Синергетика кратко и понятно

Обновлено: 03.07.2024

Синергетика — это междисциплинарное направление научных исследований, возникшее в начале годов XX века, которое изучает закономерности и принципы, лежащие в основе процессов самоорганизации в системах самой разной природы: физических, химических, биологических, технических, социальных и других (см. Система). Под самоорганизацией в синергетике понимаются процессы возникновения макроскопически упорядоченных пространственно-временных структур в сложных нелинейных системах, находящихся в далёких от равновесия состояниях, вблизи особых критических точек — точек бифуркации, в окрестности которых поведение системы становится неустойчивым. Последнее означает, что в этих точках система под воздействием самых незначительных воздействий, или флуктуаций, может резко изменить своё состояние. Этот переход часто характеризуют как возникновение порядка из хаоса. Одновременно происходит переосмысление концепции хаоса, вводится понятие динамического (или детерминированного) хаоса как некой сверхсложной упорядоченности, существующей неявно, потенциально, и могущей проявиться в огромном многообразии упорядоченных структур.

В современной интерпретации нелинейности последняя предполагает, что направленность интерпретируется не в качестве континуального причинно-следственного вектора, а как результат случайного пересечения (взаимоналожения) не имманентно не связанных друг с другом событийных потоков. Применительно к синергетике данная презумпция оказывается, по оценке К. Хасейна, Дж. Гукенхеймера, Ф. Холмеса и других, не просто наиболее важной, но основополагающей, фундируя собой идею о новом статусе феномена случайности. Если в рамках линейной парадигмы случайные факторы могли интерпретироваться в качестве внешних и несущественных помех реализации доминантного вектора эволюции, которыми можно было пренебречь, то в рамках анализа нелинейных систем именно случайные флуктуации, понятые в качестве имманентных по отношению к рассматриваемой системе, оказываются одним из решающих факторов эволюции. В целом, как очевидность разницы статуса необходимости и случайности, так и жёсткая оппозиция последних теряют в ситуации нелинейности свой смысл: семантическая и детерминационная значимость тех или иных эволюционных факторов утрачивает онтологический статус и оказывается в зависимости от системы отсчёта. Так, в синергетике, как имеющей своим предметом сложные процессы, характеризующиеся нелинейностью развития, идеи кросс-каталитического пересечения событийных потоков и случайной флуктуации выступают, по оценке Дж. Д. Мюррея, Р. Эннса и других, в качестве фундаментальных.

Диссипативные структуры, согласно синергетической концепции, характеризуются следующими особенностями: 1) они возникают в случаях неравновесного состояния системы как продукт (результат) её самоорганизации; 2) в своём возникновении они инспирированы случайной флуктуацией того или иного параметра развития системы; 3) они являются принципиально открытыми, то есть формируются только при условии постоянного энергообмена самоорганизующейся системы с внешней средой; 4) в основе их образования лежит механизм обратных связей, предполагающих осуществление как автокаталитических, так и кросс-каталитических процессов; 5) они реализуют кооперативные взаимодействия на микроуровне, и именно от последних зависят макроскопические свойства диссипативных структур, не редуцируемые, однако, к свойствам их элементов; 6) диссипативные структуры не являются инвариантными относительно времени, а процесс их формирования характеризуется необратимостью по отношению к его течению; 7) адекватное описание диссипативных структур возможно лишь посредством нелинейных уравнений.

Синергетический подход активно реализует себя в физике и космологии (А. Бергер, С. Вейнберг, Б. Мизра, С. Пайкраукс, С. Хокинс и другие); химии (Ф. Барас, Ш. Видаль, Н. ван Кампен, М. Маркус, С. К. Миллер, Г. Николис, А. Пако, Б. Хесс и другие); биологии (В. Балакришнан, П. Боркманс, К. Боттани, Дж. Верхагх, Р. Винклер, Д. Вольфграф, Н. С. Гоел, Дж. Девел, Дж. Л. Динебург, Дж. Леви, Д. Людвиг, Р. М. Мэй, Дж. Д. Мюррей, Дж. Пастилз, Дж. Непорт, Л. И. Оргель, А. К. Пикок, Н. Рихтер-Дин, Дж. Хоффман, П. Шустер, М. Эйген и другие); психологии (П. Круз, М. Стадлер, Г. Хакен, А. В. Холден и другие); социологии и урбанистике (П. М. Аллен, М. Санглиер, Дж. Энгелен и другие).

К числу наиболее значимых парадигмальных сдвигов, связанных в современном естествознании с формированием в его контексте синергетической исследовательской парадигмы, могут быть отнесены следующие:


Открытие нового мира необратимости, внутренней случайности и сложности (И. Пригожин, 1986).

Что такое синергетика?

Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, одни и те же безотносительно природы систем.

Основное понятие синергетики – определение структуры как состояния, возникающего в результате поведения многоэлементной или многофакторной среды, не демонстрирующей стремления к усреднению термодинамического типа.

В отдельных случаях образование структур имеет волновой характер и иногда называется автоволновыми процессами (по аналогии с автоколебаниями).

II. Области исследований

Область исследований синергетики до сих пор до конца не определена, так как предмет её интересов лежит среди различных дисциплин, а основные методы синергетики взяты из нелинейной неравновесной термодинамики.

Постепенно предмет синергетики распределился между различными направлениями:

теория динамического хаоса исследует сверхсложную упорядоченность, напр. явление турбулентности;

теория детерминированного хаоса исследует хаотические явления, возникающие в результате детерминированных процессов (в отсутствие случайных шумов);

теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации, процесс самоорганизации также может быть фрактальным;

теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость;

лингвистическая синергетика и прогностика.

Синергетика основывается на следующих идеях и выводах:

1. Системности или целостности мира и научного знания о нем, общности закономерностей развития объектов всех уровней материальной и духовной организации.

2. Нелинейности (т.е. многовариантности и необратимости).

Нелинейность – одно из центральных понятий в синергетике. Нелинейность в математическом плане отражает определенный вид математических уравнений, содержащих искомые величины в степенях, больших 1, или коэффициенты, зависящие от свойств среды.

Нелинейные уравнения имеют несколько решений. Множеству решений нелинейного уравнения соответствует множество путей эволюции системы, описываемой этими уравнениями (нелинейной системы).

Нелинейность в мировоззренческом плане может быть развернута посредством идеи многовариантности путей эволюции, идеи выбора из альтернатив и вытекающей отсюда идеи необратимости эволюции.

4. Открытости систем и мира в целом.

5. Новое понимание времени.

III. Синергетический подход в современном познании, основные принципы

Наука имеет дело с системами разных уровней организации, связь между ними осуществляется через хаос

Когда системы объединяются, целое не равно сумме частей

Общее для всех систем: спонтанное образование, изменения на макроскопическом уровне, возникновение новых качеств, этап самоорганизации. При переходе от неупорядоченного состояния к состоянию порядка все системы ведут себя одинаково

Неравновесность в системе является источником появления новой организации (порядка)

Системы всегда открыты и обмениваются энергией с внешней средой

Процессы локальной упорядоченности совершаются за счет притока энергии извне

В сильно неравновесных условиях системы начинают воспринимать те факторы, которые они бы не восприняли в более равновесном состоянии

В неравновесных условиях независимость элементов уступает место корпоративному поведению

Вдали от равновесия согласованность поведения элементов возрастает. В равновесии молекула видит только своих соседей, вдали равновесия – видит всю систему целиком. Примеры: костная материя – коммуникация посредством сигналов, работа головного мозга.

В условиях, далеких от равновесия, в системах действуют бифуркационные механизмы – наличие точек раздвоения продолжения развития. Варианты развития системы практически не предсказуемы.

IV. Ключевые положения синергетики. Г.Хакен

«Исследуемые системы состоят из нескольких или многих одинаковых или разнородных частей, которые находятся во взаимодействии друг с другом.

Эти системы являются нелинейными.

При рассмотрении физических, химических и биологических систем речь идет об открытых системах, далеких от теплового равновесия.

Эти системы подвержены внутренним и внешним колебаниям.

Системы могут стать нестабильными.

Происходят качественные изменения.

В этих системах обнаруживаются эмерджентные (т.е. вновь возникшие) новые качества.

Возникают пространственные, временные, пространственно-временные или функциональные структуры.

Структуры могут быть упорядоченными или хаотичными.

Хакен прежде всего подчеркивает, что части систем взаимодействуют друг с другом. Он выделяет истоки, которые приводят к образованию новых систем. Хаос есть хаос, он никак не может превратиться в порядок. Логика Хакена идет в другом направлении. Основополагающий системный фактор состоит не в хаотичности, а во взаимодействии, в динамике.

Динамика не чужда даже хаосу. А раз так, то вполне возможно, что в хаосе рождается порядок, упорядоченность. Это действительно имеет место. Многим упорядочение хаоса, его самоорганизация кажется чем-то диковинным. Им трудно понять, что хаос не лишен динамики, они абсолютизируют хаос, считают его деструктивным началом.

Важнейшим концептом синергетики является нелинейность. В синергетике основное внимание уделяется изучению нелинейных математических уравнений. Линейность абсолютизирует поступательность, безальтернативность, торжество постоянства. Нелинейность фиксирует непостоянство, многообразие, неустойчивость, отход от положений равновесия, случайности, точки ветвления процессов, бифуркации.

Точкой бифуркации называют состояние максимальной хаотичности неравновесного процесса (от лат. bifurcus – раздвоенный). Благодаря хаотичности дальнейшее развертывание неравновесного процесса имеет не один путь движения, а множество возможных путей из точки бифуркации

Имея дело с открытыми (имеющими источники и стоки энергии) нелинейными системами, синергетика утверждает, что мир возникает в результате самопроизвольных и самоорганизующихся механизмов. В их основе лежит единая симметрия форм в живой и неживой природе. Например, спирали Галактики и циклона подобны спирали раковины улитки, рогов животных.

Случайность оказывается необходимым элементом мира: порядок (закон) и беспорядок (хаос) включают в себя друг друга. Более того, случайность играет роль творческого начала в процессе самоорганизации. Чем дальше от состояния равновесия, тем быстрее растет число решений, состояний сложной системы.

Синергетика, как правило, имеет дело с открытыми системами, далекими от равновесия. Открытость системы означает наличие в ней источников и стоков, например, вещества, энергии и информации.

Чтобы система образовалась, необходим соответствующий динамический источник, который как раз и выступает организующим началом. Там, где наступает равновесие, самоорганизация прекращается.

Самоорганизующиеся системы подвержены колебаниям. Именно в колебаниях система движется к относительно устойчивым структурам. Нелинейные уравнения, как правило, описывают колебательные процессы

Синергетика, как это показал в своих многочисленных работах И. Пригожин, позволяет с новых позиций понять два важнейших фактора существования как нас самих, так и нашего окружения - время и необратимость.

Речь идет о том, что, во-первых, именно необратимость играет конструктивную роль, во-вторых, следует переоткрыть понятие времени.

Так же как и размерность, симметрия существенно зависит от того, какие операции разрешается производить над объектом. Например, строение тела человека и животных обладает билатеральной (двусторонний, двубокий, относящийся к обеим сторонам, частям чего-то) симметрией, но операция перестановки правого и левого физически не осуществима. Следовательно, если ограничиться только физически выполнимыми операциями, то билатеральной симметрии не будет. Симметрия - свойство негрубое: небольшая вариация объекта, как правило, уничтожает весь запас присущей ему симметрии.

Есть основания предположить, что в связи с интенсивным развитием синергетики в науке происходит сейчас не меньшая, а скорее всего даже более глубокая и масштабная по своему характеру революция, чем научная революция, вызванная возникновением на рубеже нашего века теории относительности и квантовой механики.

Итак, синергетика явилась радикально новым способом видения мира. И в то же время она парадоксальным образом возвращает нас к тем идеям, которые имеют тысячелетнюю историю. Синергетика – и в этом ее своеобразие – не только синтезирует фрагменты обыденного и отчасти научного, дисциплинарно разбросанного знания, но даже связывает эпохи – древность с современностью, с новейшими достижениями науки, – а также принципиально различные, восточный и западный, способы мышления и мировосприятия.

От Востока синергетика воспринимает и развивает далее идею целостности (все во всем) и идею общего закона, единого пути – пути Дао, – которому следуют и мир в целом, и человек в нем. А от Запада она берет традиции анализа, опору на эксперимент, их транслируемость (от одной школы в науке к другой, от науки - к обществу в целом) через научные тексты, особый математический аппарат и даже запись на дискете компьютера.

Синергетика как мировоззрение несет в себе немалый гуманистический потенциал. Основной пафос синергетики состоит в том, чтобы попытаться описать сначала на качественном уровне посредством некоторых фундаментальных идей и образов, а затем, возможно, и посредством одного и того же математического языка взаимоподобные процессы развития в сложных системах физики, химии, биологии, географии, социологии.

В результате разработки синергетики переосмысливается и место человека в структуре познавательной и практической деятельности. Ученый не представляется более в виде некоего отстраненного от мира оракула-просветителя, который открывает вечные и неизменные законы действительности и на основе этого знания вырабатывает истинное на все времена нормы деятельности.

Синергетика стирает непреодолимые грани между физическими и химическими процессами, с одной стороны, и биологическими – с другой, ибо исследует общие механизмы самоорганизации тех и других. Нелинейные системы ведут себя как живые системы в том смысле, что их реакция на внешние воздействия зависит не только от величины этого воздействия, но и существенным, нелинейным образом от собственных свойств системы.

Каково место синергетики в ряду других наук? Синергетика изучает открытые (обменивающиеся веществом и энергией с внешним миром, иными словами, имеющие источники и стоки энергии) нелинейные (описывающиеся нелинейными уравнениями) системы.

Предмет синергетики - механизмы самоорганизации, т.е. механизмы самопроизвольного возникновения, относительно устойчивого существования и саморазрушения макроскопических упорядоченных структур, имеющие место в такого рода системах. Механизмы образования и разрушения структур, механизмы перехода от хаоса к порядку и обратно не зависят от конкретной природы элементов или подсистем. Они присущи и миру природных (живых и неживых), и миру человеческих, социальных процессов.

В синергетике к настоящему времени сложилось уже несколько школ или течений. Эти школы окрашены в те тона, которые привносят их сторонники, идущие к осмыслению идей синергетики с позиции своей исходной дисциплинарной области, будь то математика, физика, химия, биология или даже обществознание.

В числе этих школ – брюссельская школа лауреата Нобелевской премии И. Пригожина, разрабатывающего теорию диссипативных структур (иное название синергетики).

Интенсивно работает также школа Г.Хакена, профессора Института синергетики и теоретической физики в Штутгарте.

Классические работы, в которых развивается математический аппарат для описания катастрофических синергетических процессов, принадлежит перу советского математика, академика В.И. Арнольда и французского математика Р.Тала.

Школа академика А.А. Самарского и члена-корреспондента АН СССР С.П. Курдюмова выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в нелинейных средах (системах). Широко известны также работы академика Н.Н. Моисеева, разработавшего идеи глобального эволюционизма в поведении человека и природы.

Такое разнообразие научных школ и идей свидетельствует о том, что синергетика представляет собой скорее парадигму, чем теорию. Под парадигмой в философии науки понимают определенную совокупность общепринятых в научном обществе идей и методов (образцов) научного исследования. Синергетику как новую парадигму можно предельно кратко охарактеризовать всего лишь тремя ключевыми идеями: нелинейность, самоорганизация и открытые системы. Синергетика важна в первую очередь как подход к пониманию развития открытых нелинейных систем, как особый стиль мышления, т.е. своей методологической и эвристической стороной.

1. Данилов Ю.А., Кадомцев Б.Б. Что такое синергетика? // Нелинейные волны. Самоорганизация. – М., Наука, 1983.

Синергетика — это область знания, которая изучает, как сочетаются и объединяются объекты друг с другом

Что такое синергетика — простыми словами

Синергетика — относительно новое направление в науке, она возникла в 70-е гг. ХХ века и в принципе, синергетика — это область знания, которая изучает, как сочетаются и объединяются объекты друг с другом. В природе существуют принципы, пока еще мало изученные, соответствия и подобия объектов друг другу.

Какие-то объекты подходят друг другу и образуют цепочки, системы и т.д., а другие нет. Соответственно, у определенных объектов, например, у людей, есть определенные правила сочетания, по которым люди сочетаются и создают системы.

И если в эту систему мы можем еще одного человека добавить или несколько миллионов, то эта система станет больше, в ней проявятся новые иерархии, законы и т.д., а если мы добавим в нее 100 миллионов человек, то она развалится.

Синергетика изучает, как и по каким принципам, правилам и законам сочетаются люди друг с другом начиная с сочетания двух людей, которые могут стать друзьями или создать семью и заканчивая сочетанием больших обществ, из которых можно построить государство или создать союзы государств, чтобы они не развалились.

О чем говорит синергетика?

Область знания, которая изучает как сочетаются объекты, называется — синергетика. Синергетика говорит о том, что те системы, которые существуют в обществе, это не самый высокий уровень систем, которые могут существовать.

Если правильно понять сочетания людей и обществ друг с другом, понять, как правильно сочетаться и объединяться, то можно слиться, в единое человечество.

И у людей не будет проблем с тем, чтобы сосуществовать в таком едином человечестве, при условии, что мы найдем принципы объединения людей, которые подходят всем людям. Это важно еще с точки зрения того, что в какой-то момент, любое локальное сочетание людей, такое как государство или союз из нескольких государств, подходит к границе своего развития и дальше расти не может.

И тогда возникает опасная ситуация развала этой системы или еще более опасная в условиях глобализации — война. Синергетический подход к решению системных проблем состоит в том, чтобы рассматривать проблемы комплексно, чтобы проблемы и решение в одной области, не приводили к катастрофе в другой.

Применительно к политике

Применительно к политике, синергетика приводит к выводу, что все мы — пассажиры одной конечной планеты — космического корабля Земля, как сказал Ричард Фуллер.

Фуллер считал, что совокупность отдельных, конкурирующих друг с другом частей системы, называемых нациями, рано или поздно приводит к уничтожению друг друга. Синергетика, по Фуллеру, должна упорядочить мир в доброжелательный мир, и как это сделать — на эти вопросы должна ответить синергетика, следовательно, это также основа для оптимистического вывода о потенциальном будущем человека.

В сознании каждого человека заложена формула, согласно которой мы можем сочетаться с определенными людьми и группами людей, и с ними мы можем построить союз, государство. Однако, в мире существуют миллиарды людей, с которыми мы сочетаться не можем или не знаем, по каким принципам это делать.

И когда эти группы людей сталкиваются друг с другом в глобальном мире, это создает проблемную ситуацию, а это всегда болезненный процесс. Чтобы человечество не разрушило друг друга, нужно повернуть людей друг к другу, т.е. объединить, иначе общее состояние человечества будет ухудшаться с каждым годом.

Как объединить людей?

С одной стороны, кажется, что невозможно объединить людей и группы людей друг с другом, наш мир слишком противоречивый, чтобы придти хотя бы к компромиссу.

С другой — современный кризис всей системы общественных отношений, глобальный недостаток ресурсов, проблемы, которые невозможно решить в одиночку, каким бы экономически и технологически сильным не было государство — все это не оставляет шансов на то, что люди не начнут сближение друг с другом.

Проблема в том, что каждый человек видит себя отдельным индивидуумом, а не частью системы. Соответственно, изменение структуры человечества, как системы, возможно, только если показать людям, что они получат от объединения — реальный шанс изменить к лучшему жизнь отдельного человека и человечества в целом.

Понимание человечества как единого целого является центральным принципом синергетики. Синергетические модели ставят важные вопросы, такие как: Как мы понимаем объединение? Какова наша роль как личности, составляющей большую систему? Как разрешить конфликт между индивидуумом и коллективом? Каковы границы системы, к которой мы принадлежим?

По мере того, как мы углубляемся в понимание этих вопросов, мы увеличиваем нашу способность воспринимать человечество как единое целое, а по мере смены парадигмы восприятия, мы обнаружим, что объединение — фундаментальный принцип природы, существующий на всех уровнях природы.

Мы все — единое целое

Фуллер часто говорил о своей жизни и достижениях как о том, чего может достичь обычный, средний, здоровый человек, сосредоточив свое внимание и энергию на улучшении человечества и понимании человечества, как единого целого. Эта тема, над которой годами размышляют ученые, изучающие синергетику.

Многие из них, как и Фуллер в конце концов пришли к выводу, что бесполезно пытаться решать любые глобальные, даже локальные проблемы в рамках политики, экономики, денег. Мы должны осознать, что необходимо освободить человечество от этих ложных фиксаций, которые, кажутся, только и связывают людей друг с другом, а на самом деле, ведут человечество к кризису и катастрофе.

До распада советского блока, локальные проблемы, такие как например, коронавирус, не распространялись по цепочки связей на всё человечество и если одна система погибала вообще, то другие части мирового общества этого почти не чувствовали, а непосредственные соседи могли извлечь из этого пользу.

С конца 80-х гг. мир вошел в этап закрытой интегральности, когда все страны мира связаны со всеми и любая проблема, в любой части мира ухудшает шансы на выживание всей системы. Мы живем в сложном и многосвязном мире. Любая проблема, способна запустить необратимые разрушительные процессы в мире.

Международная политика как она есть (сегодня) – это дико конкурентная, дико жестокая, дико несправедливая и эгоистическая политика. Каждый сам за себя, никому нет дела до других. В такой ситуации, любые действия любого государства ухудшают положение в мире, поскольку, никто ни с кем практически не считается.

Но мы продолжаем предполагать, что будет лучше если мы сделаем так и так. Человек всё время ищет выход, но не там, не в той плоскости и фактически отдаляется от решения и получает отрицательную реакцию.

Потому, что решать нужно не финансовые, экономические и т.д. проблемы, а использовать проблемы в экономике, финансах и т.д. для решения всего одной — системной и согласно синергетики, это решение только в одном — в объединении.

Ненужность строгих определений

Особенность синергетики как науки

В отличие от большийства новых наук, возникавших, как правило, на стыке двух ранее существовавших и характеризуемых проникновением м е т о д а одной науки в предмете другой, Х-наука возникает, опираясь не на граничные, а на внутренние точки различных наук, с которыми она имеет ненулевые пересечения: в изучаемых Х-наукой системах, режимах и состояниях физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов Х-науки. Эту особенность Х-науки (если X — синергетика) подробно охарактеризовал Хакен: «Данная конференция, как и все предыдущие, показала, что между поведением совершенно различных систем, изучаемых различными науками, существуют поистине уяивительвые аналоги. С этой точки зрения данная конференция служит еще одним примером существования новой области науки — Синергетики.

Разумеется, Синергетика существует не сама по себе, а связана с другими науками по крайней мере двояко.

  • Во-первых, изучаемые Синергетикой системы относятся к компетенции различных наук.
  • Во-вторых, другие науки привносят в Синергетику свои идеи.

Укажу лишь некоторые из пробелов. Мир — не лазер. В точках бифуркации решающее значение имеют флюктуации, т. е. стохастические процессы. Неравновесные фазовые переходы обладают некоторыми особенностями, отличными от обычных фазовых переходов, например чувствительны к конечным размерам образцов, форме границ и т. п. В равновесной статистической механике не существуют самоподдерживающиеся колебания. В равновесной термодинамике широко используются такие понятия, как энтропия, производство энтропии и т. д., неадекватные при рассмотрении неравно- весных фазовых переходов. Теория катастроф основана на использовании некоторых потенциальных функций, не существующих для систем, находящихся в состояниях, далеких от теплового равновесия.

Итак, Х-наука делает первые шаги, и существует сразу не в одном, а в нескольких вариантах, отличающихся не только названиями, но и степенью общности и акцентами в интересах.Теория диссипативных структур. Бельгийская школа. И. Пригожина развивает термодинамический подход к самоорганизации [12, 13]. Основное понятие синергетики Хакена (понятие структуры как состояния, возникающего результате когерентного (согласованного) поведения большого числа частиц) бельгийская школа заменяет более специальным понятием диссипативной структуры.

Следуя Р. В. Хохлову, возникновение волн и структур, вызванное потерей устойчивости однородного равновесного состояния, иногда называют автоволновыми процессами (по аналогии с автоколебаниями) [ 15, 18]. На первый план здесь выступает волновой характер образования структур: независимость их характерных пространственных и временных размеров от начальных условий (выход на промежуточную асимптотику [19]), а в некоторых случаях — от краевых условий и геометрических размеров системы. Синергетика и кибернетика. Задачу выяснить с общих позиций закономерности процессов самоорганизации и образования структур ставит перед собой не только Х-наука.

Тьюринг показал, что в такой реакционно-диффузионной системе может существовать неоднородное (периодическое в пространстве и стационарное во времени) распределение концентраций. В русле тех же идей — изучения реакционно-диффузионных систем — мыслил найти решение проблемы самоорганизации и Дж. фон Нейман. По свидетельству А. Беркса, восстановившего по сохранившимся в архиве фон Неймана отрывочным записям структуру самовоспроизводящегося автомата, фон Нейман «предполагал построить непрерывную модель самовоспроизведения, основанную на нелинейных дифференциальных уравнениях в частных производных, описывающих диффузионные процессы в жидкости. В этой связи интересно отметить, что фон Нейман получил не только математическое образование, но и подготовку инженера-химика.

Структура и хаос

Одним из сенсационных открытии было обнаружение Лоренцом [2] сложного поведения сравнительно простой динамической системы из трех обыкновенных дифференциальных уравнений первого порядка с квадратичными нелинейностями. При определенных значениях параметров траектория системы вела себя столь запутанным образом, что внешний наблюдатель мог бы принять ее характеристики за случайные. Природа странного аттрактора Лоренца была изучена совместными усилиями физиков и математиков. Как и в случае многих других моделей Х-теории, выяснилось, что система Лоренца описывает самые различные физические ситуации — от тепловой конвекции в атмосфере до взаимодействия бегущей электромагнитной волны с инверсно-заселенной двухуровневой средой (рабочим телом лазера), когда частота волны совпадает с частотой перехода [24].

Фрактали

Мандельброт [25] обратил внимание на то, что довольно широко распространенное мнение о том, будто размерность является внутренней характеристикой тела, поверхности, тела или кривой неверно (в действительности, размерность объекта зависит от наблюдателя, точнее от связи объекта с внешним миром).

Суть дела нетрудно уяснить из следующего наглядного примера. Представим себе, что мы рассматриваем клубок ниток. Если расстояние, отделяющее нас от клубка, достаточно велико, то клубок мы видим как точку, лишенную какой бы то ни было внутренней структуры, т. е. геометрический объект с евклидовой (интуитивно воспринимаемой) размерностью 0. Приблизив клубок на некоторое расстояние, мы будем видеть его как плоский диск, т. е. как геометрический объект размерности 2. Приблизившись к клубку еще на несколько шагов, мы увидим его в виде шарика, но не сможем различить отдельные нити — клубок станет геометрическим объектом размерности 3. При дальнейшем приближении к клубку мы увидим, что он состоит из нитей, т. е. евклидова размерность клубка станет равной 1.

Структура структуры

Как ни парадоксально, новое направление, столь успешно справляющееся с задачей наведения порядка в мире хаоса, существенно меньше преуспело в наведении порядка среди структур. В частности, при поиске и классификации структур почти не используется понятие симметрии, играющее важную роль во многих разделах точного и описательного естествознания. Так же как и размерность, симметрия существенно зависит от того, какие операции разрешается производить над объектом. Например, строение тела человека и животных обладает билатеральной симметрией, но операция перестановки правого и левого физически не осуществима. Следовательно, если ограничиться только физически выполнимыми операциями, то билатеральной симметрии не будет.

Аксиоматический подход

Кажущаяся простота правил Конуэя обманчива: как и простые динамические системы, доска с расставленными на ней фишками может перейти в весьма сложные режимы, имитирующие процессы гибели (полное уничтожение всех расставленных в начальной позиции фишек), неограниченный рост, устойчивое стационарное состояние (система с определенной периодичностью в пространстве), периодические по времени осцилляции.

Вместо заключения

ЛИТЕРАТУРА

1. Манделъштам Л. И. Лекции по колебаниям. М.: Изд-во АН СССР, 1955. 503 с.

2. Хакен Г. Синергетика. М.: Мир, 1980. Wi с.

3. Synergetics. А Workshop / Ed. by И. Hakell. 3rd ел. В. etc,, 1977. 277 р.

4. Synergetics far from equilibrium/Ed. by A. Pacault, С. Vidal. В. etc,, 1978.

5. Structural stability in physics/ Ed. by W. Guttinger, H.Eikenmeier. В. ete., 1978. 311 p.

6. Pattern formation by dynamic systems and pattern recognition / Ed. bv H. Haken. В. etc,, 1979. 305 p.

7. Dynamic of synergetic systems/ Ed. by H. Haken. В. etc., 1980. 271 p.

8. Choaos and order in nature /Ed. by H.Haken. B. etc. 1980. 271 p.

9. Словарь no кибернетике. Киев: Гл. ред. Укр. сов. энцикл., 1979. 621 с.

10. Улам С. Нерешенные математические задачи. М.: Наука, 1964. 161с.

11И. Nonlinear partial differential equations. N. Y.: Acad. press, 1967, p. 223.

12. Николае Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с.

13. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с.

14. Гапонов-Грехов А. В., Рабинович М. И. Л. И. Мандельштам и современная теория нелинейных колебаний и волн.- УФН, 1979, 128, № 4, с. 579-624.

15. Васильев В.А., Романовской Ю. М., Яхт В. Г. Автоволновые процессы в распределенных кинетических системах.- УФН, 1979, 128, № 4, с. 625-666.

16. Академик Л. И. Мандельштам: К 100-летию со дня рождения.- М.: Наука, 1979, с. 107.

17. Бурбаки Н. Архитектура математики.- В кн.: Математическое просвещение. М.: Физматгиз, 1959, вып. 5, с. 106-107.

18. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974. 178 с.

19. Баренблатт Г. И. Подобие, автомодельность и промездуточная асимпто- тика. Л.: Гидрометеоиздат, 1978. 207 с.

20. Эбелинг В. Образование структур при необратимых процессах. М.: Мир, 1979, с. 13-14.

21. Романовский Ю. М., Степанова Н. В., Чернавский Ц. С. Математическое моделирование в биологии. М.: Наука, 1975. 343 с.

22. Turing А. М. The chemical basis of morphogenesis- Phil. Trans. Roy. Soc. London В, 1952, 237, p. 37-72.

23. Нейман Дж. фон. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. 382 с.

24. Рабинович М. И. Стохастические автоколебания и турбулентность.- УФК, 1978, 125, № 1, с. 123-168.

25. Mandelbrot В. В. Fractals. San Francisco: W. Н. Freeman and Co. , 1977. 365 p.

26. Хоффман У. Система аксиом математической биологии.- В кн.: Кибернетический сборник. М.: Мир, 1975, вып. 12, с. 184-207.

27. Математические проблемы в биологии: Сб. статей. М.: Мир, 1962, с. 258.

28. Гарднер М. Математические досуги. М.: Мир, 1972, с. 458.

29. Эйген М., Винклер Р. Игра жизнь. М.: Наука, 1979, с. 53.

30. Аладъев В. 3. Кибернетическое моделирование биологии развития.- В кн.: Параллельная обработка информации и параллельные алгоритмы. Таллин: Валгус, 1981, с. 211-280.

31. Вольперт А. .0., Худяев С. И. Анализ в классе разрывных функций и уравнения математической физики. М.: Наука, 1975. 394 с.

32. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний: Предисловие к первому изданию. М.: Физматгиз, 1959, с. 11-12.

Читайте также: