Структура и геометрия вселенной кратко

Обновлено: 04.07.2024

эта статья требует внимания эксперта по предмету. Пожалуйста, добавьте причина или говорить в этот шаблон, чтобы объяснить проблему со статьей.
При размещении этого тега учитывайте связывая этот запрос с ВикиПроект. ( Апрель 2017 г. )

В форма вселенной, в физическая космология, это местный и глобальная геометрия из вселенная. Локальные особенности геометрии Вселенной в первую очередь описываются ее кривизна, тогда как топология Вселенная описывает общие глобальные свойства своей формы как непрерывного объекта. Пространственная кривизна связана с общая теория относительности, который описывает, как пространство-время искривлен и искривлен массой и энергией, в то время как пространственная топология не может быть определена по его кривизне; математически существуют локально неразличимые пространства с разными топологиями. [1]

Космологи различают наблюдаемая вселенная и вся вселенная, первая из которых является сферической частью второй, которая в принципе может быть доступна астрономическим наблюдениям. Если предположить космологический принцип, наблюдаемая Вселенная одинакова для всех современных точек обзора, что позволяет космологам обсуждать свойства всей Вселенной, имея только информацию внутри своей наблюдаемой Вселенной.

Форму всей вселенной можно описать тремя атрибутами: [2]

  1. Конечное или бесконечное
  2. Квартира (ноль кривизна), открытый (отрицательная кривизна) или закрытый (положительная кривизна) , как устроена Вселенная, т.е. односвязное пространство или многосвязный.

Между этими свойствами существуют определенные логические связи. Например, вселенная с положительной кривизной обязательно конечна. [3] Хотя в литературе обычно предполагается, что плоская или отрицательно искривленная Вселенная бесконечна, этого не должно быть, если топология не является тривиальной: например, трехмерный тор плоский, но конечный. [3]

Точная форма все еще является предметом споров в физическая космология, но экспериментальные данные из различных независимых источников (WMAP, Бумеранг, и Планк например) подтверждают, что Вселенная плоская, с погрешностью всего 0,4%. [4] [5] [6] Теоретики пытались построить формальную математическую модель формы Вселенной. Формально это 3-х коллекторный модель, соответствующая пространственному сечению (в сопутствующие координаты) 4-мерного пространство-время Вселенной. В настоящее время большинство теоретиков используют модель Фридман – Лемэтр – Робертсон – Уокер (FLRW) модель. Были выдвинуты аргументы, что данные наблюдений лучше всего соответствуют заключению о том, что форма глобальной Вселенной бесконечна и плоская, [7] но данные также согласуются с другими возможными формами, такими как так называемые Додекаэдральное пространство Пуанкаре [8] [9] и пространство Соколова – Старобинского (фактор модель верхнего полупространства гиперболического пространства двумерной решеткой). [10]

Содержание

Форма наблюдаемой Вселенной

Как сказано во введении, необходимо учитывать два аспекта:

  1. его местный геометрии, которая преимущественно касается кривизны Вселенной, в частности наблюдаемая вселенная, и
  2. его Глобальный геометрия, которая касается топологии Вселенной в целом.

Наблюдаемую Вселенную можно представить как сферу, которая простирается наружу от любой точки наблюдения на 46,5 миллиардов световых лет, уходя дальше во времени и более. красное смещение тем дальше смотрит. В идеале можно продолжать оглядываться вплоть до Большой взрыв; на практике, однако, наиболее удаленные из них можно смотреть при свете и других электромагнитное излучение это космический микроволновый фон (CMB), как все, что было непрозрачным. Экспериментальные исследования показывают, что наблюдаемая Вселенная очень близка к изотропный и однородный.

Если наблюдаемая Вселенная охватывает всю Вселенную, мы можем определить структуру всей Вселенной путем наблюдения. Однако, если наблюдаемая Вселенная меньше, чем вся Вселенная, наши наблюдения будут ограничены только частью целого, и мы не сможем определить ее глобальную геометрию посредством измерений. На основе экспериментов можно построить различные математические модели глобальной геометрии всей Вселенной, все из которых согласуются с текущими данными наблюдений; таким образом, в настоящее время неизвестно, идентична ли наблюдаемая Вселенная глобальной Вселенной или же она на много порядков меньше. Вселенная может быть маленькой в ​​одних измерениях, но не в других (аналогично тому, как кубовид по длине длиннее, чем по ширине и глубине). Чтобы проверить, точно ли данная математическая модель описывает Вселенную, ученые ищут новые следствия этой модели - какие явления во Вселенной мы еще не наблюдали, но которые должны существовать, если модель верна, - и разрабатывают эксперименты для проверки происходят ли эти явления или нет. Например, если Вселенная представляет собой небольшой замкнутый контур, можно ожидать увидеть несколько изображений объекта в небе, хотя и не обязательно изображений одного возраста.

Кривизна Вселенной

В кривизна величина, описывающая, как геометрия пространства локально отличается от геометрии плоское пространство. Кривизна любой локально изотропное пространство (и, следовательно, локально изотропной Вселенной) попадает в один из трех следующих случаев:

  1. Нулевая кривизна (плоская); углы нарисованного треугольника составляют в сумме 180 °, а теорема Пифагора держит; такое трехмерное пространство локально моделируется Евклидово пространствоE3 .
  2. Положительная кривизна; сумма углов нарисованного треугольника составляет более 180 °; такое 3-мерное пространство локально моделируется областью 3-сфераS3 .
  3. Отрицательная кривизна; сумма углов нарисованного треугольника составляет менее 180 °; такое трехмерное пространство локально моделируется областью гиперболическое пространствоЧАС3 .

Изогнутые геометрические формы относятся к области Неевклидова геометрия. Примером положительно искривленного пространства может служить поверхность сферы, такой как Земля. Треугольник, проведенный от экватора к полюсу, будет иметь как минимум два угла, равные 90 °, что делает сумму трех углов больше 180 °. Примером отрицательно изогнутой поверхности может быть форма седло или горный перевал. Сумма углов треугольника, нарисованного на поверхности седла, будет меньше 180 °.


Локальная геометрия Вселенной определяется тем, параметр плотности Ω больше, меньше или равно 1.
Сверху вниз: a сферическая вселенная с участием Ω> 1 , а гиперболическая вселенная с участием Ω , а плоская вселенная с участием Ω = 1 . Эти изображения двумерных поверхностей являются просто легко визуализируемыми аналогами трехмерной структуры (локального) пространства.

Общая теория относительности объясняет, что масса и энергия искажают кривизну пространства-времени и используется для определения кривизны Вселенной с помощью значения, называемого параметр плотности, представленный Омега ( Ω ). Параметр плотности - это средняя плотность Вселенной, деленная на критическую плотность энергии, то есть энергия массы, необходимая для того, чтобы Вселенная была плоской. Перефразируй,

  • Если Ω = 1 Вселенная плоская
  • Если Ω> 1 , есть положительная кривизна
  • если Ω есть отрицательная кривизна

Можно экспериментально рассчитать это Ω определить кривизну двумя способами. Один из них - подсчитать всю массу-энергию во Вселенной и взять ее среднюю плотность, а затем разделить это среднее на критическую плотность энергии. Данные из СВЧ-датчик анизотропии Wilkinson (WMAP), а также Космический корабль Планк дают значения для трех составляющих всей массы-энергии во Вселенной - нормальной массы (барионная материя и темная материя), релятивистские частицы (фотоны и нейтрино), и темная энергия или космологическая постоянная: [11] [12]

Ωрелятивистский ≈ 9.24×10 −5

Фактическое значение критической плотности измеряется как ρкритический= 9.47×10 −27 кг м −3 . Судя по этим значениям, в пределах ошибки эксперимента, Вселенная кажется плоской.

Другой способ измерить Ω - это сделать это геометрически, измерив угол через наблюдаемую Вселенную. Мы можем сделать это, используя CMB и измерение спектра мощности и анизотропии температуры. Для интуиции можно представить себе газовое облако, которое не находится в тепловом равновесии из-за того, что оно настолько велико, что скорость света не может распространять тепловую информацию. Зная эту скорость распространения, мы затем знаем размер газового облака, а также расстояние до газового облака, тогда у нас есть две стороны треугольника, и мы можем определить углы. Используя аналогичный метод, BOOMERanG эксперимент определила, что сумма углов до 180 ° в пределах экспериментальной ошибки, соответствующая ΩВсего ≈ 1.00±0.12. [13]

Эти и другие астрономические измерения ограничивают пространственную кривизну очень близкой к нулю, хотя и не ограничивают ее знак. Это означает, что хотя локальная геометрия пространства-времени порождается теорией относительности, основанной на пространственно-временные интервалы, мы можем приблизить 3-х местный знакомым Евклидова геометрия.

Структура глобальной вселенной

Глобальная структура охватывает геометрия и топология всей вселенной - как наблюдаемой вселенной, так и за ее пределами. Хотя локальная геометрия не определяет полностью глобальную геометрию, она ограничивает возможности, особенно геометрия постоянной кривизны. Вселенную часто считают геодезическое многообразие, без топологические дефекты; ослабление любого из них значительно усложняет анализ. Глобальная геометрия - это локальная геометрия плюс топология. Отсюда следует, что топология сама по себе не дает глобальной геометрии: например, евклидово 3-пространство и гиперболическое 3-пространство имеют одинаковую топологию, но разную глобальную геометрию.

Как сказано во введении, исследования в рамках изучения глобальной структуры Вселенной включают:

  • Является ли вселенная бесконечный или конечный по размеру
  • Является ли геометрия глобальной вселенной плоской, положительной или отрицательной
  • Является ли топология односвязный как сфера или многосвязный, как тор [14]

Бесконечный или конечный

С границей или без нее

Предполагая конечную Вселенную, Вселенная может иметь край или не иметь края. Многие конечные математические пространства, например диск, иметь край или границу. Пространства, у которых есть граница, сложно рассматривать как концептуально, так и математически. А именно, очень сложно сказать, что могло бы произойти на краю такой вселенной. По этой причине пространства с краями обычно исключаются из рассмотрения.

Кривизна

Кривизна Вселенной накладывает ограничения на топологию. Если пространственная геометрия сферический, т.е. обладают положительной кривизной, топология компактна. Для плоской (нулевая кривизна) или гиперболической (отрицательная кривизна) пространственной геометрии топология может быть либо компактной, либо бесконечной. [15] Многие учебники ошибочно утверждают, что плоская Вселенная подразумевает бесконечную Вселенную; однако правильное утверждение состоит в том, что плоская Вселенная, которая также односвязный подразумевает бесконечную вселенную. [15] Например, Евклидово пространство плоский, односвязный и бесконечный, но тор плоский, многосвязный, конечный и компактный.

В общем, локальные в глобальные теоремы в Риманова геометрия свяжите локальную геометрию с глобальной геометрией. Если локальная геометрия имеет постоянную кривизну, глобальная геометрия очень ограничена, как описано в Геометрии Терстона.

Последние исследования показывают, что даже самые мощные эксперименты будущего (например, СКА) не сможет различать плоскую, открытую и закрытую Вселенную, если истинное значение параметра космологической кривизны меньше 10 −4 . Если истинное значение параметра космологической кривизны больше 10 −3 мы сможем различать эти три модели уже сейчас. [16]

Результаты Планк миссия, выпущенная в 2015 году, показывает параметр космологической кривизны, ΩK, чтобы быть 0,000 ± 0,005, что соответствует плоской Вселенной. [17]

Вселенная с нулевой кривизной

Во Вселенной с нулевой кривизной локальная геометрия плоский. Наиболее очевидная глобальная структура - это структура Евклидово пространство, которая бесконечна по протяженности. Плоские вселенные с конечной протяженностью включают тор и Бутылка Клейна. Более того, в трех измерениях существует 10 конечных замкнутых плоских 3-многообразий, из которых 6 ориентируемые, а 4 неориентируемые. Эти Многообразия Бибербаха. Наиболее знакомым является вышеупомянутый Вселенная с 3 торами.

В отсутствие темной энергии плоская Вселенная расширяется вечно, но с постоянно замедляющейся скоростью, при этом расширение асимптотически приближается к нулю. С темной энергией скорость расширения Вселенной сначала замедляется из-за эффекта гравитации, но в конечном итоге увеличивается. В окончательная судьба вселенной то же самое, что и в открытой вселенной.

Плоская вселенная может иметь нулевая полная энергия.

Вселенная с положительной кривизной

Положительно искривленная Вселенная описывается эллиптическая геометрия, и его можно рассматривать как трехмерный гиперсфера, или какой-то другой сферический 3-х коллектор (такой как Додекаэдральное пространство Пуанкаре), все из которых являются частными 3-сферы.

Вселенная с отрицательной кривизной

Кривизна: открытая или закрытая

Если применяется Пространство Минковского-на основании специальная теория относительности к расширению Вселенной, не прибегая к концепции искривленное пространство-время, то получается модель Милна. Любой пространственный разрез Вселенной постоянного возраста ( подходящее время истекший от Большого взрыва) будет иметь отрицательную кривизну; это просто псевдоевклидов геометрический факт, аналогичный тому, что концентрический сферы в плоский Евклидово пространство тем не менее изогнуты. Пространственная геометрия этой модели является неограниченной гиперболическое пространство.Вся вселенная содержится в световой конус, а именно будущий конус Большого взрыва. В любой момент т > 0 из координировать время (если предположить, что Большой взрыв т = 0 ) вся вселенная ограничена сфера радиуса ровно c т Кажущийся парадокс бесконечной вселенной, заключенной в сфере, объясняется сокращение длины: дальние галактики, которые удаляются от наблюдателя быстрее всего, будут казаться тоньше.

Эта модель по сути выродиться FLRW для Ω = 0 . Это несовместимо с наблюдениями, которые однозначно исключают такую ​​большую отрицательную пространственную кривизну. Однако в качестве фона, на котором могут действовать гравитационные поля (или гравитоны), из-за инвариантности диффеоморфизма пространство в макроскопическом масштабе эквивалентно любому другому (открытому) решению уравнений поля Эйнштейна.

Вселенная имеет четыре измерения — три одинаковых (пространство) и четвертое — радикально отличающееся от этих трех (время).

Это Вселенная с большой буквы, но для понимания Мироздания нам потребуется вселенная с маленькой буквы. Это то же самое, только надо исключить оттуда нас и убрать конкретное число измерений. Получим некое другое пространство, в котором нас нет, пространство с другим содержимым и, возможно, с другими свойствами, включая число и характер измерений. Это будет просто другая вселенная, которую мы никогда не сможем наблюдать, можем только сказать, что ничто не запрещает существование ее и ей подобных. И еще есть некоторые наводящие соображения, по которым такие вселенные должны быть, причем в неограниченном количестве, в том числе непохожие на нашу.

Геометрия Вселенной

Какова геометрия Вселенной? Легче всего представить себе бесконечное вечное пространство, в котором работают аксиомы Евклида, — так Вселенную и представляли себе до третьей декады ХХ века. Но это не обязательно так. Представим себе двумерное пространство — это легко. Например, бесконечную плоскость, где также справедливы аксиомы Евклида. Это будет двумерный аналог бесконечного евклидова трехмерного пространства. Но можно легко представить и иной вариант — сферу. Это замкнутое конечное пространство, где параллельные прямые пересекаются, а сумма углов треугольника больше 180°. Такое пространство называется римановым, его кривизна положительна.

Теперь следующий, более трудный, но важный шаг: пусть наша сфера будет трехмерной — трехмерное замкнутое пространство. Это вообразить гораздо сложнее, поскольку мы не можем представить себе четвертое измерение, помогающее взглянуть извне на трехмерную сферу. Теперь мы сами — те микроскопические существа, заключенные в замкнутом пространстве. Если наша вселенная стационарна (радиус сферы не меняется со временем), мы можем совершить кругосветное путешествие, отправившись в любом направлении и вернувшись с противоположного. Мы будем видеть яркие объекты с двух противоположных сторон неба (такие объекты безуспешно искались). И если сфера совсем идеальная, то взгляд, брошенный человеком в любом направлении, упрется в его же затылок, правда, его изображение будет исчезающе тусклым из-за колоссального увеличения.

До сих пор мы говорили о вселенной как о замкнутой сфере идеальной формы. Это не обязательно так. Сфера может быть покрыта мелкой рябью, может иметь глобальные деформации (что усложняет кругосветное путешествие). Теоретически вселенная может даже иметь другую топологию, например тороидальную. Но все-таки нам важно, чтобы вселенная была замкнутой и конечной. Теоретически можно описать и бесконечную вселенную, но тогда встает тяжелый вопрос: как она могла появиться? Этот вопрос можно просто проигнорировать, но с конечной вселенной намного проще: вопрос о ее появлении (и размножении) не то, чтобы решен, но просматривается в общих чертах.

Вариантов геометрии вселенных огромное множество, но мы должны остановиться на самом простом, который к тому же и самый естественный: однородная изотропная сфера. Однородная означает, что условия в каждой точке одинаковы, изотропная — нет выделенных направлений. В случае нашей Вселенной — сфера трехмерная. Для демонстрации будем использовать идеальную двумерную сферу в трехмерном пространстве. Мы приходим к тому, что называется пространственно ноль-мерной задачей: ото всех пространственных координат ничего не зависит, независимой переменной остается только время. Решение задачи будет описывать только размер (радиус кривизны, масштаб) Вселенной — его изменение со временем.

Кинематика Вселенной

Выше мы для наглядности рассматривали стационарную вселенную. На самом деле так не бывает. Устроить стационарную вселенную очень трудно — нужна точная подгонка параметров, об этом будет сказано ниже. Реальные вселенные либо расширяются, либо сжимаются. Нам интереснее первый вариант, поскольку наша Вселенная расширяется.

В нашей модели вселенной в виде двумерной поверхности замкнутой сферы расширение можно смоделировать, например, надувая эту сферу, если она резиновая. Там выделенная система отсчета очевидна — это материал сферы. Пусть резина везде одинаковая и можно нанести на нее точки и наблюдать, как они удаляются друг от друга при надувании. А в реальной физической Вселенной вроде бы нет материала, выделяющего систему отсчета. В пространстве действует специальная теория относительности, отрицающая существование выделенных систем. Ну да, есть малоподвижные звезды и галактики, но это лишь факт биографии нашей Вселенной, в специальной теории относительности они не задают систему отсчета. А в общей теории относительности, оказывается, задают.

Горизонт нашей Вселенной в настоящий момент находится в 46 млрд световых лет от нас при возрасте Вселенной 13,8 млрд лет. Ничего удивительного: точка В в молодой Вселенной убегала от нашей точки А гораздо быстрей света. Более того, фотон, испущенный из точки В в сторону А, тоже удалялся от точки А быстрей света. Ситуацию приблизительно иллюстрирует рисунок внизу.

Не будет большой ошибки, если мы выберем точку В не в момент Большого взрыва, а чуть позже — в момент рекомбинации. От момента Большого взрыва до нас не дошло ничего, кроме нейтрино и гравитационных волн, а от момента рекомбинации дошло реликтовое излучение, у нас есть прекрасная карта Вселенной возраста 380 тыс. лет. И мы видим там зародыши будущей крупномасштабной структуры — будущие войды и вероятные будущие сверхскопления. Сейчас всё это улетело на 46 млрд световых лет, но у нас есть хотя бы приблизительная информация о том, что там сейчас находится. В этом и есть смысл горизонта.

А откуда берется красное смещение? Что происходит с фотоном по пути? Первая реакция обычного человека — приписать красное смещение эффекту Доплера. Галактика N удаляется от нас из-за расширения Вселенной, и ее спектр смещен в красную сторону на величину \( \frac<(1 - v/c)>> \). Если галактика неподалеку, то всё в порядке, эффект Доплера дает разумный результат. А если галактики очень далеко, и это даже не галактика, а некая точка В с графика в молодой Вселенной, когда она удалялась быстрее света? Что ставить в формулу для эффекта Доплера? Скорость, превышающую световую? И что произойдет со знаменателем в этой формуле? Между тем мы видим реликтовое излучение с красным смещением около тысячи. Откуда взялась такая величина?

Дело в том, что природа космологического красного смещения другая — это именно расширение пространства. Волна электромагнитного поля, пересекающая пространство, растягивается вместе с ним. Если за время пролета вселенная растянулась в a раз, то и длина волны увеличится в a раз, а ее частота и энергия в a раз упадет. Наша Вселенная с момента рекомбинации растянулась примерно в тысячу раз, соответственно энергия фотонов и температура реликтового излучения в тысячу раз уменьшилась. Кстати, если рассмотреть покраснение фотонов как череду небольших доплеровских смещений в расширяющемся пространстве, разбив его траекторию на небольшие шаги, мы получим тот же самый результат.

Горизонт в расширяющейся вселенной. Пунктиром показаны траектории точек, изначально находящихся на разных расстояниях от точки A, в которой находимся мы. Горизонт определяется точкой B, от которой световой луч, испущенный в нашу сторону в самом начале расширения Вселенной, пришел к нам сейчас. Расстояние до горизонта равно расстоянию, на которое точка B ушла от нас к настоящему времени. Мы не знаем, что происходит сейчас в точке B, но если взять за начало эпоху рекомбинации, которая отображена в карте реликтового излучения, можем примерно восстановить, где там пустоты и сверхскопления. На рисунке не учтено современное ускоренное расширение Вселенной из-за темной энергии. Для стационарной вселенной луч света в этих координатах был бы представлен прямой линией, идущей под углом 45°

Можно продемонстрировать растягивание электромагнитной волны вместе с расширением вселенной и более строго, но это потребует введения дополнительных понятий и формул. Частицы, летящие со скоростью, близкой к скорости света, тоже теряют свою энергию как Е = Ео · ao/a(t), а нерелятивистские частицы таким же образом теряют скорость относительно системы покоя.

А как же специальная теория относительности? Она никуда не делась, просто надо помнить, что преобразования Лоренца применимы для плоского (евклидова) стационарного пространства. А в расширяющемся пространстве они тоже применимы, но имеют локальный характер: все преобразования скоростей и другие релятивистские эффекты сохраняют свой вид для событий, относительно близких в пространстве.

Вселенная – это целая система, в которой все объекты и структуры существуют по определенным законам. Звезды, видимые человеком невооруженным глазом, это всего лишь незначительная часть огромного космического пространства. Во Вселенной есть целый мир галактик, квазары, темная материя и энергия. Она таит в себе множество загадок, ответы на которые пытаются найти лучшие ученые со всего мира.

План урока:

Структура Вселенной и ее размеры

На протяжении многих тысячелетий человечество считало, что Вселенная вечна и неизменна. Данная теория господствовала во всем в мире вплоть до начала ХХ столетия. Колоссальный переворот в науке о космическом пространстве произошел в 20-е годы прошлого века, благодаря таким ученым как Эйнштейн, Фридман и Хаббл. Именно они выдвинули предположения и доказали, что Вселенная – это целая система, которая живет своей жизнью и способна изменяться во времени, то есть расширяться или сжиматься.

В структуре Вселенной выделяют несколько уровней организации, каждый из которых отличается масштабом объектов:

  • Следующий уровень – галактики. Они бывают неправильной, линзовидной, спиральной и эллиптической формы. Вот только почему существует такая классификация, ученые еще не нашли ответ. В пределах одного галактического пространства есть черные дыры, межзвездный газ, темная материя, двойные звезды, пыль, электромагнитное излучение. Астрономы предполагают, что во Вселенной существуют сотни миллионов галактик.
  • Небольшое скопление галактик формируют Местную группу. Данный уровень организации считается одной из самых крупных и устойчивых структур. Все объекты в системе скопления галактик удерживаются гравитационной силой и еще каким-то фактором. Что это за фактор ученые пока не знают, но уверенны, что одной лишь силы гравитации для поддержания стабильности недостаточно. Скопление, в которое входит Млечный путь, Треугольник и Андромеда, включает еще 31 галактическую систему.

Скопление галактик в Персее Источник

  • Сверхскопление галактик – в составе такой структуры десятки или даже сотни галактических систем или их скоплений. Гравитационные силы здесь уже не такие сильные, поэтому сверхскопления движутся вместе с расширяющейся Вселенной.
  • На последнем уровне во Вселенной находятся ячейки, или пузыри. Их границы образуют сверхскопления галактик. Между этими структурами расположены пустотные области, которые получили название войды. Изучение войд, как и самых отдаленных частей Вселенной, происходит с помощью современных телескопов, одним из которых является телескоп Хаббла. В течение длительного времени, астрономы наблюдают за процессами, происходящими в космосе, изучают скопления и расположение звезд, после чего делаются определенные расчеты, строятся модели Вселенной, звездные карты и т.д.

Все структуры Вселенной являются уникальными и таинственными. Человечество уже гораздо лучше понимает, как устроено космическое пространство. Но с каждым новым открытием у ученых появляются и новые вопросы, ответы на которое порой не так легко найти.

Изучая размеры Вселенной, астрономы могут говорить только о ее видимой части, которую научно называют Метагалактикой. Чем больше сведений и знаний ученые получают о ней, тем больше становятся ее границы, причем они расширяются абсолютно во всех направлениях. Это говорит о сферической форме Вселенной.

Принято считать, что возраст Вселенной составляет 13,8 млрд. лет. Именно столько времени прошло с момента Большого Взрыва. Однако это только предположения, полученные в результате многолетней работы специалистов. Они основаны на наблюдениях и расчетах, но утверждать со 100% уверенностью, что Взрыв действительно был, нельзя. На сегодняшний день теория Большого Взрыва является общепринятой, так как именно она объясняет многие процессы, происходящие в космическом пространстве.Учитывая скорость света, ученые предполагают, что размеры Вселенной составляют также 13,8 млрд. световых лет. Скорей всего эта цифра не совсем точная, так как с момента зарождения пространство Вселенной все время расширяется. Некоторая его часть движется со сверхсветовой скоростью, из-за чего многие объекты навсегда останутся вне зоны видимости человека.

Математическая модель Вселенной Источник

Мир галактик

Итак, как уже было отмечено, галактика – это одна из главнейших структур в составе Вселенной. Образование галактических систем является естественным процессом, на который уходит много времени. Все началось с появления протоскоплений – облаков, состоящих из газа и пыли, из которых образуются звездные скопления. Динамические процессы в них способствовали выделению галактических групп. Известно, что галактики могут иметь различные формы. Это объясняется отличием первостепенных условий их формирования.

Абсолютно в каждой галактической системе выделяют два поколения звезд. Первое – гелиево-водородные объекты, в составе которых также содержится незначительное количество тяжелых металлов. Иными словами – это самые старые звезды. К другому поколению относят объекты, обогащенные тяжелыми металлами. Такие звезды формируются из межзвездного газа.

Образование звезд происходит при сжатии галактической системы. Как правило, для данного процесса необходимо 3 млрд. лет. За это время облако газа превращается в звездную систему. В результате гравитационной силы газовое облако сжимается. В тот момент, когда в его центральной части плотность и температура достигают определенных показателей, происходит термоядерный взрыв и появляется новая звезда.

Процесс образования звезды из газопылевого облака Источник

В космическом пространстве наблюдается постоянное перемещение и взаимодействие галактических систем между собой. Иногда происходит их столкновение и тогда одна галактика поглощает другую, а в космос выбрасывается огромное количество энергии. Бывает, что галактики проходят рядом друг с другом и только слегка меняют свою структуру.

Скопления и сверхскопления галактик

Под скоплением галактик понимают гравитационно-связанную систему, которая считается крупнейшей структурой во Вселенной. Ее размер может достигать от 6 до 60 миллионов световых лет. В составе одного скопления 100-1000 галактик. Интересным является факт, что в одном скоплении, сами галактические системы занимают всего 1%, около 9% - это межгалактический газ, а все остальное приходится на темную материю и энергию. В космосе существует два типа скоплений галактик:

  • регулярные – для этого типа характерна правильная сферическая форма. Основную часть составляют линзовидные и эллиптические галактики, имеют яркую центральную часть. Пример скопления – Волос Вероники;

Скопление галактик в Волосах Вероники

  • иррегулярные – форма неопределенная, количество галактик в составе гораздо меньше, чем у регулярного типа. Пример – скопление Девы.

Скопление галактик в Деве

Сверхскопления – структура, в состав которой входят скопления галактик и несколько отдельных галактических систем. Как правило, в одном сверхскоплении их насчитывается от 2 до 20, располагаются они в галактических нитях, или же в узлах их пересечения.

Размеры сверхскоплений галактик во Вселенной достигают сотен млн. световых лет. Это настолько много, что объекты не способны удерживаться между собой гравитационными силами. Самые известные сверхскопления:

  • Стена Скульптора – находится недалеко от Млечного Пути. Его длина 300 млн. световых лет, ширина – 210 млн. световых лет;
  • Девы – Местное сверхскопление галактик, в состав которого входит Млечный путь;
  • Шепли – это одно из самых больших сверхскоплений во Вселенной. Его масса в 10 тыс. раз больше массы Млечного пути.

Квазары

По другой версии, квазары представляют собой огромные черные дыры, которые активно поглощают все, что находится в округе. По мере приближения к ним вещества, его скорость растет, а само вещество разогревается. Магнитное поле черной дыры собирает мельчайшие частички в пучки, которые в дальнейшем разлетается от ее полюсов. Третья версия гласит, что квазары – это начальная стадия жизни галактики, то есть человечество видит их фактическое формирование. Какая из этих теорий является максимально правдивой никому не известно, но каждая из них имеет право на существование.

Мощность излучения квазара просто огромна. Она в сотни раз превышает мощность излучения всех звезд в одной галактике. Сложно представить, что объект отдален от человека на несколько миллиардов световых лет, но при этом его можно увидеть в обычный телескоп. За одну единицу времени квазар производи в 10 триллионов раз больше энергии, чем Солнце. А его размер можно сравнить с размером Солнечной системы.

Расстояние до квазаров исчисляются миллиардами световых лет. Для них характерно красное смещение, то есть эти объекты удаляются от Земли. Причем скорость этого удаления достигает фантастических показателей. Ученые предполагают, что скорость квазара 3С196- 200 тыс. км/с (это 2/3 скорости света), а расстояние с ним составляет 12 млрд. световых лет. Для сравнения максимальная скорость движения галактических систем всего несколько десятков тыс. км/с.

Еще одна интересная особенность квазаров – их переменность. Они постоянно меняют свою светимость, что совершенно нехарактерно для галактик. Был зафиксирован случай, когда блеск объекта за один час сменился 25 раз. Исходя из последних наблюдений, выяснилось, что многие квазары находятся около центров огромных эллиптических галактик.

Самый первый квазар был открыт в 1960 г благодаря Мэтью Сэндиджу. Он получил название 3с273. В современном мире квазары во Вселенной определяют по красному смещению их спектра. Если обнаружено такое смещение и при этом объект выделяет огромное количество энергии, его смело начинают именовать квазаром. Сейчас в космическом пространстве их обнаружено около 2-х тысяч. Эти космические объекты изучаются с помощью телескопа Хаббла. Расстояние между Землей и ближайшим квазаром составляет 800 млн. световых лет.

Вид квазара в телескопе Источник

Понятие темной энергии

В астрономии понятие темное энергии включает в себя энергию (существующую в теории), которая была введена в математическую модель Вселенной, чтобы объяснить ее расширение с ускорением. Ученые предполагают, что эта энергия не способна собираться в сгустки (в отличие от темной материи), а равномерно распределяется по всем просторам Вселенной. Темная энергия присутствует в галактиках, в галактических скоплениях, а также за их пределами. Интересным является тот факт, что она действует против гравитационных сил, то есть испытывает антигравитацию.

С помощью современных астрономических технологий ученые способны не только измерить скорость расширения Вселенной, но и проанализировать, как этот процесс изменялся со временем. Дело в том, что ускорение расширения Вселенной только растет, что позволяет говорить об антигравитационных силах. Если бы в космическом пространстве гравитация была стандартной, то со временем отдаление галактик друг от друга замедлялось бы.

К сожалению, на сегодняшний день не существует возможности в земных условиях экспериментально исследовать темную энергию. Но это не означает, что в будущем человечество не сможет объяснить природу данного явления или выяснить другие причины, способствующие такому быстрому ускорению расширения Вселенной.


Вселенная представляется человеку бесконечной, неизменной и вечной. Однако по современным представлениям это не так. Познакомимся с самыми важными фактами о строении Вселенной, кратко проследим ее эволюцию.

Строение Вселенной

Гипотезы о строении и эволюции Вселенной выдвигались еще в античности. Уже когда появилось учение Коперника многим интересующимся данной темой было ясно, что Земля — это лишь песчинка в огромном океане космоса. С развитием астрономии выяснили, что расстояние до максимально удаленных объектов Вселенной составляет приблизительно 45,7 млрд световых лет ($4.3×10^$м). И в таких масштабах Вселенная имеет однородную нитевидную структуру. Вещество во Вселенной распределено в нитевидных сверхскоплениях галактик, области между которыми составляют размеры порядка нескольких миллионов световых лет и не имеют светящегося вещества.

Сверхскопление — это группа скоплений галактик, содержащая от двух до двадцати скоплений. Каждое скопление — это гравитационно-связанная система нескольких галактик, имеющая диаметр порядка десятков миллионов световых лет и массу порядка $10^-10^$ солнечных масс.

Эволюция Вселенной

Изучение Вселенной показывает, что ее размер со временем увеличивается — Вселенная расширяется. Процесс расширения Вселенной начался 14 млрд лет назад из плотного компактного состояния в результате события, называемого Большим взрывом.

Планковская эпоха

Схема эволюции Вселенной такова. В самые ранние моменты жизни (от нуля до $ ^ $с, планковская эпоха) вещество имело плотность порядка $ ^ $ кг на м³ и температуру порядка $ ^ $К. Квантовые эффекты преобладали над остальными, а все фундаментальные взаимодействия существовали в виде одного общего взаимодействия.

Ранние этапы эволюции Вселенной

Эта эпоха началась с отделения гравитации от общего электроядерного взаимодействия. Плотность вещества в эту эпоху упала до уровня $10^$ кг на м³, а температура — до $10^$К. Отделение гравитации привело к нарушению симметрии в молодой Вселенной и заложило основу для неоднородности в ней. Сама Вселенная в этот момент представляла кварк-глюонную плазму.

Ко времени $10^$с температура во Вселенной упала настолько, что свободные кварки и глюоны начали объединяться в адроны, в том числе в протоны и нейтроны — основу вещества будущей Вселенной. Сильное взаимодействие отделилось от электрослабого. Адроны обрели стабильность, причем одновременно существовали как частицы, так и античастицы.

Лишь ко времени $10^$с плазма охлаждается настолько, что частицы и античастицы начинают аннигилировать с образованием большого числа фотонов. Небольшое нарушение симметрии обусловило избыток вещества над антивеществом.

Далее по мере уменьшения плотности и температуры возникает возможность нуклеосинтеза: протоны объединяются в ядра, электроны занимают места в электронных оболочках. Этот процесс начинается примерно через 300 тыс. лет после Большого взрыва.


Рис. 2. Эволюция Вселенной.

Современная эпоха

Нуклеосинтез завершается образованием во Вселенной 75 % водорода, 25 % гелия и следов других элементов. Ко времени 800 млн лет после Большого взрыва начинается эра вещества. Газ, заполняющий Вселенную, начинает образовывать неоднородности и сгустки. Средняя температура в это время во Вселенной опустилась до тысяч кельвинов, что недостаточно для ядерных реакций.

Что мы узнали?

Вселенная образовалась 14 млрд лет назад в результате Большого взрыва. По мере расширения плотность и температура падали, что привело к образованию вещества, облаков газа, а впоследствии и звезд. В самом крупном масштабе Вселенная имеет волокнистую структуру сверхскоплений и областей без излучающего вещества.

Читайте также: