Стволовые клетки это в биологии кратко

Обновлено: 04.07.2024

СТВОЛОВЫ́Е КЛЕ́ТКИ, не имею­щие спе­циа­ли­за­ции клет­ки ор­га­низ­ма, ко­то­рые в хо­де ми­то­ти­че­ско­го де­ле­ния мо­гут дать на­ча­ло спе­циа­ли­зи­ро­ван­ным С. к. и/или лю­бым др. клет­кам. У мле­ко­пи­таю­щих жи­вот­ных и че­ло­ве­ка раз­ли­ча­ют 2 клас­са С. к.: эм­брио­наль­ные (клет­ки внутр. мас­сы бла­сто­ци­сты пя­то­го дня раз­ви­тия) и клет­ки взрос­ло­го ор­га­низ­ма, об­на­ру­жи­вае­мые в разл. тка­нях и ор­га­нах (напр., ней­ро­наль­ные, кро­ве­твор­ные, клет­ки серд­ца, во­ло­са), ко­то­рые слу­жат для под­дер­жа­ния и вос­ста­нов­ле­ния струк­тур­ной и функ­цио­наль­ной це­ло­ст­но­сти тка­ни в про­цес­се жиз­не­дея­тель­но­сти ор­га­низ­ма. Эм­брио­наль­ные С. к. су­ще­ст­ву­ют ко­рот­кий про­ме­жу­ток вре­ме­ни, но имен­но они да­ют на­ча­ло всем клет­кам и тка­ням ор­га­низ­ма, вклю­чая С. к. взрос­ло­го ор­га­низ­ма.


Лекцию читала молодой молекулярный генетик Анна Козлова, которая работает в Республиканском научно-практическом центре спорта. Сейчас феномен стволовых клеток никого не удивляет, но, по словам Анны, еще 400-500 лет назад за такую лекцию ее обязательно сожгли бы на костре.


1. ЧТО ТАКОЕ СТВОЛОВЫЕ КЛЕТКИ И КТО ИХ ОТКРЫЛ?

Стволовые клетки – это фактически первооснова жизни. Это так называемые незрелые клетки, способные к самообновлению и развитию в различных тканях организма. Именно стволовые клетки дают начало всему человеческому организму. В отличие от клеток кожи, клеток мышц или нервных клеток, у стволовых клеток никаких специализированных функций нет. Но они способны превратиться в любые другие клетки организма.

Существование стволовых клеток в 1963 году доказали ученые Джеймс Тилл и Эрнест Маккулох. Они пересаживали облученным ионизированным мышам костный мозг здоровых особей, который успешно приживался и налаживал кроветворение во всем организме.

2. КАКИЕ СТВОЛОВЫЕ КЛЕТКИ СУЩЕСТВУЮТ?

Есть несколько типов стволовых клеток:

- мультипотентные также имеют много возможностей, но из одной такой клетки уже нельзя получить и кровь, и кость, например. Придется выбирать что-то одно.

- олигопотентные и унипотентные – и те, и другие уже не совсем стволовые клетки, потому что потенциально не бессмертны. То есть они не могут делиться бесконечное количество раз.

3. ГДЕ ЕСТЬ СТВОЛОВЫЕ КЛЕТКИ?

4. СКОЛЬКО СТВОЛОВЫХ КЛЕТОК В ОРГАНИЗМЕ ЧЕЛОВЕКА?

Количество стволовых клеток в организме человека очень маленькое. У эмбриона одна стволовая клетка приходится на 10 000 обычных, а у пожилого человека – одна на 8 000 000. Даже если предположить, что стволовых клеток в организме 1010 , они будут весить всего 10 граммов.

5. КОГДА ПРИМЕНЯЮТ СТВОЛОВЫЕ КЛЕТКИ?

Когда нужно пересадить костный мозг, например. Трансплантация стволовых клеток костного мозга – это обновление кроветворения во всем организме. Такую пересадку используют при лейкозах, онкопатологиях. Такие операции единственные, которые широко используются в медицинской практике.

Также стволовые клетки используются, когда у реципиента развивается реакция отторжения при пересадке трансплантата (трансплантат против хозяина). Когда начинается реакция отторжения, существуют три линии противодействия: глюкокортикостероиды, которые обладают иммунодепрессивным эффектом, препараты, которые вызывают более выраженное и комплексное подавление иммунитета, и стволовые клетки. На данный момент это стандарт, который применяется даже в Беларуси.

Пересадка стволовых клеток глаза. В таких случаях стволовые клетки дают возможность восстановить роговицу при очень сильных ожогах.

Кроме того, стволовые клетки потенциально могут использоваться для лечения травм спинного мозга, инфарктов и других повреждений сердца, облысения, глухоты, слепоты, диабета, нарушений опорно-двигательного аппарата.

Но стоит повториться: все это – потенциальные цели научных исследований, связанных со стволовыми клетками. Широко же в медицине применяются стволовые клетки костного мозга.

6. ЧТО МОЖНО ВЫРАСТИТЬ С ПОМОЩЬЮ СТВОЛОВЫХ КЛЕТОК?

Органы (так называемая тканевая инженерия). Органы выращивают с помощью искусственной матрицы, на которую высаживают стволовые клетки. Так, например, можно вырастить наружные уши. Существует несколько задокументированных случаев выращенных ушей. Их помещали на спины мышей, и уши вполне себе приживались. А еще можно вырастить легкие и мочевой пузырь.

Волосы. Терапия облысения с помощью стволовых клеток – это вполне реальный кейс. Правда, шампуни со стволовыми клетками к нему не относятся.

Бургер. Его вырастили с помощью мышечных клеток, его можно есть и у него вкус говядины. Говорят, что это лучшее, что произошло с наукой пищевой промышленности со времен ГМО.

7. МИФЫ ПРО СТВОЛОВЫЕ КЛЕТКИ

Стволовые клетки добывают из нерожденных христианских младенцев. Да, правда, в эмбрионах довольно много стволовых клеток и эмбриональный материал изучался и продолжает изучаться в тех странах, где это разрешено. Но это не единственный, не основной и не самый ценный источник стволовых клеток.

Неминуемое бессмертие. К сожалению, это тоже не так. Исследования стволовых клеток только начались. Те этапы, которые необходимы для того, чтобы достичь хотя бы регенеративного потенциала, еще довольно далеко. До настоящего бессмертия и длительной молодости еще дальше. А пока мы можем выращивать несложные органы и только на животных.

Лечение стволовыми клетками вызывает онкопатологии. Это не так. Никто не использует стволовые клетки, которые способны трансформироваться в раковые опухоли. На практике в медицине используются стволовые клетки, которые имеют высокую степень дифференцировки и ограниченные возможности деления. В среднем провести в организме человека, оказывая на него какое-то воздействие, такие клетки могут несколько недель или месяц. У клеток просто не будет времени, чтобы оказать на организм негативное влияние. Это обычные здоровые клетки, которые не мутируют и не обретают способность к бесконечному делению.

Косметика на основе стволовых клеток. Никакого моментального эффекта не будет. Кроме того, в такую косметику входят не сами стволовые клетки, а экстракты растительных клеток, потому что ни одна клетка не выживет в косметике – ей нужна живая среда.


Обзор

Автор
Редакторы
  • Иммунология
  • Медицина
  • Наука из первых рук
  • Нейробиология
  • Нейродегенерация
  • Стволовые клетки
  • Эмбриология


Стволовые клетки взрослого организма

Стволовые клетки (СК) находятся в организме в строго определенных местах, которые, благодаря окружающим клеткам и внеклеточному матриксу [1], обеспечивают правильное функционирование стволовых клеток. Такие места называются клеточной нишей [2]. В костном мозге есть два типа СК: кроветворные, способные дифференцироваться во все клетки крови, и мезенхимные (МСК), дающие начало костной, хрящевой и жировой тканям и составляющие важную часть стромы кроветворения (ниши кроветворной СК), но ни при каких обстоятельствах не способные дифференцироваться в клетки крови.

Самые первые — стволовые клетки крови

Ниже в иерархии стоят олигопотентные клетки-предшественницы — родоначальницы только нескольких линий клеток крови, таких как общие миелоидные предшественники (дающие моноциты, мегакариоциты, эритроциты) и общие лимфоидные предшественники (дающие В-, Т- и НК-клетки ).

Еще более низкую ступень в иерархии занимает отдел уни- и бипотентных клеток-предшественниц, способных дифференцироваться только в одном или двух направлениях.

Самые популярные — мезенхимные стволовые клетки

Большой медицинский потенциал сподвиг Бигильдеева А.Е. с соавторами досконально изучить этот тип клеток при помощи генетического штрихкодирования клеточных популяций [6]. При извлечении МСК из костного мозга [7] в каждую клетку вносят метку — небольшой уникальный фрагмент ДНК, который встраивается в геном клетки и потому будет находиться в геномах всех ее потомков. Анализ этих меток после роста в чашке Петри позволяет определить, потомки каких клеток размножились сильнее, а каких — не оставили потомков.

Оказалось, что популяция МСК гетерогенна и представлена множеством клеточных клонов (потомков одной исходной клетки), различающихся по способности к делению и дифференцировке. При многократном пересеве культуры ее клональный состав значительно меняется из-за ухода потомков клеток, не способных к долгому размножению. МСК с высокой способностью к размножению чаще выявляются на ранних этапах культивирования вне организма, и в поликлональной популяции МСК содержится лишь небольшое количество таких клеток. В связи с этим в подходах регенеративной медицины, требующих активного размножения клеток, рекомендуется применять МСК ранних пассажей (то есть те, что жили в чашке Петри недолго). Благодаря подобным исследованиям становится ясно, что хранить в замороженном виде МСК в больших количествах невозможно: для этого придется их долго культивировать, и они могут утратить требуемые стволовые свойства. Тут можно обратиться к более ранним стволовым клеткам, каких во взрослом организме уже не остается.

Эмбриональные стволовые клетки

Некоторые стволовые клетки функционируют не просто в особом месте организма, но и в строго определенное время. Тотипотентностью — способностью дифференцироваться во все клетки организма и экстраэмбриональные ткани — обладает только зигота, но уже после нескольких делений это свойство утрачивается навсегда. На стадии бластоцисты происходит первая специализация клеток эмбриона: выделяются клетки трофобласта (наружный слой, который затем образует экстраэмбриональные ткани) и клетки внутренней клеточной массы, из которых разовьется весь организм (рис. 1). Последние при культивировании в чашке Петри называются эмбриональными стволовыми клетками (ЭСК). Впервые удалось вывести этот тип клеток в культуру в 1981 году [8]. Добавляя в культуральную среду определенные белки — факторы роста, — удается долго поддерживать ЭСК в недифференцированном плюрипотентном состоянии. ЭСК активно размножаются, сохраняя при этом свои свойства, что позволяет получать большое количество клеток для исследовательских задач и для применения в медицине.

Первые пять дней развития эмбриона человека

Рисунок 1. Первые пять дней развития эмбриона человека. 1 — Оплодотворение; 2 — деление (дочерние клетки называются бластомерами); 3 — компактизация (образование плотных контактов между бластомерами); 4 — дифференцировка на внутренний и внешний слои; 5 — образование полости (бластоцеля), внешнего слоя клеток (трофобласта) и внутренней клеточной массы, которую можно извлечь для культивирования в чашке Петри и получить таким образом ЭСК (фото автора статьи).

Существуют разные протоколы перепрограммирования — как со вставкой ДНК прямо в геном клетки (подходят только для исследовательских целей), так и не оставляющие следов в геноме (подходят и для медицинского применения ИПСК). Получение ИПСК с помощью доставки репрограммирующих факторов в вирусных векторах (например, лентивирусных, относящихся к тому же семейству вирусов, что и ВИЧ), которые встраиваются в геном клетки, широко распространено в лабораторной практике ввиду высокой эффективности, методологической простоты и дешевизны.

С одной стороны, проблема решается прочно укоренившейся в мире практикой клинических исследований, доказывающих эффективность и оправданность применения разрабатываемых лекарств на людях . С другой стороны, заметно помочь в разработке препаратов могут модели заболеваний на основе ИПСК, несущих связанные с развитием той или иной болезни мутации, из клеточного материала пациентов с установленным диагнозом. ИПСК представляют собой практически бесконечный источник клеточного материала и могут превращаться в любой тип клеток взрослого организма, в том числе в предшественников нейронов, зрелые нейроны и кардиомиоциты. Разработка таких моделей наследственных заболеваний позволит изучать функции продуктов мутантных генов в клетке и механизмы развития патологии. Дифференцированные производные ИПСК можно использовать для скрининга новых лекарственных препаратов (рис. 2).

Применение ИПСК в биологии и медицине

Для создания модели заболевания на основе ИПСК необходимо превратить их в тот тип клеток, который повреждается при изучаемой патологии. Наиболее востребованы модели нейродегенеративных и кардиологических заболеваний, ведь в этих случаях поврежденные ткани напрямую не доступны исследователям. Для запуска дифференцировки в нужную сторону необходимо воспроизвести в чашке Петри те же условия, с которыми клетка сталкивается в организме. Рассмотрим, как можно получить клетки нервной системы — нейроны, производящие дофамин (а именно они погибают при болезни Паркинсона [14], [15]).

Дифференцировка в клетки нервной системы: трудно, долго, красиво

Тут мы должны слегка углубиться в эмбриологию, ведь нужно будет имитировать все изменения в окружении клетки, происходящие от стадии бластоцисты до формирования головного мозга. Придется учитывать и механические воздействия на клетку, и своевременное появление определенных белков — факторов дифференцировки, — и их концентрацию, и состав солей в окружающей клетку среде, и особенности поверхности, к которой клетка прикреплена.

Перед запуском ИПСК в дифференцировку важно убедиться, что клетки растут в оптимальной плотности: они должны занимать почти всю площадь чашки Петри. Это необходимо, чтобы на старте превращения клетки давили друг на друга ровно так, как это происходит на первом этапе формирования нервной системы эмбриона — при развитии нервной трубки. Клетки, которые находятся на дне нервной бороздки, испытывают давление из-за активного размножения соседних клеток и изгибания самой бороздки в трубку, а клетки, расположенные сверху, наоборот, испытывают растяжение и превращаются в нервный гребень. Из нервного гребня впоследствии развивается множество типов клеток, в том числе и волосяные луковицы, а из клеток, находящихся на дне нервной бороздки, образуется центральная нервная система (рис. 3).

Последовательные стадии развития нервной системы

Рисунок 3. Последовательные стадии развития нервной системы (ранние этапы). Первоначально будущие клетки нервной системы изменяют форму и характерным образом располагаются друг относительно друга — получается нервная пластинка. Затем она изгибается, превращаясь в нервную бороздку, где на клетки действуют механические силы. Наконец, нервная бороздка замыкается в нервную трубку. Красные стрелки показывают механические силы, действующие на клетки. Нейрональные розетки — аналог нервной трубки в чашке Петри. Увеличение 100× (фото автора статьи).

Параллель между нейрогенезом эмбриона и тем, как это выглядит в чашке Петри

Поскольку при нейродегенеративных заболеваниях, в том числе и при болезни Паркинсона, гибнут именно зрелые нейроны у взрослых людей, а не их размножающиеся предшественники, для моделирования болезни правильно брать как раз зрелые нейроны, чтобы с большей достоверностью повторить развитие патологических процессов. С другой стороны, можно изучать особенности дифференцировки нейронов и выяснять, что и как на эту дифференцировку влияет. Аналогичные подходы можно применить при получении кардиомиоцитов — клеток сердца, изучать которые прямо в организме тоже непросто.

Зрелые нейроны

Рисунок 5. Зрелые нейроны, полученные путем дифференцировки из клеток-предшественниц. Различные структуры нейронов флуоресцентно окрашены: бета-III-тубулин (присутствует во всех типах нейронов; окрашен зелёным), тирозингидроксилаза (фермент, участвующий в синтезе дофамина; характерен для нейронов, выделяющих дофамин; окрашен желто-зеленым), ядра клеток (окрашены синим). Увеличение 100×.

фотография из диссертации автора статьи [18]

Дифференцировка в клетки сердца

Получение ИПСК от пациента и их последующая направленная дифференцировка в кардиомиоциты открывают новые возможности для изучения патогенеза наследственных сердечно-сосудистых заболеваний, в частности гипертрофической кардиомиопатии, от которой до сих пор не разработано эффективного лечения. При этом заболевании утолщаются стенки левого желудочка и межжелудочковой перегородки, развиваются сердечная недостаточность и аритмия, возрастает риск внезапной сердечной смерти. Гипертрофическая кардиомиопатия — одна из самых распространенных сердечно-сосудистых патологий: 1 случай на 500 человек. Елена Дементьева с коллегами создала модель этого заболевания на основе пациентспецифичных ИПСК [19]. Исследовав геном пациента с гипертрофической кардиомиопатией, коллектив обнаружил мутацию R326Q в гене MYBPC3, кодирующем миозин-связывающий белок С. Этот белок расположен в саркомере и играет важную роль в сокращении кардиомиоцита. ИПСК пациента и здорового донора (в качестве контроля) превратили в клетки сердца, которые воспроизводили такие признаки гипертрофической кардиомиопатии, как нарушение динамики потоков ионов кальция и их повышенное внутриклеточное содержание.

Таким образом, описанная клеточная модель для изучения гипертрофической кардиомиопатии представляет собой кардиомиоциты, полученные в результате направленной дифференцировки ИПСК пациента с этой болезнью.

3D-дифференцировка: миниорганы в пробирке

Исследования последних лет, связанные с созданием 3D-органоидов (Еремеев А.В. с соавторами [20]) из ЭСК или ИПСК, существенно облегчили исследования в области моделирования органогенеза человека in vitro и стали мощным инструментом для исследования механизмов развития патологий сложных органов, равно как и разработки новых подходов к их терапии. В последние годы были созданы многоклеточные органоиды мозга человека [21], толстой кишки [22], почек, сетчатки, печени. Разумеется, пока 3D-модели многоклеточных органов на основе 2D-культур имеют свои ограничения и лишь условно имитируют их сложную архитектонику [23], [24].

Применение плюрипотентных стволовых клеток в медицине

Для решения проблем, выявленных в предыдущей серии трансплантаций, запустили TRANSEURO — клиническое исследование в Европе, в ходе которого в 2014–2016 годах 11 пациентам трансплантировали предшественников нейронов, вырабатывающих дофамин. Однако из-за источника клеток — эмбрионов человека — возникли как этические, так и чисто технические трудности, связанные с получением фетального материала и невозможностью его стандартизации для клинического применения. Из-за сбоев в поставке ткани для трансплантации из 90 запланированных операций по подсадке таких клеток осуществили только 20, и на данный момент проект остановлен. Для того чтобы обойти эти сложности, активно разрабатывают эффективные методы дифференцировки ЭСК и ИПСК для дальнейшего их применения в клинической практике.

В качестве альтернативы Киотский университет запустил проект Stock, нацеленный на создание банка разных линий ИПСК, типированных по иммунологическим параметрам совместимости (как это делается при пересадке органов). Было подсчитано, что 50 линий ИПСК, специально отобранных по этому принципу, позволят охватить 73% населения Японии. Но не стόит забывать, что развитию иммунного ответа могут способствовать и клетки врожденной иммунной системы, такие как макрофаги и естественные киллеры.

Клеточная терапия с использованием стволовых клеток различного происхождения набирает обороты в мировой практике. Такой подход клеточной терапии, как пересадка костного мозга, уже давно прижился в клинической практике. Терапия МСК не всегда дает хорошие результаты. Однако в случае реэпителизации поврежденных кожных покровов (например, при синдроме диабетической стопы) эффективность применения МСК уже показана в клинических исследованиях [28].

В клинику готовы войти и производные плюрипотентных стволовых клеток (ЭСК и ИПСК). Полученные из ЭСК олигодендроциты [29] и клетки поджелудочной железы [30], производящие инсулин, находятся на финальных этапах клинических испытаний. В случае олигодендроцитов был заявлен 15-летний срок наблюдения за пациентами после подсадки клеток в спинной мозг. Этот срок еще не истек, но негативных последствий для пациентов до сих пор не обнаружено. Начались клинические исследования клеточных продуктов для терапии таких сложных и тяжелых заболеваний, как дистрофия сетчатки и болезнь Паркинсона [31]. Многие исследования направлены на то, чтобы уменьшить или полностью исключить иммуносупрессию при пересадке дифференцированных производных ЭСК и ИПСК. Благодаря стволовым клеткам перед нами открывается огромное поле возможностей, но впереди еще большее поле научной работы.

Словарик

ИПСК (индуцированные плюрипотентные стволовые клетки) полученный в пробирке аналог ЭСК, обладающий точно такими же морфологическими и функциональными свойствами. МСК (мезенхимные стволовые клетки) мультипотентные стволовые клетки, способные дифференцироваться в остеобласты (клетки костной ткани), хондроциты (хрящевые клетки) и адипоциты (жировые клетки). СК (стволовая клетка) неспециализированные клетки, присутствующие в организме многоклеточных животных и способные к самообновлению и дифференцировке в соответствующие специализированные клетки. СКК (стволовая клетка крови) мультипотентные стволовые клетки, дающие начало всем клеткам крови как миелоидного, так и лимфоидного рядов. ЭСК (эмбриональные стволовые клетки) плюрипотентные стволовые клетки, полученные из внутренней клеточной массы бластоцисты, культивируемые in vitro. HLA (лейкоцитарный антиген человека) система тканевой совместимости человека; представляет собой белки на поверхности клеток, позволяющие клеткам крови различать свои и чужеродные ткани.

Человеческое тело состоит из сотен типов жизненно важных клеток. Эти клетки отвечают за ежедневную поддержку функций организма: сердцебиение, активность мозга, очистку крови, своевременное обновление клеток кожи. Если у животных клеток есть типовое строение, чем же тогда отличаются, к примеру, клетки сердца и клетки печени?

Стволовые клетки: виды, получение и источники, образование клеток

Медицина торжественно обещает человечеству принципиально новый способ омоложения и избавления от смертельных болезней. И имя панацеи — стволовые клетки. Александр Александрович Максимов (1874-1928) — российско-американский гистолог и эмбриолог. Ввел в науку понятие о стволовых клетках. Что же они собой представляют?

Стволовые клетки: виды, получение и источники, образование клеток

Стволовые клетки по возможности к трансформации подразделяются на:

  • тотипотентные, способные превращаться в любые клетки организма;
  • плюрипотентные, образуют множество различных видов клеток, но не целый организм;
  • мультипотентные, превращаются только в клетки тех тканей, из которых они были взяты;
  • унипотентные, способны дать начало только одному типу клеток.

Стволовые клетки: виды, получение и источники, образование клеток

ИНТЕРЕСНЫЕ ЦИФРЫ

В организме новорожденного младенца на 1 стволовую клетку приходится 10 тысяч других. В возрасте 20-25 лет остается 1 стволовая клетка на 100 тысяч, а в 50 лет — на 500 тысяч.

МИКРООКРУЖЕНИЕ СТВОЛОВОЙ КЛЕТКИ

  • обеспечение стволовой клетки факторами, необходимыми для ее жизнедеятельности;
  • взаимный контроль и обмен информацией между клетками, координация их действий;
  • координация между различными популяциями клеток, регулирование их ориентации и местоположения.

Ниша стволовой клетки

ОДИН В ПОЛЕ НЕ ВОИН

Несмотря на амбиции, стволовые клетки не справятся с возлагаемыми на них задачами в одиночку. Как в человеческом обществе существует множество профессий, клетки внутри нас тоже трудятся во благо организма.

Костный мозг — кроветворный орган, расположенный в губчатых и трубчатых костях. Его населяют различные виды клеток. Если посмотреть на срез костного мозга в микроскоп, в нем можно увидеть участки кости, в которых представлены клетки костной ткани. Также обнаруживаются наполненные кровью синусоиды. Рядом с сосудами расположены нервные волокна. Здесь же находятся крупные жировые клетки, количество которых увеличивается с возрастом. Но так как главной функцией костного мозга является производство крови, его основную массу составляют клетки крови на разных стадиях трансформации. Среди них можно выделить гемопоэтические стволовые клетки (ГСК). Это примитивные клетки, дающие начало всем клеткам крови, они способны поддерживать постоянное количество на протяжении всей жизни организма.

Гемопоэтические стволовые клетки

Уникальным свойством всех стволовых клеток является способность к самообновлению. Так называют симметричное деление с образованием идентичных копий материнской клетки. Так, гемопоэтическая стволовая клетка может практически бесконечно штамповать собственные копии и не погибать. Часть стволовых клеток находится в состоянии покоя: они неактивны и не участвуют в клеточном цикле. Но проснувшись, такая стволовая клетка делает важный выбор.

Вместе с окружающими клетками на ГСК воздействуют растворимые вещества — цитокины и ростовые факторы. Часть из них вырабатывается клетками ниши, другие синтезируются в других органах, например в почках и паращитовидной железе. Некоторые вещества продляют состояние покоя клетки, способствуя ее самообновлению. Другие заставляют задуматься о выборе будущей профессии. Также в регуляции участвует нервная система, передавая сигналы о ситуации в организме.

Цитокины и ростовые факторы

Выбор профессии — непростой процесс, и огромную роль в нем играют личные предпочтения и склонности. У стволовой клетки богатый и сложный внутренний мир, который представлен транскрипционными факторами. Именно их взаимодействия приводят в конечном итоге к принятию решения.


Стволовы́е кле́тки — недифференцированные (незрелые) клетки, имеющиеся во всех многоклеточных организмах. Стволовые клетки способны самообновляться, образуя новые стволовые клетки, делиться посредством митоза и дифференцироваться в специализированные клетки, то есть превращаться в клетки различных органов и тканей.

Развитие многоклеточных организмов начинается с одной стволовой клетки — зиготы. В результате многочисленных циклов деления и процесса дифференцировки образуются все виды клеток, характерные для данного биологического вида. В человеческом организме таких видов клеток более 220. Стволовые клетки сохраняются и функционируют и во взрослом организме, благодаря им может осуществляться обновление и восстановление тканей и органов. Тем не менее, в процессе старения организма их количество уменьшается.

В современной медицине стволовые клетки человека трансплантируют, то есть пересаживают в лечебных целях. Например, трансплантация гемопоэтических стволовых клеток производится для восстановления процесса гемопоэза (кроветворения) при лечении лейкозов и лимфом.

Содержание

Историческая справка

Свойства

Все стволовые клетки обладают двумя неотъемлемыми свойствами:

  • Самообновление, то есть способность сохранять неизменный фенотип после деления (без дифференцировки).
  • Потентность (дифференцирующий потенциал), или способность давать потомство в виде специализированных типов клеток.

Самообновление

Существуют два механизма, поддерживающих популяцию стволовых клеток в организме:

  1. Асимметричное деление, при котором продуцируется одна и та же пара клеток (одна стволовая клетка и одна дифференцированная клетка).
  2. Стохастическое деление: одна стволовая клетка делится на две более специализированных.

Дифференцирующий потенциал

Дифференцирующий потенциал, или потентность, стволовых клеток — это способность производить определенное количество разных типов клеток. В соответствии с потентностью стволовые клетки делятся на следующие группы:

    стволовые клетки могут дифференцироваться в клетки эмбриональных и экстраэмбриональных тканей, организованные в виде трехмерных связанных структур (тканей, органов, систем органов, организма). Такие клетки могут дать начало полноценному жизнеспособному организму. К ним относится оплодотворённая яйцеклетка, или зигота. Клетки, образованные при первых нескольких циклах деления зиготы, также являются тотипотентными у большинства биологических видов. Однако к ним не относятся, например, круглые черви, зигота которых утрачивает тотипотентность при первом делении. У некоторых организмов дифференцированные клетки также могут обретать тотипотентность. Так, срезанную часть растения можно использовать для выращивания нового организма именно благодаря этому свойству. стволовые клетки являются потомками тотипотентных и могут давать начало практически всем тканям и органам, за исключением экстраэмбриональных тканей (например, плаценты). Из этих стволовых клеток развиваются три зародышевых листка: эктодерма, мезодерма и энтодерма.
  • Мультипотентные стволовые клетки порождают клетки разных такней, но многообразие их видов ограничено пределами одного зародышевого листка.

Эктодерма даёт начало нервной системе, органам чувств, переднему и заднему отделам кишечной трубки, кожному эпителию. Из мезодермы формируются хрящевой и костный скелет, кровеносные сосуды, почки и мышцы. Из энтодермы — в зависимости от биологического вида — образуются различные органы, ответственные за дыхание и пищеварение. У человека это — слизистая оболочка кишечника, а также печень, поджелудочная железа и лёгкие.

  • Олигопотентные клетки могут дифференцироваться лишь в некоторые, близкие по свойствам, типы клеток. К ним, например, относятся клетки лимфоидного и миелоидного рядов, участвующие в процессе кроветворения. клетки (клетки-предшественницы, бластные клетки) — незрелые клетки, которые, строго говоря, уже не являются стволовыми, так как могут производить лишь один тип клеток. Они способны к многократному самовоспроизведению, что делает их долговременным источником клеток одного конкретного типа и отличает от нестволовых. Однако их способность к самовоспроизведению ограничена определённым количеством делений, что также отличает их от истинно стволовых клеток. К клеткам-предшественницам относятся, к примеру, некоторые из миосателлитоцитов, участвующих в образовании скелетной и мышечной тканей.

Классификация

Стволовые клетки можно разделить на три основные группы в зависимости от источника их получения: эмбриональные, фетальные и постнатальные (стволовые клетки взрослого организма).

Эмбриональные стволовые клетки

Эмбриональные стволовые клетки (ЭСК) образуют внутреннюю клеточную массу (ВКМ), или эмбриобласт, на ранней стадии развития эмбриона. Они являются плюрипотентными. Важный плюс ЭСК состоит в том, что они не экспрессируют HLA (human leucocyte antigens), то есть не вырабатывают антигены тканевой совместимости. Каждый человек обладает уникальным набором этих антигенов, и их несовпадение у донора и реципиента является важнейшей причиной несовместимости при трансплантации. Соответственно, шанс того, что донорские эмбриональные клетки будут отторгнуты организмом реципиента очень невысок. При пересадке иммунодефицитным животным эмбриональные стволовые клетки способны образовывать опухоли сложного (многотканевого) строения — тератомы, некоторые из них могут стать злокачественными. Достоверных данных, о том как ведут себя эти клетки в иммунокомпетентном организме, например, в организме человека, нет. Вместе с тем, следует отметить, что клинические испытания с применением дифференцированных дериватов (производных клеток) ЭСК уже начаты. Для получения ЭСК в лабораторных условиях приходится разрушать бластоцисту, чтобы выделить ВКМ, то есть разрушать эмбрион. Поэтому исследователи предпочитают работать не с эмбрионами непосредственно, а с готовыми, ранее выделенными линиями ЭСК.

Клинические исследования с использованием ЭСК подвергаются особой этической экспертизе. Во многих странах исследования ЭСК ограничены законодательством.

Одним из главных недостатков ЭСК является невозможность использования аутогенного, то есть собственного материала, при трансплантации, поскольку выделение ЭСК из эмбриона несовместимо с его дальнейшим развитием.

Фетальные стволовые клетки

Фетальные стволовые клетки получают из плодного материала после аборта (обычно срок гестации, то есть внутриутробного развития плода, составляет 9—12 недель). Естественно, изучение и использование такого биоматериала также порождает этические проблемы. В некоторых странах, например, на Украине и в Великобритании, продолжаются работы по их изучению и клиническому применению. К примеру, британская компания ReNeuron исследует возможности использования фетальных стволовых клеток для терапии инсульта.

Постнатальные стволовые клетки

Несмотря на то, что стволовые клетки зрелого организма обладают меньшей потентностью в сравнении с эмбриональными и фетальными стволовыми клетками, то есть могут порождать меньшее количество различных типов клеток, этический аспект их исследования и применения не вызывает серьёзной полемики. Кроме того, возможность использования аутогенного материала обеспечивает эффективность и безопасность лечения. Стволовые клетки взрослого организма можно подразделить на три основных группы: гемопоэтические (кроветворные), мультипотентные мезенхимальные (стромальные) и тканеспецифичные клетки-предшественницы. Иногда в отдельную группу выделяют клетки пуповинной крови, поскольку они являются наименее дифференцированными из всех клеток зрелого организма, то есть обладают наибольшей потентностью. Пуповинная кровь в основном содержит гемопоэтические стволовые клетки, а также мультипотентные мезенхимальные, но в ней присутствуют и другие уникальные разновидности стволовых клеток, при определённых условиях способные дифференцироваться в клетки различных органов и тканей.

Гемопоэтические стволовые клетки

Популяция ГСК формируется во время эмбриогенеза, то есть эмбрионального развития. Доказано, что у млекопитающих первые ГСК обнаруживаются в областях мезодермы, называемых аорта, гонада и мезонефрос, до формирования костного мозга популяция расширяется в фетальной печени. Такие исследования способствуют пониманию механизмов, ответственных за генезис (формирование) и расширение популяции ГСК, и, соответственно, открытию биологических и химических агентов (действующих веществ), которые в конечном счёте могут быть использованы для культивации ГСК in vitro.

До начала использования пуповинной крови основным источником ГСК считался костный мозг. Этот источник и сегодня достаточно широко используется в трансплантологии. ГСК располагаются в костном мозге у взрослых, включая бедренные кости, рёбра, мобилизации грудины и другие кости. Клетки могут быть получены непосредственно из бедра при помощи иглы и шприца, или из крови после предварительной обработки цитокинами, включая G-CSF (гранулоцитарный колониестимулирующий фактор), способствующий высвобождению клеток из костного мозга.

Вторым, наиболее важным и перспективным источником ГСК является пуповинная кровь. Концентрация ГСК в пуповинной крови в десять раз выше, чем в костном мозге. Кроме того, у этого источника есть ряд преимуществ. Важнейшие из них:

  • Возраст. Пуповинная кровь собирается на самом раннем этапе жизни организма. ГСК пуповинной крови максимально активны, поскольку не подвергались негативному воздействию внешней среды (инфекционные заболевания, нездоровое питание и т. д.). ГСК пуповинной крови способны создать большую клеточную популяцию в короткий срок.
  • Совместимость. Использование аутологичного материала, то есть собственной пуповинной крови гарантирует 100%-ную совместимость. Совместимость с братьями и сёстрами составляет до 25 %, как правило, возможно также использование пуповинной крови ребёнка для лечения других близких родственников. Для сравнения, вероятность нахождения подходящего донора стволовых клеток — от 1:1000 до 1:1000 000.

Мультипотентные мезенхимальные стромальные клетки

Мультипотентные мезенхимальные стромальные клетки (ММСК) — мультипотентные стволовые клетки, способные дифференцироваться в остеобласты (клетки костной ткани), хондроциты (хрящевые клетки) и адипоциты (жировые клетки).

Предшественниками ММСК в эмбриогенный период развития являются мезенхимальные стволовые клетки (МСК). Они могут быть обнаружены в местах распространения мезенхимы, то есть зародышевой соединительной ткани.

Основным источником ММСК является костный мозг. Кроме того, они обнаружены в жировой ткани и ряде других тканей с хорошим кровоснабжением. Существует ряд доказательств того, что естественная тканевая ниша ММСК расположена периваскулярно — вокруг кровеносных сосудов. Кроме того, ММСК были обнаружены в пульпе молочных зубов, амниотической (околоплодной) жидкости, пуповинной крови и вартоновом студне. Эти источники исследуются, но редко применяются на практике. Например, выделение молодых ММСК из вартонова студня представляет собой крайне трудоёмкий процесс, поскольку клетки в нём также располагаются периваскулярно. В 2005—2006 годах специалисты по ММСК официально определили ряд параметров, которым должны соответствовать клетки, чтобы отнести их к популяции ММСК. Были опубликованы статьи, в которых представлен иммунофенотип ММСК и направления ортодоксальной дифференцировки. К ним относится дифференцировка в клетки костной, жировой и хрящевой тканей. Был проведён ряд экспериментов по дифференцировке ММСК в нейроноподобные клетки, но исследователи по-прежнему сомневаются, что полученные нейроны являются функциональными. Эксперименты также проводятся в области дифференцировки ММСК в миоциты — клетки мышечной ткани. Важнейшей и наиболее перспективной областью клинического применения ММСК является котрансплантация совместно с ГСК в целях улучшения приживления образца костного мозга или стволовых клеток пуповинной крови. Многочисленные исследования показали, что ММСК человека могут избегать отторжения при трансплантации, вступать во взаимодействие с дендритными клетками и Т-лимфоцитами и создавать иммуносупрессивную микросреду посредством выработки цитокинов. Было доказано, что иммуномодулирующие функции ММСК человека повышаются, когда их пересаживают в воспалённую среду с повышенным уровнем гамма-интерферона. Другие исследования противоречат этим выводам, что обусловлено гетерогенной природой изолированных МСК и значительными различиями между ними, в зависимости от способа культивирования.

МСК могут быть активированы в случае необходимости. Однако эффективность их использования относительно низка. Так, к примеру, повреждение мышц даже при трансплантации МСК заживает очень медленно. В настоящее время проводятся исследования по активации МСК. Ранее проведённые исследования по внутривенной трансплантации МСК показали, что этот способ трансплантации часто приводит к кризу отторжения и сепсису. Сегодня признано, что заболевания периферических тканей, например, воспаление кишечника лучше лечить не трансплантацией, а методами, повышающими локальную концентрацию МСК.

Тканеспецифичные прогениторные клетки

Характеристики эмбриональных стволовых клеток

    — способность образовывать любой из примерно 350 типов клеток взрослого организма (у млекопитающих) [источник не указан 541 день] ;
  1. Хоуминг — способность стволовых клеток, при введении их в организм, находить зону повреждения и фиксироваться там, исполняя утраченную функцию; - способность дифференцироваться в целостный организм (11 дней после оплодотворения);
  2. Факторы, которые определяют уникальность стволовых клеток, находятся не в ядре, а в цитоплазме. Это избыток мРНК всех 3 тысяч генов[источник не указан 632 дня] , которые отвечают за раннее развитие зародыша; активность. При каждой репликации часть теломер утрачивается (см. Предел Хейфлика). В стволовых, половых и опухолевых клетках есть теломеразная активность, концы их хромосом надстраиваются, то есть эти клетки способны проходить потенциально бесконечное количество клеточных делений, они бессмертны.

Стволовые клетки и рак

В 2012 году для глиобластомы, папилломы и карциномы кожи и аденомы кишечника было доказано существование ограниченного пула особых раковых стволовых клеток, которые являются предшественниками других клеток, и именно они отвечают за образование и рост опухоли [2] .

Интересные факты

  • Стволовых клеток в нашем организме очень мало:
    • у эмбриона — 1 клетка на 10 тысяч,
    • у человека в 60-80 лет — 1 клетка на 5-8 миллионов [источник не указан 625 дней] .

    Использование в медицине

    В России

    1 июля 2010 года Федеральная служба по надзору в сфере здравоохранения и социального развития выдала первое разрешение на применение новой медицинской технологии ФС № 2010/255 (лечение собственными стволовыми клетками).

    3 февраля 2011 года Федеральная службой по надзору в сфере здравоохранения и социального развития выдала разрешение на применение новой медицинской технологии ФС № 2011/002 (лечение донорскими стволовыми клетками следующих патологий: возрастные изменения кожи лица второй или третьей степени, наличие раневого дефекта кожи, трофической язвы, лечение аллопеции, атрофическое поражение кожи, в том числе атрофические полосы (striae), ожоги, диабетической стопы)

    На Украине

    Читайте также: