Световая микроскопия в цитологии кратко

Обновлено: 04.07.2024

Зародившись в XVI веке оптические приборы произвели настоящую революцию, как в научной, так и в прикладной сферах биологических наук. Эти инструменты впервые позволили человеку заглянуть в мир микроскопических существ и отдельных клеток, дали возможность изучать биологические объекты чрезвычайно малых размеров и их отдельные элементы. С тех пор методы микроскопии прошли длинную эволюцию, постоянно совершенствуясь и достигая всё большей разрешающей способности. Благодаря этому, методы микроскопии нисколько не потеряли своей актуальности и по сей день, находя самое широкое применение в биологических и медицинских науках, лабораторных и клинических исследованиях, позволяя изучать морфологию и физиологию клеток – строительных блоков всех живых существ. Так же они применяются в исследованиях наноматериалов, при выполнении работ, требующих особой тонкости, таких как микрохирургия. С годами были разработаны различные конструкции микроскопа (прямые, инвертированные, стереоскопические микроскопы), а также большое количество модификаций метода микроскопии, таких как светлопольная, фазово-контрастная, темнопольная, люминесцентная, лазерная конфокальная и мультифотонная микроскопия. Микроскопия является неотъемлемой частью многих исследовательских работ, при этом регулярно появляются новые методы и перспективы для их применения.


2. Spasov A.A., Bugaeva L.I., Bukatin M.V., Kuzubova E.A., Rebrova D.N. The influence of a new antioxidatic preparation on the reproductive function of male-rats // European Journal of Natural History. – 2007. – № 1. – С. 115–116.

3. Stevens A., Yang H., Kovarik L., Yuan X. Compressive Sensing in Microscopy: a Tutorial // Microscopy and Microanalysis, 2016. Т. 22. № . S3. Р. 2084–2085. DOI: 10.1017/S1431927616011260.

4. Снегирева Л.В. Оптические методы исследования в биологии и медицине // Международный журнал экспериментального образования. – 2017. – № 2. – С. 51–52.

5. Феофанов А.В. Cпектральная лазерная сканирующая конфокальная микроскопия в биологических исследованиях // Успехи биологической химии. – 2007. – № 47. – С. 371–410.

Микроскопия – это изучение объектов и элементов чрезвычайно малых размеров. Человеческий глаз имеет предел разрешения и детализации таких объектов, диктуемый его природными свойствами. Для преодоления этого биологического ограничения используются различные приборы-микроскопы. На сегодняшний день, одним из ведущих методов исследования микрообъектов в биологических науках является оптическая (она же световая) микроскопия. Световые микроскопы являются важнейшими инструментами как при проведение некоторых рутинных медицинских анализов, так и в биологических и медико-биологических научных исследованиях. Они незаменимы при изучении морфологических свойств микробиологических объектов, к которым относятся насекомые и их части, многие паразиты, клетки растений и животных, простейшие и бактерии. Возможность изучения топографии, морфологии, ультраструктуры позволило человеку значительно расширить свои знания о микроорганизмах. В медицине, микроскопы позволяют проводить подсчёт клеток крови, анализ биопсий на структуру, морфологию и наличие определённых включений. С применением молекулярно-биологических техник, появилась возможность выявить локализацию отдельных химических веществ.

Сущность оптических методов

Современная световая микроскопия обеспечивает увеличение до 2–3 тысяч раз, что является достаточным для изучения различных форм жизни на клеточном уровне и других биологических объектов [1, 2]. Основными характеристиками любого микроскопа являются разрешающая способность и контраст. Разрешающая способность – минимальное расстояние, на котором находятся две точки, различаемые как раздельные объекты. Контраст –возможность различать объекты и отдельные детали от их фона. Если различие в яркости объекта и фона составляет менее 3 – 4 %, то его невозможно различить, даже если оптика микроскопа теоретически способна разрешить его детали. На контраст влияют как свойства объекта, которые изменяют световой поток по сравнению с фоном, так и способности оптики прибора уловить возникающие различия в свойствах луча. Главным ограничением для возможностей светового микроскопа является волновая природа света, которое не позволяет увидеть объекты, размеры которых сопоставимы с волновой длиной электромагнитного излучения светового диапазона, т.е. меньше 1 микрометра.

Для различных нужд создаются оптические системы различной конструкции [3, 4]:

Прямой микроскоп является наиболее часто встречаемой конструкцией. Такая схема используется чаще всего при изучение прозрачных и полупрозрачных микрообъектов размеров, сопоставимых с клетками. Лабораторные микроскопы особенно широко применяются в различных областях биологии (ботанике, микробиологии, цитологии) и медицины (обычно это микробиологический и гистологический анализ материала).

Инвертированная схема микроскопа отличается от прямой тем, что в ней объективы находятся не над, а под исследуемым предметом. Это позволяет оптимизировать конструкцию инструмента для работы с достаточно большими по своему объему объектами, вроде флаконов для культивирования клеток. В зависимости от назначения и особенностей конструкции, инвертированные микроскопы могут быть биологическими, люминесцентными, металлографическими и др. Подобные приборы широко используются при различных научных и лабораторных исследованиях в микробиологии и медицине.

Стереоскопические или стереомикроскопы имеют в своей конструкции два расположенных под углом объектива, и благодаря этому позволяют получать стереоскопическое изображение исследуемого объекта. Стереомикроскопы обладают существенно большей глубиной резкости, чем обычные, что позволяет использовать их для изучения относительно крупных и выпуклых микрообъектов – таких как части растений, грибов, колонии микроорганизмов. Выделяют два типа конструкции световых микроскопов: схема Грену и оптическая система с общим главным объективом.

Светлопольная микроскопия позволяет исследовать объекты в проходящем свете в светлом поле [2,5]. Данный вид микроскопии предназначен для исследования морфологии, размеров клеток, их взаимного расположения, структурной организации клеток и других особенностей. У светового микроскопа максимальная разрешающая способность составляет 0,2 мкм, что обеспечивает высокоточное увеличение микроскопа до 1500х.

Фазово-контрастная микроскопия (рис. 1) используется для получения высококонтрастных изображений прозрачных образцов, таких как живые клетки, микроорганизмы, тонкие кусочки ткани, литографические узоры, волокна, латексные дисперсии, осколки стекла и субклеточные частицы, включая ядра и другие органеллы. Метод контраста участка использует оптический механизм для того, чтобы перевести мельчайшие изменения в участке в соответствующие изменения в амплитуде, которые можно визуализировать как разницы в контрасте изображения. Одно из главных преимуществ микроскопии контраста участка в том, что живущие клетки можно рассмотреть в их естественном положении, без предварительного убийства. В результате динамика протекающих биологических процессов может наблюдаться и регистрироваться в высоком контрасте, с высокой четкостью мельчайших деталей образца.

bor-1.tif

bor-2.tif

Лазерная конфокальная микроскопия

bor-3.tif

Мультифотонная микроскопия схожа с конфокальной и обеспечивает четкие преимущества для трехмерной визуализации [6]. Она хорошо подходит для визуализации живых клеток, особенно в интактных тканях, таких как срезы мозга, эмбрионы, а так же целые органы или небольшие организмы. Эффективная чувствительность флуоресцентной микроскопии, особенно при работе с толстыми образцами, как правило, ограничена вспышкой без фокуса. Это ограничение значительно сокращается в конфокальном микроскопе, с помощью конфокального отверстия для отклонения фоновой флуоресценции фокуса и получения несжатых оптических секций менее 1 микрометра. Мультифотонная микроскопия имеет преимущества: 1. Вследствие значительно меньшего поглощения тканей и клеток в ИК – области по сравнению с УФ, уменьшается повреждение живых клеток фотоиндуцированными процессами. 2. Достигается большая глубина проникновения излучения в биологические объекты. 3. Отсутствует возбуждение и выцветание флуорохромов вне фокального микрообъема, поэтому конфокальная диафрагма не требуется.

Эпоха, когда оптическая микроскопия была чисто описательным инструментом прошла. В настоящее время формирование оптического изображения является лишь первым шагом к анализу данных. Микроскоп выполняет этот первый шаг в сочетании с электронными детекторами, процессорами изображений и устройствами отображения, которые можно рассматривать как расширения системы формирования изображения. Компьютеризированное управление фокусом, сценическим положением, оптическими компонентами, ставнями, фильтрами и детекторами широко распространено и позволяет проводить экспериментальные манипуляции, которые невозможны для человека при использовании механических микроскопов. Возрастающее применение электрооптики в флуоресцентной микроскопии привело к созданию оптических пинцетов, способных манипулировать субклеточными структурами или частицами, изображениями отдельных молекул и широким спектром сложных спектроскопических приложений.

Клетка – основа живой материи на Земле

Наука цитология изучает строение клетки, как основополагающей и функциональной частицы живой материи на планете.Давайте на рисунке 1 вспомним строение клетки и ее форму.

Рис. 1 Клетка – основа живой материи на Земле

Основными задачами этой науки есть следующее:
1) Изучать строение и функционирование клеток;
2) Изучать химический состав клетки и функции клеточных компонентов;
3) Исследовать процесс воспроизведения и размножения клеток;
4) Наблюдать и анализировать, как клетка может приспосабливаться к постоянно меняющимся условиям среды, кторая ее откружает;
5) Исследовать особенности структуры клеток, которые выполняют специализированную функцию;
6) Изучать развитие отдельных клеточных структур, которые выполняют специфическую функцию.
Для решения таких важних и сложных задач в цитологии применяются различные методы. В современное время мы смогли выяснить природу, функции и распределение органелл цитоплазмы после того, как современная биология клетки достигла определенных возможностей в развитии, а именно:
1) метод электронной микроскопии;
2) метод фракционирования клеток. Этот метод помогает биохимикам выделять отдельные фракции клеток, в которых содержатся определенные органеллы. А потом изучать отдельные реакции метаболизма в этих клетках;
3) метод радиоавтографии, который позволяет прямое изучение определенных метаболических реакций в органелах клетки.
Ребята, предлагаю вашому вниманию видео, из котрого вы узнаете, что же изучает наука цитология.

Видео YouTube


Давайте их детально изучим и постараемся понять суть и значение каждого метода.
Световая микроскопия является главным методом для изучения клеток. Ребята, предлагаю вам посмотреть следующее видео про микросокопы.

Видео YouTube


Световые микроскопы с использованием солнечного или искусственного света дают нам возможность определить мельчайшие особенности строения отдельной клетки, а также, ее органеллы и оболочку. Дети, на рисунке 2 вы можете увидеть, как выглядит световой микроскоп.

Рис. 2 Световая микроскопия – основной метод в цитологии
Для изучения тонкого строения клеточных структур, кторые не видны человеческому глазу, широко используют электронную микроскопию. В электронном микроскопе самым основной деталью и принципиально важной является пучок электронов.
В цитологи часто используют цито- и гистохимические методы. Они основаны на выборочном воздействии реактивов, красителей для определенных химических веществ цитоплазмы. Эти методы позволяют нам детально изучить химический состав клетки, выяснить местонахождение отдельных химических веществ.
Метод дифференциального или разделительного центрифугирования помогает с помощью центрифуги разделять клетку на отдельные и разные по массе и строению составные части. А потом детально изучать химический состав каждой части.


Рис. 3 Использование рентгена в изучении органов
Рентгеноструктурный анализ позволяет ученым определять расположение в пространстве, а также, физические свойства молекул , которые входят в клеточные структуры. Такой метод позволяет, например, изучить молекулы ДНК и белка. Ребята, на рисунке 3 вы можете частино понять суть этого метода через рентген снимок.

Контролирующий блок №1

1) Что такое цитология?
2) Какие задачи существуют в этой науке?
3) Как человечество решает эти задачи и какие использует для этого методы?

Часть 2. Авторадиография, Метод клеточных культур, Метод микрохирургии, фракцирование, радиоавтография.

Продолжим знакомство и изучение методов цитологии.
Авторадиография – еще один метод, который позволяет обнаруживать места синтеза биополимеров, определять пути и способы переноса питательных веществ в отдельной клетке.

Рис. 4 Деление клетки под микроскопом

Суть этого метода состоит в том, чтобы регистрировать вещества, каждый из которых помечен радиоактивными изотопами. Кино- ифотосъемка помогает ученням фиксировать и в дальнейшем показывать и изучать уже детально отдельные процессы жизнедеятельности клеток. Например, процесс деления клетки. На рисунке 4 давайте вспомним этапы деления клетки.
Метод клеточных культур заключается в выращивании клеток или целых организмов из отдельных клеток с помощью питательных веществ и в условиях погной стерильности. Этот метод дает нам возможность изучать клетки разных органов, тканей растений и животных, а также, деление клетки, их дифференциации и специализации.
Метод микрохирургии применяется для исследования живых клеток, для выяснения функций отдельных органов. Это метод оперативного вмшательства и воздействия на клетку, в т.ч. удаление или вживление отдельных органелл. Этот метод также предусматривает пересадку органелл из клетки в клетку, введение крупних макромолекул в клетку. На рисунке 5 вам будет понятна суть метода микрохирургии.

Рис. 5 Микрохиругия
Фракцирование помогает выделять органеллы из отдельных клеток. Этот метод широко используется и имеет саме важные и главные результаты.
Он помогает определять химический состав органелл и
ферменты, которые в них находятся. Результаты этого метода позволяют понищать суть и значение их функций в клетке.
Сначала клетки доводят до разрушения с помощью гомогенизации и в определенной бреде. Эта середа гарантирует сохранность органелл и препятсвует их агрегации. Мембранные переплетения, эндоплазматический ретикулум и плазматическая мембрана распадаются на фрагменты и позволяют ученням тщательно изучать их строение и функции.
Дети, на рисунке 6 вы можете видеть фракционную частицу клетки, кторая получена данным методом.
[[Выделение фракцій клетки под микроскопом|]]
Рис. 6 Выделение фракцій клетки под микроскопом
Еще один относительно новый метод помог человечеству безгранично расширить свои возможности в световой и электронной микроскопии.
Данный метод получил название радиоавтография. Это самый современный метод, возникший после стремительного развития ядерной физики, в результате которого мы смогли выделить радиоактивные изотопы разных элементов.
С помощью рисунка 7, ребята, давайте разберемся, что такое изотоп.

Рис. 7 Что такое изотопы?
Для этого метода нужны изотопы тех элементов, которые используются клеткой или могут связываться с веществами, используемыми клеткой, и которые можно вводить животным или добавлять к культурам в количествах, не нарушающих нормального клеточного метаболизма.
Ребята, в следующем видео вы поймете, что такое нанотехнологии и их роль в цитологи.

Видео YouTube

Радиоактивный изотоп


Поскольку радиоактивный изотоп (или помеченное им вещество)
участвует в биохимических реакциях так же, как его нерадиоактивный аналог, и в то же время испускает излучение, путь изотопов в организме можно проследить с помощью различных методов обнаружения радиоактивности. Дети, на рисунке 8 показан радиоактивный изотоп со свои излучением.

Рис. 8 Радиоактивный изотоп
Один из способов обнаружения радиоактивности основан на ее способности действовать на фотопленку подобно свету; но радиоактивное излучение проникает сквозь черную бумагу, используемую для того, чтобы защитить фотопленку от света, и оказывает на пленку такое же действие, как свет.

Контролирующий блок №2

1) Назовите основной метод в цитологии. Насколько важны результаты этого метода в изучении клетки и ее органелл?
2) Какой вы знаете последний и самый новый метод в цитологии?

Задание.

Составить сравнительную таблицу, в которой провести анализ всех изсвестных методов в цитологи.

1 (5).jpg

В \(30\)-х годах \(XX\) века появился электронный микроскоп, который позволил увидеть компоненты клеток, имеющие размер всего \(1\) нм. Этот прибор даёт возможность получать изображение объектов благодаря использованию пучка электронов.

Современные методы флуоресцентной и конфокальной микроскопии позволяют получать микроскопические изображения с максимальным разрешением, а сканирующий электронный микроскоп даёт объёмные изображения предметов.

800px-Bronchiolar_epithelium_4_-_SEM.jpg


Рис. \(3\). Изображение эпителия трахеи

Существенный недостаток электронного микроскопа — невозможность исследования живых клеток (при подготовке к электронной микроскопии клетки нужно обрабатывать особым способом, из-за чего они погибают). Поэтому, если необходимо пронаблюдать длительные процессы, происходящие в живой клетке, применяют фотосъёмку или замедленную киносъёмку через световые микроскопы большой мощности.

Для установления роли химического соединения в клетке используют радиоактивную метку. Один из атомов в молекуле исследуемого вещества заменяют на радиоактивный изотоп. Чаще всего используют изотопы фосфора ( P 32 ), водорода ( H 2 ) и углерода ( C 14 ). Молекулу с таким атомом можно обнаружить специальными приборами или по её способности засвечивать фотоплёнку.

Метод ультрацентрифугирования применяют для выделения клеточных органоидов. Пробирки с клеточным материалом очень быстро вращают в специальных приборах — центрифугах. Органоиды клеток отличаются своими массами и размерами, поэтому под действием центробежной силы они оседают с разными скоростями. Так выделяют митохондрии, рибосомы и некоторые другие органоиды клетки.

centrifuge-3291253_640.jpg

Сейчас учёные могут использовать также разные современные методы, позволяющие изучать клетку на молекулярном уровне, в связи с чем активно развивается наука — молекулярная биология .

Основные методы исследования строения и функций клетки

Усовершенствование приборов, развитие физических и химических методов исследования напрямую повлияли на достижения в области науки о клетке.

Какие методы используют для изучения строения и функций клеток?

Сегодня в цитологии используются методы исследования клетки, основывающиеся на наработках в области химии, биохимии, молекулярной биологии. Все они нацелены на изучение структуры, функций и химизма клеток.

Среди всех методов изучения клетки особенно стоит выделить микроскопические и, в первую очередь, электромикроскопические. Благодаря им есть возможность уточнить детали строения клеток на различных уровнях — начиная клеточным и заканчивая молекулярным.

Световая микроскопия

Микроскопирование как метод изучения мелких биологических объектов вроде клеток и тканей применяется более чем 300 лет. Начиная с первого использованного в исследовательских целях микроскопа происходило постоянное его совершенствование.

Световая микроскопия основана на том, что лучи света проходят через прозрачный объект и попадают затем на систему линз объектива и окуляра микроскопа. Важная часть микроскопа — его разделительная способность: он может предоставлять отдельные изображения двух объектов, расположенных в непосредственной близость друг от друга.

Но у разделительной способности есть ограничение: это длина волны света. Чем меньше этот показатель, тем выше его разделительная способность.

Световой микроскоп имеет разделительную способность, которую ограничивает длина волну фиолетовой части видимого света — это 200 нм. Увеличение в световом микроскопе достигает 2500 раз.

Электронная микроскопия

Шаг вперед в области микроскопирования — электронный микроскоп, который был сконструирован в 1931 году Эметом Руска.

Роль светового луча в электронном микроскопе отводится пучку электронов: он фокусируется магнитами, а не линзами.

Если говорить о трансмиссионном электронном микроскопе, то здесь электроны проходят через объект исследования так же, как лучи света в световом микроскопе. Но важно, чтобы поддерживался высокий уровень вакуума. Как итог — пучок электронов создает на фотопленке изображение объекта.

В случае сканирующего электронного микроскопа, электроны отбиваются от поверхности объекта и в движении создают изображение. Благодаря такому микроскопу стало возможным исследовать некоторые объекты при их жизни.

Любые микроскопы позволяют получить изображение за счет того, что одни части исследуемого объекта поглощают или отбивают больше света или электронов, чем другие. Световые микроскопы работают с красителями. В трансмиссионных микроскопах вместо красителей применяется напыление платиной или золотом — у них есть способность отбивать электроны.

Для получения покрытой льдом поверхности при работе со сканирующим микроскопом практикуют замораживание материала.

Методы центрифугирования и меченых атомов

При помощи метода центрифугирования ученые изучают отдельные клеточные структуры. Для этого клетки проходят предварительное измельчение, после чего центрифугируются. Отдельные образовавшиеся фракции — и есть предмет изучения ученых.

Если нужно изучить место, в котором произошли определенные биохимические процессы в клетке, то используется метод меченых атомов. Если один из атомов определенного клеточного элемента заменить радиоактпвным изотопом, то с помощью прибора можно будет увидеть миграцию, локализацию и превращение этих веществ в клетке.

Метод культуры клеток и тканей

Какие методы используют для изучения строения и функций клетки помимо цитологических исследований?

Методы цитологических исследований, описанные выше, в качестве материала для исследований используют клетку (перед этим она умерщвляется). Однако не менее интересными являются исследования, материалом которых выступает живая клетка. Метод культуры клеток и тканей — один из тех методов, с помощью которого есть возможность изучить определенные моменты жизнедеятельности клеток, инкубированные в специальные питательные среды. Это наиболее простой метод изучения жизнедеятельности клетки.

С помощью метода культуры клеток и тканей — современного метода исследования клетки — выращиваются многоклеточные организмы и ткани — из одной клетки, помещенной в питательную среду.

Этот метод изучения клеток считается достаточно ценным как минимум по двум причинам. Во-первых, в центре его внимания — клетка как природная модель, единица биоактивности, которая делает условия эксперимента близкими к нативным. Во-вторых, клетка или ткань освобождаются из-под влияния коррелятивных связей и зависимостей материнского организма. Речь идет о создании условий in vitro — они поддаются управлению и регуляции.

В этом случае нельзя говорить об обеспечении полных условий жизни ткани, так как регуляторные влияния организма отсутствуют. Но с помощью этого метода у ученых есть возможность исследовать рост, деление и движение клеток, изучать, как на клетки влияют различные физические и химические факторы.

Комплексные методы исследования клеток

Перечисленные основные методы исследования клеток позволяют утверждать, что методом изучения в цитологии более чем достаточно. С их помощью можно провести точный анализ: от структуры клетки до молекулярной композиции отдельных ее частей. При этом, у всех методов есть определенные минусы. К примеру, если выращивать клетки в искусственной среде, то они лишаются регуляторного влияния организма.

В случае методов, в ходе которых происходит фиксация и окрашивание клеток, можно говорить об изменении определенным образом их структуры и появлении некоторых отклонений.

Комплексное исследование определенных явлений в жизнедеятельности клеток помогает со всех сторон изучить биологию клетки, ее строение, развитие, химизм, функции, дифференциацию и старение. Так минимизируются минусы отдельных методов исследования.

Оптические приборы в тандеме с компьютером помогают исследовать клетку со всех сторон, смоделировать физиологические и биохимические процессы (с помощью комплексных методов изучают процессы деления клеток, в том числе), изучить ее химический состав, цитофизиологию.

В некоторых случаях исследования проводят в разных лабораториях с помощью разных методов: это позволяет получить дополняющие друг друга данные и целостное представление о процессах, происходящих в живых клетках.

Основные методы изучения клеток в таблице:

Основные методы исследования строения и функций клетки

Методы изучения клетки. Таблица

Микроскопия

Микроскопия

Исторически первый метод исследования в цитологии не растерял своего значения до наших дней. Современные методы изучения клетки — фазово-контрастная и интерференционная микроскопия. Разновидности световых микроскопов позволяют различать тонкие детали в живой клетке без ее фиксации и окрашивания.

Особенности метода электронной микроскопии:

  1. Внутри электронного микроскопа создают вакуум для того, чтобы пучок электронов не рассеивался.
  2. Для исследования необходимы предварительная фиксация и обезвоживание препаратов.
  3. После этого объекты заливают в плотную среду для выполнения тончайших срезов при помощи ультратонкого ножа — микротома.
  4. Изображение объекта фиксируется с помощью детектора электронов.

Какие методы используются в цитологии, во многих случаях зависит от особенностей объектов. Флуоресцентная микроскопия предназначена для изучения образцов с собственной флуоресценцией, таких как хлорофилл, который в синем свете флуоресцирует красным. Можно исследовать и другие объекты, предварительно окрасив их определенными флуоресцентными красителями.

В настоящее время жизнь клетки исследуют на уровне органелл, молекул и атомов. В цитологии используют методы молекулярной биологии, гистологии, микробиологии, биохимии, физиологии. Смежные науки развиваются в тесном контакте друг с другом. Подразделы биологии используют сходные методы исследования, а открытия в одной области оказывают влияние на развитие других дисциплин.

Читайте также: