Биологические мембраны и их физические свойства кратко

Обновлено: 05.07.2024

Любая клетка состоит из окруженной плазматической (клеточной) мембраной цитоплазмы, в которой находятся ядро клетки, органеллы и различные включения. К органеллам клетки относятся митохондрии, лизосомы, рибосомы, аппарат Гольджи, эндоплазматический ретикулум. Все они, в том числе и ядро клетки, тоже имеют мембраны, и основная цель данного параграфа состоит в ознакомлении с современными представлениями о структуре и функциях биологических мембран.

Содержание

Введение………………………………………………………. ………………………..2
1. Модели и строение биологических мембран……………………………………. 2
1.1 Бутербродная модель………………………………………………………………. 2
1.2 Жидкостно-мозаичная модель……………………………………………………. 3
1.3 Белково-кристаллическая модель…………………………………………………..4
2.Физические свойства биологических мембран……………………………………. 8
2.1Пассивный и активный транспорт веществ через мембранные структуры…………………………………………. 8
2.2 Транспорт неэлектролитов путем простой и облегченной диффузии…………. 9
2.3 Диффузия. Пассивный перенос неэлектролитов через биомембраны, уравнение Рика. ………………………………………………………………………………….…11
2.4 Молекулярный механизм активного транспорта ионов………………………. 12
2.5 Проницаемость……………………………………………………………….….…14
Заключение…………………………………………………………………………..….18
Используемая литература……. …………………………………………………..…..19

Прикрепленные файлы: 1 файл

Kovalchuk_2.doc

При многих видах патологий, а также при воздействии биологически активных соединений вязкость мембран изменяется.

Чем выше подвижность хвостов фосфолипидов, тем меньше вязкость мембран, и тем лучше их проницаемость для диффундирующих веществ. Поэтому вязкость бислоя очень важна для всей функциональной деятельности ферментов, находящихся в липидном слое и других.

Вязкость мембраны сильно зависит от агрегатного состояния бислоя (жидкое и твердое), то есть от температуры.

Рассматривая жидкостно-мозаичную модель мембран, надо всегда иметь в виду, что отдельные молекулы липидного бислоя не “сидят” на одном месте, а непрерывно меняются местами, перемещаясь вдоль слоя, то есть вдоль мембраны с внушительной скоростью в 5 мкм/с. Участвуют в этом движении и белки. Это явление хаотического перемещения молекул липидов и белков вдоль поверхности мембраны называется латеральной (lateral - боковой) диффузией. Скорость латеральной диффузии белков значительно меньше, чем у липидов, кроме того, часть пронизывающих мембрану белков оказывается “заякоренной” на внутриклеточные белки и в латеральной диффузии не участвуют.

Мембранные белки и липиды помимо поступательного движения участвуют и во вращательном движении, или, как говорят, - во вращательной диффузии. При этом угловая скорость вращения белков и липидов весьма велика. Например, при нормальных температурах она составляет:

- для фосфолипидов - 109 рад/с;

- -для родопсина - 106 рад/с;

- для цитохромоксидазы - 104 рад/с.

Ассиметрия мембран проявляется в том, что внутренние и наружные по отношению к клетке стороны любой биологической мембраны всегда имеют разный липидный и белковый состав. Молекулы углеводов располагаются только на внешней стороне мембраны. Ассиметричная ориентация ферментативных и транспортных белков в мембране приводит к наличию преимущественно направления активного транспорта веществ через мембрану, что играет исключительно важную роль для функционирования клетки в целом.

2. Физические свойства биологических мембран.

2.1 Пассивный и активный транспорт веществ через мембранные структуры.

Различают активный и пассивный перенос (транспорт) нейтральных молекул и ионов через биомембраны. Активный транспорт - происходит при затрате энергии за счет гидролиза АТФ или переноса протона по дыхательной цепи митохондрий. Пассивный транспорт не связан с затратой клеткой химической энергии: он осуществляется в результате диффузии веществ в сторону меньшего электрохимического потенциала. Примером активного транспорта может служить перенос ионов калия и натрия через цитоплазматические мембраны К - внутрь клетки, а Na - из нее, перенос кальция через саркоплазматического ретикулума скелетных и сердечных мышц внутрь везикул ретикулума, перенос ионов водорода через мембраны митохондрий из матрикса - наружу: все эти процессы происходят за счет энергии гидролиза АТФ и осуществляются особыми ферментами - транспортными АТФ-фазами. Наиболее известный пример пассивного транспорта - это движение ионов и калия через цитоплазматическую мембрану нервных волокон при распространении потенциала действия.

Пассивный перенос веществ через биомембраны. Диффузия незаряженных молекул

Принято различать следующие типы пассивного переноса веществ (включая ионы) через мембраны:

1. Простая диффузия

2. Перенос через поры (каналы)

3. Транспорт с помощью переносчиков за счет:

а) диффузии переносчика вместе с веществом в мембране (подвижный переносчик);

б) эстафетной передачи вещества от одной молекулы переносчика к другой, молекулы переносчика образуют временную цепочку поперек мембраны.

Перенос по механизму 2 и 3 называют иногда облегченной диффузией.

2.2 Транспорт неэлектролитов путем простой и облегченной диффузии.

Всякая живая клетка окружена мембраной, которая служит для защиты и регуляции внутренней среды. Мембрана действует как дискриминирующее устройство, позволяющее питательным и другим необходимым веществам входить внутрь клетки, а продуктам обмена удаляться наружу.

Белки мембран выполняют функции трех типов: поддерживают общую структурную целостность мембран; действуют как ферменты, например, при синтезе молекул АТФ в митохондриальных мембранах или в различных стадиях фотосинтеза в мембране хлоропласта; кроме того, они служат переносчиками ионов и молекул через мембраны.

Различные вещества переносятся через мембраны по двум основным механизмам: путем диффузии (пассивного транспорта) и путем активного транспорта. Проницаемость мембран для различных растворенных веществ зависит от размеров и заряда этих молекул. Поскольку внутренняя область мембран состоит из углеводородных цепей, многие малые нейтральные и неполярные молекулы могут проходить через бимолекулярную мембрану путем обычной диффузии. Иначе можно сказать, что эти молекулы растворимы в мембране. Наиболее важное из этих веществ – глюкоза, которая переносится через мембраны только в комплексе с молекулой-переносчиком. В этой роли обычно выступает белок. Комплекс глюкозы с переносчиком легко растворяется в мембране и может поэтому диффундировать через мембрану. Такой процесс называется облегченной диффузией. Суммарная скорость транспорта глюкозы резко повышается в присутствии гормона инсулина. Пока не совсем ясно, состоит ли действие инсулина в повышении концентрации переносчика или этот гормон стимулирует образование комплекса между глюкозой и переносчиком.

Основным механизмом пассивного транспорта веществ, обусловленным наличием концентрационного градиента, является диффузия.

Диффузия - это самопроизвольный процесс проникновения вещества из области большей в область меньшей его концентрац ии в результате теплового хаотического движения молекул.

Математическое описание процесса диффузии дар Рик. Согласно закона Рика, скорость диффузии прямо пропорциональна градиенту концентрации и площади S, через которую осуществляется диффузия:

Так как концентрационный градиент клеточной мембраны определить трудно, то для описания диффузии веществ через клеточные мембраны пользуются более простым уравнением, предложенным Коллеидером и Берлундом:

В соответствии с этим градиентом имеются следующие виды пассивного транспорта веществ в клетках и тканях: диффузия, осмос, электроосмос и аномальный осмос, фильтрация.

2.3 Диффузия. Пассивный перенос неэлектолитов через биомембраны, уравнение Рика.

Диффузия – это процесс, который приводит к самопроизвольному уменьшению градиентов концентраций в растворе, пока не установится однородное распределение частиц. Процесс диффузии играет важную роль во многих химических и биологических системах. Именно диффузией, например, определяется в основном доступ двуокиси углерода к активным фотосинтетическим структурам в хлоропластах. Для понимания особенностей транспорта растворенных молекул через клеточные мембраны необходимы детальные сведения о диффузии. Рассмотрим некоторые основные принципы диффузии в растворах.

2.4 Молекулярный механизм активного транспорта ионов.

Известны четыре основных системы активного транспорта ионов в живой клетке, три из которых обеспечивают перенос ионов натрия, калия, кальция и протонов через биологические мембраны за счет энергии гидролиза АТФ в результате работы специальных ферментов переносчиков, которые называются транспортными АТФ-азами. Четвертый механизм - перенос протонов при работе дыхательной цепи митохондрий - пока изучен недостаточно. Наиболее сложно из транспортных АТФ-аз устроена Н+ - АТФ-аза, состоящая из нескольких субъединиц, самая простая – Са2+ АТФ-аза, состоящая из одной полипептидной цепи (субъединицы) с молекулярной массой около 100000. Рассмотрим механизм переноса ионов кальция этой АТФ-азой.

Первый этап работы Са2+ АТФ-зы - связывание субстратов: Са2+ и АТФ в комплексе с Мg2+ (Мg АТФ). Эти два лиганда присоединяются к различным центрам на поверхности молекулы фермента, обращенной наружу пузырька саркоплазматического ретикулума (СР).

Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.).

Второй этап работы фермента - гидролиз АТФ. При этом происходит образование энзим - фосфатного комплекса (Е-Р).

Третий этап работы фермента - переход центра связывания Са2+ на другую сторону мембраны - транслокация.

Высвобождение энергии макроэргической связи происходит на четвертом этапе работы Са2+ АТФ-азы при гидролизе Е-Р. Эта энергия отнюдь не растрачивается вхолостую (т.е. не переходит в тепло), а используется на изменение константы связывания ионов кальция с ферментом. Перенос кальция с одной стороны мембраны на другую связан, таким образом, с затратой энергии, которая может составить 37,4 - 17,8 = 19,6 кДж/моль. Ясно, что энергия гидролиза АТФ хватает на перенос двух ионов кальция.

Перенос кальция из области меньшей (1-4 х 10-3 М) в область больших концентраций (1-10 х 10-3 М) - это и есть та работа, которую совершает Са - транспортная АТФаза в мышечных клетках.

Для повторения цикла требуется возвращение кальций-связывающих центров изнутри наружу, то есть еще одно конформационное изменение а молекуле фермента.

Молекулярный механизм работы этих двух "насосов" во многом близок. Основные этапы работы Na+ K+ АТФаз таковы:

1. Присоединение снаружи двух ионов K+ и одной молекулы Mg2+ АТФ:

2 Ko+ + Mg АTФ + E ® (2 K+)(Mg АТФ)E

2. Гидролиз АТФ и образование энзим-фосфата:(2 K+ )(Mg АТФ)E ® Mg АТФ + (2 K+)E - P

3. Перенос центров связывания K+ внутрь (транслокация 1):

(2 K+ )E - P ® E - P(2 K+ )

4. Отсоединение обоих ионов калия и замена этих ионов тремя ионами Na, находящимися внутри клетки:

E - P(2 K+) + 3 Nai + ® E - P(3 Na+ ) + 2 K+ i

5. Гидролиз E - P:

E - P(3 Na+ ) ® E(3 Na+ ) + P (фосфат)

6. Перенос центров связывания вместе с ионами Na+ наружу (транслокация 2): мембранный структура молекулярный диффузия

7. Отщепление 3 Na+ и присоединение 2 K+ снаружи:

2 K0+ + 3 Na+ (E) ® 3 Na+ + (2 K+ )E

Перенос 2 K+ внутрь клетки и выброс 3 Na+ наружу приводит в итоге к переносу одного положительного иона из цитоплазмы в окружающую среду, а это способствует появлению мембранного потенциала (со знаком "минус" внутри клетки).Таким образом, Na+ K+ насос является электрогенным.

Проницаемость - это способность клеток и тканей поглощать, выделять и транспортировать химические вещества, пропуская их через мембраны клеток, стенки сосудов и клетки эпителия. Живые клетки и ткани находятся в состоянии непрерывного обмена химическими веществами с окружающей средой, получая из нее продукты питания и выводя в нее продукты метаболизма. Основным диффузионным барьером на пути движения веществ является клеточная мембрана. В 1899 году Овертон обнаружил, что дегкость прохождения веществ через клеточную мембрану зависела от способности этих веществ растворяться в жирах. В то же время ряд полярных веществ проникал в клетки независимо от растворимости в жирах, что можно было объяснить существованием в мембранах водных пор.

В настоящее время различают пассивную проницаемость, активный транспорт веществ и особые случаи проницаемости, связанные с фагоцитозом и пиноцитозом.

Основные виды диффузии - это диффузия веществ путем растворения в липидах мембраны, диффузия веществ через полярные поры, диффузия ионов через незаряженные поры. Особыми видами диффузии являются облегченная и обменная. Она обеспечивается особыми жирорастворимыми веществами-переносчиками, которые способны связать переносимое вещество по одну сторону мембраны, диффундировать с ним через мембрану и освобождать по другую сторону мембраны. Роль специфических переносчиков иона выполняют некоторые антибиотики, получившие название ионофорных (валиномин, нигерицин, моненсин, поеновые антибиотики нистатин, аифотерицин В и ряд других). Ионофоры могут быть разделены в свою очередь на три класса в зависимости от заряда переносчика и структуры кольца: нейтральный переносчик с замкнутым ковалентной связью кольцом (валиномицин, нактины, полиэфиры), заряженный переносчик с кольцом, замкнутым водородной связью (нигерицин, монензин). Заряженные переносчики с трудом проникают в заряженной форме через модельные и биологические мембраны, в то же время в нейтральной форме они свободно диффундируют в мембране. Нейтральная форма образуется путем формирования комплекса анионной формы переносчика с катионом. Таким образом, заряженные переносчики способны обменивать катионы, находящиеся преимущественно по одну сторону мембраны на катионы расвора, омывающего противоположную сторону мембраны.

Основой существования всех живых организмов является клетка. Каждую клетку окружает мембрана, через которую происходит постоянный перенос вещества. Благодаря этому поддерживает метабализм, биоэнергетические процессы, генерируются биопотенциалы-нервные импульсы, за счет которых происходит взаимодействие клеток организма.

Механическая – за счет которой обеспечивается прочность клетки, автономномность.

Матричная – специфичное расположение ферментов-белков,гликопротеинов,гликолипидов.

Барьерная – Регулируемый обмен между клеткой и внешней средой.


Строение фосфолипида:

Состоит из полярной головки, которая является диполем и неполярного обычного хвоста.

Головка-гидрофильна, соприкасается с водой

Хвост-гидрофобен,не соприкасается с водой

Такое свойство биполярности называется –амфифильность, за счет этого свойства молекулы способны к самосборке

Физические свойства:

Вопрос о строении с точки зрения физики:

Вопрос о строении был изучен с помощью коэффицента поверхностного натяжения:

Для границы раздела белок-вода q1=10 в -4 Н/м, для границы липид вода q2=10 в -2 Н/м

Значение коэффицента для биомембран ближе к первому значению

Фазовые переходы в биомембранах:

Фосфолипидная часть биомембраны может испытывать фазовые переходы-

При понижении температуры фосфолипиды переходят из жидко-крист. состояния в твердо-крист( гель-состояние)

Для жидко-кристалического состояния характерно наличие изогнутых хвостов. Полагают, что при таком состоянии осуществляется перенос полярных молекул через мембрану.

В твердо-кристалическом состоянии гидрофобные хвосты полностью вытянуты

При фазовых переходах могут образовываться каналы. Фазовые переходы могут быть вызваны не только температурой, но и химическими веществами.

Мембраны-это нечто застывшее, статическое. Изменение механического состояния мембраны определяется механическими характеристиками: подвижностью фосфолипидных молекул, их микровязкость

Для жидко-кристалического состояния микровязкость составляет 30-100 мПа*с (в 30-100 раз больше, чем у воды.

Перенос нейтральных частиц через мембраны. Уравнение простой диффузии.

Пассивный транспорт( направление в сторону переноса уменьшения концентрации)

Простая диффузия- перенос веществ из-за разности концентраций. Осуществляется через липидный слой, липидную пору, через белковую пору, также возможен осмос. Происходит выравнивание концентраций

Облегченная диффузия- протекает с подвижным или неподвижным переносчиком

Фильтрация – перемещения раствора или растворителя под разностью давлений( перенос воды через стенки капилляров) Явление подчиняется формуле Пуазейля Q= дельта P/ W, де Q –объемная скорость, дельта P- разность давлений, W –гидравлическое сопротивление

Говоря о любом виде транспорта веществ используют понятие плотности потока переносимого вещества Ф, определяемого как число перенесенных частиц ко времени и площади, через которую этот перенос осуществляется Ф= N/( дельтаt*S)

Уравнение, описывающее процесс диффузии имеет вид( Уравнение Фика):

Ф=- D* дельта C/ дельта X , отношение дельта C/ дельта X называется градиентом концентрации, D –коэффицент диффузии

Так как диффузия-результат теплового движения молекул, коэффицент диффузии можно выразить через молекулярные характеристики-среднюю скорость молекулы (V) и среднюю длину сводного пробега молекул (л –лямбда) D=(1/3)*V*л

Для биомембран используют упрощенное уравнение Фика Ф=p(c1-c2)

C1 и С2 концентрации веществ внутри и внее клетки, P=D*K/дельта Х-проницаемость мембраны

Диффузия через поры:

Этот вид диффузии для липидо-нерастворимых веществ, водо-растворимых ионов

Этим путем переносятся аминокислоты, сахара, ионы калия. Происходит с участием молекулы переносчика. Например, молекула ВАЛИНОМИЦИНА

Для облегченной диффузии характерны 4 особенности:

Коэффицент проницаемости для облегченной диффузии больше, чем для простой

Процесс обладает свойством насыщения

Наличие конкуренции переносимых веществ

Перенос ионов через мембраны: электродиффузия, облегченная диффузия и Активный транспорт.


Уравнение Нернста-Планка: .


Поток, обусловленный разностью концентраций(ФΔС): - D *

Поток, обусловленный разностью потенциалов(ФΔ: Z – валентность электронов.

C – молярная концентрация.

U – подвижность ионов. U=Vупор.движ.чатиц/F.

F – число Фарадея ( F=96500 Кл/Моль)

Виды пассивного транспорта нейтральных и заряженных частиц через мембраны.

Пассивный транспорт(направление переноса в сторону уменьшения концентраций):

Простая диффузия – перенос вещества вследствие разности концентраций. Она может осуществляться через липидный слой, через липидную пору, через белковую пору. При это возможен также осмос – диффузия не растворенных частиц и растворителя от точек с меньшей концентрацией некоторого вещества к точкам с большей его концентрацией.


Плотность потока переносимого вещества – Ф, определяется как число перенесенных частиц ко времени и площади,через которую этот перенос осуществляется: Ф = m/(Δt*S). Кроме того можно определить плотность через перенесенную массу: Фm= m/(Δt*S) или количество вещества: Ф = ʋ/ (Δt*S). Уравнение, описывающее процесс диффузии(уравнение Фикса): .


- градиент концентрации.

D – коэффициент диффузии.

Фильтрация – перемещение раствора (и растворителя) под действием разности давлений. Этот вид переноса имеет основное значение при переносе воды через стенки капилляров. Явление подчиняется формуле Пуазейля Q= Δp/w, где Q - объемная скорость, Δp – разность давлений, w – гидравлическое сопротивление.

Облегченная диффузия может протекать с подвижным либо с неподвижным переносчиком.

Этим путем через мембраны переносятся аминокислоты, сахара, ионы калия. Облегченная диффузия происходит с участием молекулы переносчика. Например, молекула ВАЛИНОМИЦИНА, хорошо растворимая в липидах, имеет высокий коэффициент проницаемости. Внутри молекулы валиномицина имеются как бы полости с полярными группами, что позволяет молекуле захватывать и связывать ионы калия и другие липидонерастворимые вещества. Переносимое вещество(ионы калия) захватывается молекулой переносчиком там, где его больше и переносится туда, где его меньше, то есть перенос как и при обычной диффузии.

4 особенности облегченной диффузии:

Коэффициент проницаемости для облегченной диффузии больше, чем для простой.

Процесс облегченной диффузии обладает свойством насыщения.

Наличие конкуренции переносимых веществ. Ряд наиболее переносимых веществ: глюкоза > фруктоза > ксилоза > арабиноза.

Наличие веществ-блокираторов (напр. Флоридзин).

Электродиффузия – перенос не нейтральных молекул, а заряженных частиц(ионов) вследствие как разности концентраций, так и разности потенциалов.( Лютов с.94-95)

Диффузия через поры этот вид диффузии имеет место для липидо-нерастворимых веществ, водорастворимых гидратированных ионов. Чем больше диаметр молекулы или иона, тем проницаемость меньше (искл. Составляют ионы лития и натрия- их диаметр меньше, чем диаметр иона калия, но проницаемость меньше в 50-100 раз).

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Измерение подвижности молекул мембраны и диффузия частиц через мембрану свидетельствует о том, что билипидный слой ведет себя подобно жидкости. Однако мембрана есть упорядоченная структура. Эти два факта предполагают, что фосфолипиды в мембране при ее естественном функционировании находятся в жидкокристаллическом состоянии. При изменении температуры в мембране можно наблюдать фазовые переходы: плавление липидов при нагревании и кристаллизацию при охлаждении. Жидкокристаллическое состояние биослоя имеет меньшую вязкость и большую растворимость различных веществ, чем твердое состояние. Толщина жидкокристаллического биослоя меньше, чем твердого.

Структура молекул в жидком и твердом состояниях различна. В жидкой фазе молекулы фосфолипидов могут образовывать полости (кинки), в которые способны внедряться молекулы дифференцирующего вещества. Перемещение кинка в этом случае будет приводить к диффузии молекулы поперек мембраны.

Перенос молекул (атомов) через мембраны

Важным элементом функционирования мембран является их способность пропускать или не пропускать молекулы (атомы) и ионы. Вероятность такого проникновения частиц зависит как от направления их перемещения (например, в клетку или из клетки), так и от разновидности молекул и ионов.

Явления переноса – это необратимые процессы, в результате которых в физической системе происходит пространственное перемещение (перенос) массы импульса, заряда или какой-либо другой физи30б ческой величины. К явлениям переноса относят диффузию (перенос массы вещества), вязкость (перенос импульса), теплопроводность (перенос энергии), электропроводность (перенос электрического заряда).

На мембране существует разность потенциалов, следовательно, в мембране имеется электрическое поле. Оно оказывает влияние на диффузию заряженных частиц (ионов и электронов). Перенос ионов определяется двумя факторами: неравномерностью их распределения (т. е. градиентом концентрации) и воздействием электрического поля (уравнение Нернста-Планка):


Уравнение устанавливает связь плотности стационарного потока ионов с тремя величинами:

1) проникаемостью мембран для данного иона, которая характеризует взаимодействие мембранных структур с ионом;

2) электрическим полем;

3) концентрацией ионов в водном растворе, окружающем мембрану.

Явления переноса относятся к пассивному транспорту: диффузия молекул и ионов происходит в направлении меньшей их концентрации, перемещение ионов – в соответствии с направлением силы, действующей на них со стороны электрического поля.

Пассивный транспорт не связан с затратой химической энергии, он осуществляется в результате перемещения частиц в сторону меньшего электрохимического потенциала.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

2. Термодинамические параметры. Термодинамические показатели. Баланс напряжений

2. Термодинамические параметры. Термодинамические показатели. Баланс напряжений Любая ТДС характеризуется параметрами: температура, давление, плотность, концентрация, мольный объем. В любой ТДС обязательно протекают процессы, и они могут быть равновесными,

Познать физические свойства — значит научиться измерять

Познать физические свойства — значит научиться измерять Попробуйте при случае подсчитать, сколько цветов в радуге. Эту задачу выполнить невозможно. Между полосами красной и оранжевой, синей и голубой, как и между любыми соседними полосами, нет резких границ, между ними

Физические условия изменяют спектры

Физические условия изменяют спектры Мы уже говорили, что оптические спектры зависят от тех условий, в которых находятся атомы. Сильные магнитные поля изменяют оптические спектры атомов; они расщепляют спектральные линии. Таково же действие сильных электрических полей.

ЛЕКЦИЯ V КИСЛОРОД СОДЕРЖИТСЯ В ВОЗДУХЕ. ПРИРОДА АТМОСФЕРЫ. ЕЕ СВОЙСТВА. ДРУГИЕ ПРОДУКТЫ ГОРЕНИЯ СВЕЧИ. УГЛЕКИСЛОТА, ЕЕ СВОЙСТВА

ЛЕКЦИЯ V КИСЛОРОД СОДЕРЖИТСЯ В ВОЗДУХЕ. ПРИРОДА АТМОСФЕРЫ. ЕЕ СВОЙСТВА. ДРУГИЕ ПРОДУКТЫ ГОРЕНИЯ СВЕЧИ. УГЛЕКИСЛОТА, ЕЕ СВОЙСТВА Мы уже убедились, что водород и кислород можно получить из воды, полученной нами при горении свечи. Вы знаете, что водород берется из свечи, а

22. Физические вопросы гемодинамики

22. Физические вопросы гемодинамики Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физической основой гемодинамики является гидродинамика.Существует связь между ударным объемом крови (объемом крови,

28. Физические свойства нагретых и холодных сред, используемых для лечения

28. Физические свойства нагретых и холодных сред, используемых для лечения В медицине с целью местного нагревания или охлаждения применяют нагретые или холодные тела. Обычно для этого выбирают сравнительно доступные среды, некоторые из них могут оказывать при этом и

29. Физические процессы в биологических мембранах

29. Физические процессы в биологических мембранах Важной частью клетки являются биологические мембраны. Они отграничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют

34. Физические основы электрокардиографии

39. Свойства магнетиков и магнитные свойства тканей человека

39. Свойства магнетиков и магнитные свойства тканей человека Молекулы парамагнетиков имеют отличные от нуля магнитные моменты. При отсутствии магнитного поля эти моменты расположены хаотически и их намагниченность равна нулю. Степень упорядоченности магнитных

ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ

ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ Основная проблема заключается в том, что противоречия между наукой и религией уходят намного глубже конкретных формулировок. Даже если речь не идет о буквальном толковании каких бы то ни было текстов, проблема не решается. Религия и наука опираются

ОЖИДАЕМЫЕ ПАРАМЕТРЫ КОТЛА

Литературно-физические пародии

Литературно-физические пародии Г. Копылов Пародия на газетную статью о науке Микромир среди лесовТишину хвойного леса, подступающего вплотную к стенам корпуса, разрывает на мелкие кусочки лязг и грохот ускоряемых протонов. Вокруг корпусов раскинулся благоустроенный

4.2. Физические характеристики, строение ядра

4.2. Физические характеристики, строение ядра В последнее десятилетие наши знания о кометах и о процессах, происходящих на них, значительно расширились. Резкому повышению интереса к кометам способствовали подготовка и проведение международного космического

4.4. Орбитальные параметры комет

Клеточная мембрана

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.

Клеточная мембрана (цитолемма, плазмалемма) – это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.

Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете все о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.

История исследования клеточной мембраны

Однако в ходе эксперимента было допущено две грубейших ошибки:

Использование ацетона не позволяет выделить из мембран абсолютно все липиды;

Поскольку первая ошибка давала минус в расчетах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие ученые принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.

В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными пленками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти пленки обладают таким высоким показателем поверхностного натяжения. Ученые представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба играют однородные липидно-белковые слои, а между ними вместо масла – пустота.

В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчетливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.

В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Ученые установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.

В составе клеточных мембран присутствуют белки трех видов:

Периферические – крепятся на поверхности пленки;

Полуинтегральные – частично проникают внутрь билипидного слоя;

Интегральные – полностью пронизывают мембрану.

Периферические белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из нее продуктов распада и ещё для нескольких важных функций, о которых вы узнаете далее.

Свойства и функции клеточной мембраны

Свойства и функции клеточной мембраны

Клеточная мембрана выполняет следующие функции:

Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определенный размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для нее пероксидов;

Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из нее нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из нее ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Все эти вещества выходят из клеток через специальные каналы и в заданном объеме. А избирательная транспортная функция связана с теми самыми интегральными белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определенных типов молекул;

Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;

Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов к деформации;

Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твердая древесина, плотная кожура, колючие шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога;

Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;

Рецепторную— белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;

Ферментативную — ещё одна важная функция, присущая некоторым белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;

Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трех типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;

Клеточный обмен происходит через мембраны, и может осуществляться с помощью трех основных типов реакций:

Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

Экзоцитоз – обратный процесс, при котором внутри клетки образуются пузырьки с секреторной функциональной жидкостью (ферментом, гормоном), и её необходимо как-то вывести из клетки в окружающую среду. Для этого пузырек сначала сливается с внутренней поверхностью клеточной мембраны, затем выпячивается наружу, лопается, исторгает содержимое и снова сливается с поверхностью мембраны, на этот раз уже с внешней стороны. Экзоцитоз проходит, например, в клетках кишечного эпителия и коры надпочечников.

Строение клеточной мембраны

Клеточные мембраны содержат липиды трех классов:

Фосфолипиды (комбинация жиров и фосфора) и гликолипиды (комбинация жиров и углеводов), в свою очередь, состоят из гидрофильной головки, от которой отходят два длинных гидрофобных хвостика. А вот холестерол иногда занимает пространство между этими двумя хвостиками и не даёт им изгибаться, что делает мембраны некоторых клеток жесткими. Кроме того, молекулы холестерола упорядочивают структуру клеточных мембран и препятствуют переходу полярных молекул из одной клетки в другую.

Структура клеточной мембраны трехслойна. Посередине пролегает относительно однородный жидкий билипидный слой, а белки покрывают его с обеих сторон подобием мозаики, частично проникая в толщу. То есть, неправильно было бы думать, что внешние белковые слои клеточных мембран непрерывны. Белки, помимо своих сложных функций, нужны в мембране для того, чтобы пропускать внутрь клеток и транспортировать из них наружу те вещества, которые не способны проникнуть сквозь жировой слой. К примеру, ионы калия и натрия. Для них предусмотрены специальные белковые структуры – ионные каналы, подробнее о которых мы расскажем далее.

Клетка – это структурированная и отграниченная с помощью мембран совокупность органоидов, которая участвует в комплексе энергетических, метаболических, информационных и репродуктивных процессов, обеспечивающих жизнедеятельность организма.

Ионные каналы клеточных мембран

Рассмотрим более подробно принцип работы ионных каналов. Для чего они нужны? Дело в том, что сквозь липидную мембрану беспрепятственно могут проникать только жирорастворимые вещества – это газы, спирты и сами жиры. Так, например, в красных кровяных тельцах постоянно происходит обмен кислорода и углекислого газа, и для этого нашему организму не приходится прибегать ни к каким дополнительным ухищрениям. Но как же быть, когда возникает необходимость в транспортировке сквозь клеточную мембрану водных растворов, таких, как соли натрия и калия?

Проложить в билипидном слое путь для таких веществ было бы невозможно, поскольку отверстия бы тут же затянулись и слиплись обратно, такова уж структура любой жировой ткани. Но природа, как всегда, нашла выход из ситуации, и создала специальные белковые транспортные структуры.

Существует два типа проводящих белков:

Транспортеры – полуинтегральные белки-насосы;

Каналоформеры – интегральные белки.

Белки первого типа частично погружены в билипидный слой клеточной мембраны, а головкой выглядывают наружу, и в присутствии нужного вещества они начинают вести себя, как насос: притягивают молекулу и всасывают её внутрь клетки. А белки второго типа, интегральные, имеют вытянутую форму и располагаются перпендикулярно билипидному слою клеточной мембраны, пронизывая её насквозь. По ним, как по тоннелям, в клетку и из клетки движутся вещества, неспособные проходить сквозь жир. Именно через ионные каналы внутрь клетки проникают ионы калия и накапливаются в ней, а ионы натрия, наоборот, выводятся наружу. Возникает разность электрических потенциалов, так необходимая для правильной работы всех клеток нашего организма.

[Учебное видео] Строение плазматической мембраны клетки:


Важнейшие выводы о строении и функциях клеточных мембран

вывод

Теория всегда выглядит интересной и перспективной, если её можно с пользой применить на практике. Открытие строения и функций клеточных мембран человеческого организма позволило ученымсовершить настоящий прорыв в науке в целом, и в медицине в частности. Мы не случайно так подробно остановились на ионных каналах, ведь именно здесь кроется ответ на один из важнейших вопросов современности: почему люди все чаще заболевают онкологией?

Рак ежегодно уносит около 17 миллионов жизней во всем мире, и является четвертой по частоте причиной всех смертей. По данным ВОЗ, заболеваемость онкологией неуклонно увеличивается, и к концу 2020 года может достигнуть 25 миллионов в год.

Чем объясняется настоящая эпидемия рака, и причем тут функции клеточных мембран? Вы скажете: причина в плохой экологической обстановке, неправильном питании, вредных привычках и тяжелой наследственности. И, конечно, будете правы, но если говорить о проблеме более предметно, то причина в закисленности человеческого организма. Перечисленные выше негативные факторы приводят к нарушению работы клеточных мембран, угнетают дыхание и питание.

Там, где должен быть плюс, образуется минус, и клетка не может нормально функционировать. А вот раковым клеткам не нужны ни кислород, ни щелочная среда – они способны использовать анаэробный тип питания. Поэтому в условиях кислородного голодания и зашкаливающего уровня pH здоровые клетки мутируют, желая приспособиться к окружающей среде, и становятся раковыми клетками. Так человек и заболевает онкологией. Чтобы этого избежать, нужно всего лишь употреблять достаточное количество чистой воды ежедневно, и отказаться от канцерогенов в пище. Но, как правило, люди прекрасно знают о вредных продуктах и потребности в качественной воде, и ничего не предпринимают – надеются, что беда обойдет их стороной.

Антибиотики последнего поколения при попадании в кровь не убивают все клетки подряд, а ищут именно клетки возбудителя, ориентируясь на маркеры в его клеточных оболочках. Новейшие препараты против мигрени, триптаны, сужают только воспаленные сосуды головного мозга, при этом почти никак не влияя на сердце и периферическую кровеносную систему. И узнают они нужные сосуды именно по белкам их клеточных мембран. Таких примеров множество, поэтому можно с уверенностью сказать, что знания о строении и функциях клеточных оболочек лежит в основе развития современной медицинской науки, и спасает миллионы жизней каждый год.

Мочалов Павел Александрович

Автор статьи: Мочалов Павел Александрович | д. м. н. терапевт

Образование: Московский медицинский институт им. И. М. Сеченова, специальность - "Лечебное дело" в 1991 году, в 1993 году "Профессиональные болезни", в 1996 году "Терапия".
Наши авторы

Читайте также: