрофизиологии и др.), связанных с вопросами управления с помощью различного рода информационных сигналов

Наиболее тесно информатика связана с кибернетикой - наукой о закономерностях управления сложными динамическими системами. В качестве таких сложных динамических систем рассматриваются и живые организмы, и социальные сообщества, и технические системы. Другой наукой, с которой тесно связана информатика является семиотика, исследующая свойства знаковых систем (естественных и искусственных языков). Поскольку знак есть носитель информации, семиотика получает большое прикладное значение при исследовании и проектировании знаковых систем, используемых в процессах передачи и обработки информации. Тесно связана с наукой о языке - лингвистикой. Информатика использует такие понятия, как язык, слово, алфавит, предложение, текст. Одной из важнейших задач лингвистики является изучение структуры текста. Развитие информатики тесно связано с достижениями психологии, которые активно используются при изучении мыслительных процессов создания и использования информации, природы информационных потребностей и их формулировании в запросы, при разработке эффективных методов чтения, машинных систем информационного обслуживания, конструировании информационных устройств.

Информатизация – это системный, междисциплинарный процесс внедрения достижений методов информатики и новых информационных технологий в общественную жизнь, в научно-технические, социально–экономические, правовые и другие институты государства с целью повышения их эффективности, всестороннего развития личности.

Правовые основы информатизации – правовые нормы и законы, регулирующие актуализацию информации и информационных систем, технологий.

В процессе информатизации общества необходимо:

создать алгоритмическую и техническую базу;

создать индустрию информационных потоков, технологий;

подготовить системы информатизации и совершенствования управления;

обеспечить информационную безопасность и правовое обеспечение;

воспитать информационно грамотных членов общества.

Нужно учитывать регулятивная функция права, воздействие ее на информатизацию.

Нужно учитывать трансформирующая роль информатизации, воздействие ее на правовую систему.

Информатизация правовых систем направлена, в основном, на правотворческую, правоприменительную и правоохранительную деятельность.


  1. Природа, сущность и свойства информации. Основные определения понятия информации.

Передаваемость информации с помощью каналов связи (в том числе с помехами) хорошо исследована в рамках теории информации К. Шеннона. В данном случае имеется ввиду несколько иной аспект – способность информации к копированию, т.е. к тому, что она может быть “запомнена” другой макроскопической системой и при этом останется тождественной самой себе. Очевидно, что количество информации не должно возрастать при копировании.

Воспроизводимость информации тесно связана с ее передаваемостью и не является ее независимым базовым свойством. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость информации, т.е. что при копировании информация остается тождественной самой себе.

Фундаментальное свойство информации – преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может. Свойство стираемости информации также не является независимым. Оно связано с таким преобразованием информации (передачей), при котором ее количество уменьшается и становится равным нулю.

Высшей формой информации, проявляющейся в управлении в социальных системах, являются знания. Это наддисциплинарное понятие, широко используемое в педагогике и исследованиях по искусственному интеллекту, также претендует на роль важнейшей философской категории. В философском плане познание следует рассматривать как один из функциональных аспектов управления. Такой подход открывает путь к системному пониманию генезиса процессов познания, его основ и перспектив.

H =log2 2 = 1 бит (1 двоичная единица).

Введя в формулу Р. Хартли указанные вероятностные значения (p), К. Шеннон получил новые выражения для определения количества информации. Для одного символа это выражение приобретает вид:

Законы логики высказываний - это такие выражения, которым всегда соответствует истинное высказывание, какие бы подстановки значений мы ни делали вместо переменных. В алгебре высказываний логические законы выражаются в виде формул.

1.1. Закон тождества: А = А

- всякая мысль тождественна самой себе, то есть "А есть А", где А – любое высказывание.

2. Закон исключенного третьего: А V ¬А = 1

- в один и тот же момент времени высказывание может быть либо истинным, либо ложным, третьего не дано. Истинно либо А, либо не А.

3. Закон непротиворечия: ¬(¬ А ^ А) = 1

- не могут быть одновременно истинными суждение и его отрицание. То есть, если высказывание А - истинно, то его отрицание ¬А должно быть ложным (и наоборот). Тогда их произведение будет всегда ложным.

Именно эта формула часто используется при упрощении сложных логических выражений.

Иногда этот закон формулируется так: два противоречащих друг другу высказывания не могут быть одновременно истинными.
¬ ¬А = А

Сколько бы раз мы ни повторяли "на улице тепло и на улице тепло" ни на один градус теплее от этого не станет, аналогично, от повторения “телевизор включен или телевизор включен” значение высказывания не меняется.

13. А V В = В V А

15. А V (В V С) = (А V В) V С

16. А ^ (В ^ С) = (А ^ В) ^ С

17. А V (В^С) = (АVВ) ^ (АVС)

дизъюнкции относительно конъюнкции

18. А ^ (ВVС) = (А ^ В) V (А ^ С)

конъюнкции относительно дизъюнкции

Закон 18 аналогичен дистрибутивному закону в алгебре, а закон 17 аналога не имеет, он справедлив только в логике. Доказательство его удобнее всего провести по таблице истинности.

1 2 3 4 5 6 7 8 9

А B C 2  3 1 V 4 1 V 2 1 V 3 6  7 5 = 8

0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 1 0 1

0 1 0 0 0 1 0 0 1

0 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1

1 0 1 0 1 1 1 1 1

1 1 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1

ЗАКОНЫ де МОРГАНА

21. ¬(А V В) = ¬ А ^¬ В

Отрицание одновременной истинности

Мнемоническое правило. В левой части тождества операция отрицания стоит над всем высказыванием. В правой части она как бы разрывается и отрицание стоит над каждым из простых высказываний, но одновременно меняется операция дизъюнкция на конъюнкцию и наоборот.

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка, а при решении задач они требуются. Существуют формулы замены данных операций с использованием только операций отрицания, дизъюнкции и конъюнкции. Так, вместо операции импликации можно использовать следующее тождественное выражение:

Для замены операции эквивалентности существует два выражения:

A B = (A ^ B) V (¬A ^ ¬B)

A B = (A V ¬B) ^ (¬A V B)

Знание данных формул помогает, например, правильно построить отрицание импликации.

Рассмотрим следующий пример.

Пусть дано высказывание:

Е = "Неверно, что если я выиграю конкурс, то получу приз"

Пусть А = "Я выиграю конкурс", В = " Я получу приз", тогда

Е = ¬(A → B) = ¬(¬A V B) = ¬¬A ^ ¬B = A ^ ¬B,

то есть Е = "Возможно, что я выиграю конкурс, но приз не получу".

Интерес представляют и следующие формулы:

A B = (A → B) ^ (B → A)

• Доказать их справедливость можно также с помощью таблиц истинности. Интересно их выражение в разговорном языке.

Для того, чтобы использовать какие-либо законы в практике, необходимо быть уверенным в их правильности. Доказать закон алгебры высказываний можно:

построив таблицу истинности для правой и левой части закона;

выполнив эквивалентные преобразования над правой и левой частью формулы для приведения их к одному виду;

с помощью диаграмм Эйлера-Венна;

путем правильных логических рассуждений.

Упрощение сложных высказываний - это замена их на равносильные им на основе законов алгебры высказываний.

При упрощении сложных высказываний используются следующие основные приемы:

по свойству констант

X = Х ^ 1, Х = X V 0

по закону исключенного третьего

по закону противоречия

по закону идемпотентности

В = В V В = B V B V B V B,

C = C ^ C = C ^ C ^ C ^ C

по закону двойного отрицания


  1. Логические основы построения ЭВМ. Базовые логические элементы

Логические основы построения ЭВМ. Базовые логические элементы.
В основе обработки компьютером информации лежит алгебра логики, разработанная Дж. Булем. Было доказано, что все электронные схемы ЭВМ могут быть реализованы с помощью логических элементов И, ИЛИ, НЕ.

При подаче на вход схемы сигнала низкого уровня (0) транзистор будет заперт, т.е. ток через него проходить не будет, и на выходе будет сигнал высокого уровня (1). Если же на вход схемы подать сигнал высокого уровня (1), то транзистор “откроется”, начнет пропускать электрический ток. На выходе за счет падения напряжения установится напряжение низкого уровня. Таким образом, схема преобразует сигналы одного уровня в другой, выполняя логическую функцию.

Функция “ИЛИ” - логическое сложение (дизъюнкция), ее результат равен 1, если хотя бы 1 из аргументов равен 1.

Здесь транзисторы включены параллельно друг другу. Если оба закрыты, то их общее сопротивление велико и на выходе будет сигнал низкого уровня (логический “0”). Достаточно подать сигнал высокого уровня (“1”) на один из транзисторов, как схема начнет пропускать ток, и на сопротивлении нагрузки установится также сигнал высокого уровня (логическая “1”).

Если на входы Вх1 и Вх2 поданы сигналы низкого уровня (логические “0”), то оба транзистора закрыты, ток через них не проходит, выходное напряжение на Rн близко к нулю.

Пусть на один из входов подано высокое напряжение (“1”). Тогда соответствующий транзистор откроется, однако другой останется закрытым, и ток через транзисторы и сопротивление проходить не будет. Следовательно, при подаче напряжения высокого уровня лишь на один из транзисторов, схема не переключается и на выходе остается напряжение низкого уровня.

И лишь при одновременной подаче на входы сигналов высокого уровня (“1”) на выходе мы также получим сигнал высокого уровня.


  1. Системы счисления. Перевод из одной системы счисления в другую.

  1. Кодирование и представление информации в ЭВМ.

Наряду с естественными языками были разработаны формальные языки (системы счисления, язык алгебры, языки программирования и др.). Основное отличие формальных языков от естественных состоит в наличии строгих правил грамматики и синтаксиса.

Представление информации может осуществляться с помощью языков, которые являются знаковыми системами. Каждая знаковая система строится на основе определенного алфавита и правил выполнения операций над знаками.

Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером и так далее. Преобразование информации из одной формы представления (знаковой системы) в другую называется кодированием.

Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. В дальнейшем будет приведена такая таблица, которая устанавливает соответствие между графическими изображениями знаков алфавита и их компьютерными кодами.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре происходит кодирование знака, то есть преобразование его в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс - декодирование, когда из компьютерного кода знак преобразуется в его графическое изображение.

Кодирование - это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы.
Двоичное кодирование информации в компьютере

В компьютере для представления информации используется двоичное кодирование, так как удалось создать надежно работающие технические устройства, которые могут со стопроцентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

• электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

• участок поверхности магнитного носителя информации (намагничен/размагничен);

• участок поверхности лазерного диска (отражает/не отражает);

• триггер (см. п. 3.7.3), может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.
Информация в компьютере представлена в двоичном коде, алфавит которого состоит из двух цифр (0 и 1).

Цифры двоичного кода можно рассматривать как два равновероятных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания Binary digiT (двоичная цифра).

Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом, две цифры несут информацию в 2 бита, три цифры - в 3 бита и так далее. Количество информации в битах равно количеству цифр двоичного машинного кода.

Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Информатика изучает структуру и общие свойства информации, а также закономерности всех процессов обмена информацией при непосредственном устном и письменном общении специалистов до формальных процессов обмена посредством различных носителей информации. Значительная часть этих процессов составляет деятельность по сбору, переработке, хранению, поиска и распространению информации. Информатика – наука, изучающая вопросы обработки информации в различных областях человеческой деятельности (поиск, сбор, хранение, преобразование, использование, передача информации). Объект изучения – закономерности и принципы движения информации. Предмет изу9чения – информационные процессы. Информатика связана с философией, психологией, математикой, лингвистикой, кибернетикой, физикой, химией, электроникой, радиотехникой…. Формирование информатики как науки происходило в XX веке, что было связано с развитием вычислительной техники.

Отсюда следует, что появление информатики неразрывно связано с существованием компьютерной техники. Хотя вычислительные машины существовали и до 70-80-х годов, их относительно массовое распространение пришлось именно на эти годы. Именно в это время заговорили и об информатике как о научной дисциплине.

Изначально компьютер был инструментом для автоматизации трудоемких вычислений. Однако постепенно эволюционировал в инструмент для работы фактически с любой информацией, а не только числовой. Получая исходную информацию в виде чисел, таблиц, изображений, текстов программное обеспечение вычислительных машин способно преобразовывать ее в другую информацию, а также сохранять и передавать в той или иной форме.

Наука информатика стала заниматься разработкой информационных моделей объектов реального мира, для которых вообще можно создать информационную модель. Т.к. материальный мир весьма разнообразен, то и объекты изучения информатики также очень разнообразны. В связи с этим информатика – очень разнородная наука, что затрудняет ее однозначное определение.

В свое время Е.П. Ершов определил информатику так: Информатика - это находящаяся в процессе становления наука, изучающая законы и методы накопления, передачи и обработки информации с помощью ЭВМ, а также область человеческой деятельности, связанная с применением ЭВМ. Можно предположить, что теоретическая информатика – это наука, возможно до сих пор, находящаяся в становлении и развитии.

Информатика тесно связана с математикой, т.к. опирается на ее достижения. Это объясняется тем, что объекты естественных и технических наук, а также социальные явления можно описать с помощью понятий математики – функций, систем уравнений, неравенств и др. При этом предмет изучения информатики – информация – общенаучное и социальное понятие. Информатика – очень широкая сфера научных знаний, возникшая на стыке нескольких фундаментальных и прикладных дисциплин.

Как комплексная научная дисциплина информатика связана :

• с философией и психологией – через учение об информации и теорию познания;

• с математикой – через теорию математического моделирования, дискретную математику, математическую логику и теорию алгоритмов;

• с лингвистикой – через учение о формальных языках и о знаковых системах;

• с кибернетикой – через теорию информации и теорию управления;

Читайте также: